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point arbitrarily and continue this vector into the neighborhood by
means of (5.87).

Let us now summarize the results of this section. We can establish a
vector field &(z) by parallel displacement of an arbitrary vector &=
from some initial point to all points in a neighborhood in the Riemann
space (by an arbitrary route) if and only if the Riemann tensor of the
space is identically zero. In other words, we have found that (5.87) is
integrable if and only if the space is flat, that is, has a zero Riemann curva-
ture tensor. We shall henceforth refer to such a space as an integrable
space. In addition, note that the covariant derivative of a vector field
formed by parallel displacement is clearly zero. Therefore such a vector
field is a natural generalization of a constant vector field in Cartesian
coordinates. The results of this section then indicate that such a general-
ized constant vector field can exist only in a flat space with a zero Rie-
mann curvature tensor.

5.6 Pseudo-FEuclidean and Flat Spaces

From the previous section we know that we can establish a vector field
with a zero covariant derivative if and only if the Riemann tensor is
everywhere zero. We shall show in this section that the existence of
such a generalized constant vector field ensures the existence of a coordi-
nate system where the metric tensor has constant components. If one
can find such a coordinate system where the metric tensor has constant
components, the space is termed by definition a pseudo-Euclidean space.
Thus we can say that the goal of this section is to show that a flat space
(a space with a null Riemann tensor) is also pseudo-Euclidean.

Let us then suppose that the Riemann tensor of a space is everywhere
zero; in that case we can establish a generalized constant vector field by
the parallel displacement of some arbitrary vector £, from an initial
point to any given point in space. Let us do this with the following set
of four vectors £.":

« = (1,0,0,0) « = (0,1,0,0)

(5.88)
< = (0,0,1,0) P = (0,0,0,1)

which we can write more simply as

1 fory = a

~ ) — s
(0.89) o 6& O for vy # «
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(Note that v is not a tensor index.) These vectors then represent the
value of four generalized constant vector fields at an initial point, say,
Py, in some fixed but arbitrary coordinate system z=:

(5.90) £D(Po) = 87

Now since each vector field £°(z) has a zero covariant derivative,
(5.91) E£s=0

(we omit the argument z for clarity), it must also have a zero curl:
(5292) Bl — tla = EB — &l =0

The zero curl implies that each £’ then has a scalar potential o™ (z¥)
such that

(5.93) " = M
“ oz

Let us now use these scalar potential functions to define a transformation
to a new coordinate system £7:

(5.94) 7 = oM (a¥)

Such a transformation is permissible in some neighborhood of P, since
the Jacobian of the transformation at P, is

3¢(1)
dz*

(5.95) o BT

In the following development we shall consider only the neighborhood
of P, where the Jacobian (5.95) remains positive until we note otherwise.
In the barred system Eq. (5.93) takes the form

)
(5.96) B = aa"’i:

which, by virtue of the transformation (5.94), gives

i = (1,000 & =(0,1,00)

(6.97) ) )
« = (0,0,1,0) @ = (0,0,0,1)
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so each of the vectors £ has constant components everywhere in the barred
coordinate system Z=.
Consider next the set of 16 scalar inner products

(598) E‘(x” géa)gaﬁ — Egy) gé&)ga,g

Since the vectors £ and the metric tensor g% have zero covariant deriva-
tives, each of these scalars has a zero derivative:

(5.99) EXE 7N = EPE 7
— BB + BB + ERE

=0 for all pairs v and 6
and is therefore a constant:

(5.100) (EVEg*6) = const

From the fact that this inner product is a constant and from the explicit
form of the constant vectors £ given in (5.97), we see that each compo-
nent of the metric tensor must be a constant:

(5.101) EEP g8 = §v® = const

We have therefore shown that, in the neighborhood of P,, where the
Jacobian (5.95) is nonzero, there is a coordinate system in which the
metric tensor has constant components; the space is by definition
pseudo-Euclidean.

The problem now remains to extend our analysis to include all space
instead of the neighborhood of Py, which we considered in the preceding
paragraphs. As an aid in this extension, let us recall a few facts con-
cerning the theory of symmetric matrices:

1. For any symmetric matrix G there is a nonsingular matrix 4
(whose transpose is denoted by A7) which will transform G by a con-
gruence transformation AGAT to a diagonal matrix of the general form
that is, with [ diagonal elements equal to 1, m elements equal to —1, and
n elements equal to zero. This is the well-known Sylvester canonical
form for congruence transformations.

2. Although the matrix A in the transformation (5.102) is not unique,
the set of diagonal elements in the Sylvester canonical form for any given
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I
(5.102) . = —1In = AGAT

matrix ¢ is unique. This set of elements, composed of +1, —1, and 0,
is termed the signature of the matrix G.

3. Any two matrices, say, G and H, which have the same signature
and thereby the same canonical form, are related by a congruence
transformation; that is, there exists a nonsingular matrix B such that
G = BHBT. (This last fact is indeed evident from facts 1 and 2.)

The use of these ideas in extending our preceding analysis over all
space is quite straightforward, and we shall only briefly sketch the pro-
cedure. We have shown that in some neighborhood of any point P,
there exists a transformation to a barred coordinate system in which the
metric tensor is constant:

dx* dx’
|4 0 = =
(5.103) Jap = a0 378 9w const

By defining the matrices (A)a, = 02#/9%% (G)y = gu», and (D ag = §ap,
we can write this very simply in matrix notation as

(5.104) G = AGAT = const
As we noted above, both G and G are assumed to have signature

(17_17'—1’—1)

I_ndeed, 1t is evident that, without loss of gencrality, we may suppose that
G is itself the Sylvester canonical form identical to the Lorentz metric.
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Consider now a nearby point P; such that the neighborhoods of P,
and P, overlap where the transformation (5.93) has a nonzero Jacobian

Fig. 5.2

(Fig. 5.2). The relevant ¢ functions for the neighborhoods need not
necessarily agree, but we shall have a matrix equation similar to (5.104)
in the neighborhood of P,

(5.105) G = BGBT = const

where G is again the Lorentz canonical form. In the overlap region we
then have

1
(5.106) G = BGBT = AGAT = 1_1
—1
‘Since A and B are nonsingular matrices, this gives
(5.107) G = B'G(BT)! = AG(AT)!
Thus
(5.108) G = AB-'G(BT)"'AT = (AB-)G(ABY)T

that is, AB~! transforms the Lorentz metric into itself at every point in

the overlap region. All matrices L such that

(5.109) L LT =

form a group, the so-called Lorentz group of matrices or of linear trans-
formations, which is well known in the special theory of relativity. By
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definition, 4 B-! then belongs to the Lorentz group at each point in the
overlap region and we write:

(5.110) AB' =1L

where L is a Lorentz rotation matrix. We thus see that 4 and B can
differ only by a Lorentz rotation at each point of the overlapping region,

(5.111) A = LB

However, from the beginning the matrix A is arbitrary up to a constant
Lorentz rotation, so we can just as well absorb an appropriate L into the
matrix A to give

(5.112) A=B

We then have one transformation which puts the metric in the Lorentz
form in the combined neighborhoods of Py, and P;. This process can
then be continued to any point nearby P, or P; just as one analytically
continues a function in complex analysis. Eventually, any point of
space can be included, so we have indeed extended our analysis to all
space and shown that the entire Riemann space is pseudo-Euclidean.

Combined with the results of Sec. 5.2 and 5.5, the result of this section
allows us to construct in summary the followmg list of equwalent state-
ments about a given Riemann space.

1. The space is flat; that is, R.s,: = O.

2. The space is integrable, and parallel displacement is path-independ-
ent.

3. The space is pseudo-Euclidean, so there exists a coordinate system
where the metric is everywhere constant.

Furthermore, for physical reasons, we shall restrict ourselves to consid-
ering the special case of a pseudo-Euclidean space in which the metric has
signature (1, —1,—1,—1).

5.7 The Einstein Field Equations for Free Space

We wish to obtain in this section an acceptable set of differential equa-
tions in tensor form to deseribe the gravitational field in free space;
these equations must satisfy the four criteria which we stated in See. 5.1.
The developments of the preceding sections lead us to expect that these
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equations should in some way involve the Riemann tensor R.gys since
this tensor appears to contain a great deal of information about the
geometric structure of space. Note, for instance, the role played by the
Riemann tensor in the parallel displacement of a vector in Eq. (5.82).
Furthermore, we already know from the results of Sec. 5.2 that the special
case of a gravity-free space with a Lorentz metric is correctly described
by the equation Res,s = 0. Thus we expect the complete field equations
to be some generalization of Rasys = 0, which, as is demanded by the third
criterion of Sec. 5.1, still admits the Lorentz metric as one solution. In
short, we wish in some way to weaken the above flat-space equation to
admit more general solutions.

To obtain a clue as to how we might appropriately weaken this equa-
tion, let us consider Laplace’s equation for the classical gravitational
potential ¢: ‘

3

(5.113) i Pe=Y om=0
i=1

i=1

From Sec. 4.3, we know that, if Newton’s second law of motion and the
geodesic equation of motion are to yield approximately the same trajec-
tories for slowly moving particles in a weak gravitational field, the go
component of the metric tensor must be approximately given by

- 2
(5.114) goo = 1+ C—f
Therefore ¢ is given by

(goo - 1)

(CTS

(5.115) p =

and Laplace’s equation may be written in terms of goo as
y

3
(5116) 2 Joolili = 0
i=1

This equation, which must be an approximate form of the relativistic
field equations (Sec. 7.2), involves second derivatives of the metric tensor
with a summation over the repeated index 7. In a covariant tensor
equation the analogue of such a summation is a contraction, so we are
led to expect a contraction to occur in the relativistic field equations.
This observation suggests that we try weakening the equation Rag,s = 0
by a contraction of the Riemann tensor. Fortunately, there is only one
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meaningful contraction of the Riemann tensor R.ss Observe that a
contraction between « and 8 or between v and § yields a null tensor since
Ragys 1s antisymmetric in these index pairs. Similarly, we see that
contractions between « and v, between « and 8, and between 8 and &
differ only in sign. Thus the only meaningful contraction which we may
perform on R.gy = 0 yields the equation

WB.117) Reges = Rg = 0

where Rg is termed the contracted Riemann tensor or Ricci tensor.
Following Einstein, this is the equation we shall adopt to describe the
gravitational field in free space.

Let us observe that the Ricel tensor is symmetric by virtue of the last
symmetry relation in (5.51) for the full Riemann tensor. Indeed, using
the symmetry of g8, we obtain the chain of equations

(5.117") Ry = R%ay = ¢ Rgnay = g Rarsn = Ry
Thus the Ricei tensor has 10 independent components.

Equation (5.117) clearly satisfies criteria (a) and (b) of Seec. 5.1: it is
a tensor equation and was explicitly constructed so as to have the Lorentz
metric as one solution. That it is second-order and quasi-linear in the
components of g,,, and thereby satisfies criteria (b) and (d), can be seen
by writing out Rg in terms of the metric tensor in the form™ -

(5.118) g = |5aa)1s - {ﬁaalﬁ {raai {f;a] a {Taa’ {ﬁfﬁ}

39Mgmre + rals = goa)ls — 39°(gans T+ Grols — Gooln) e

+ (terms involving first derivatives of g,,)

Thus the four criteria of Sec. 5.1 are indeed satisfied by (5.117). Let us
repeat in summary that the Einstein free-space field equations which we
shall use in the following chapters are

e A R YR AV A R B AL

‘ In.Chap. 10 we shall also consider more general field equations for the
interior of a distribution of matter and for space on a cosmic scale.

Before doing this, however, we shall investigate the above system, which
is the most important case.
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5.8 The Divergenceless Form of the Einstein Field Equations

In special relativity we usually associate a vector or tensor of zero four-
divergence with some conserved quantity; for instance, the zero diverg-
ence of the electromagnetic four-current j# is directly associated with the
conservation of electric charge. It is thus useful in many branches of
physics to write as many equations as possible in terms of divergenceless
vectors or tensors. Equations written in this form deal directly with
persistent phenomena instead of lransient events; such a situation is
certainly desirable whenever possible. We shall see in this section that
it is possible to express the free-space gravitational field equations
(5.119) quite simply in terms of a single divergenceless tensor. Let us
begin by obtaining the divergence of Rg. Raising the first two indices
in the Bianchi identities (5.62) gives

(5.120) {Ry13} vty = R¥ay1s + B*"a5 + R7gly = 0
Contracting o with g and 5 with v gives
(5.121) Rongqis + R*Mppa + By = 0

By definition of the Ricci tensor and by the symmetry properties of the
Riemann tensor (5.51), we find

(5.122) Rys — Re%ja — Ry = 0
Relabeling indices and rearranging terms, we then obtain
(5.123) Rmys = 2RPy)e

Denoting the doubly contracted Riemann tensor R, by R, the Riemann
scalar, we can write this divergence in the form

(5.124) 3R = 3¢%R1s = Rfs)s
For both indices in contravariant position, we have, then,
(5.125) Rfyg = 3(9"R)ye

since the metric tensor has a zero covariant derivative. Thus the
Einstein tensor, which we define as

(5.126) G& = RO — LPR
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has zero divergence:
(5.127) Gy =0

suppose, now, that the Riemann curvature tensor satisfies the free-
space equations B# = 0. Then R = 0 also, and

(5_128) GBS = RBS — %gﬁaR =0

and the Einstein tensor is also zero. Conversely, if G% is zero, then
(5.129) G = Rf — 1g%R = 0

Contracting this we see that R, the Riemann scalar, is zero:

(5.130) GP =0=R — i¢%R =R — 2R

Thus the Ricei tensor is also zero:

(5.131) Ry = (% + 3¢%R = 0

We c(?nclude that G?% s zero if and only if RPs is zero. This allows us
to write the Einstein field equations entirely in terms of thé‘f*zero—diver—
gence Einstein tensor: '

(5.132) G = RSy, — 1g5R = 0

This ff)rm_ of the equations will be extremely useful in the mathematical
investigations of. Chap. 8 and again in the physical developments of
Chap. 10. Also in Chap. 10 the nature of the conservation law associated

with the zero-divergence property of the Einstein tensor will become
apparent.

5.9 The Riemann Tensor and Fields of Geodesics

We already know the role of geodesics in relativistic mechanics and in
Fhe theqry of light rays. Hence the significance of the Riemann tensor
in physical applications will be well illustrated by a formula which
re.lates fields of geodesic curves in a Riemann space to the theory of the
Riemann tensor. We consider a one-parameter family of geodesics T'(v)
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which are described by the system of equations
(5.133) z* = z*(u,v)

where we suppose z* to be twice continuously differentiable functions

of wandv. The parameter v distinguishes between the different geodesics

of the family, while the parameter u is the curve parameter on each I'(v).
We have, for fixed v, the differential equation of the geodesics

(5.134) 2¢ = x*(u,)

e [ a | 928 927
dud {B 'y} u ou
We might in general identify u with the arc length on T'(v); however,
we prefer to leave u to be defined just by (5.134) so that our reasoning
remains valid also for null geodesics.

The family of geodesics gives rise to the field of tangent vectors

(5.135) 1 (up) = 9%11%@

Let us also introduce the vector field

(5.136) R C1))

v
which describes the deviation of two points on two infinitesimally near
geodesics which have the same parameter value u. We call w* the vector
of geodesic deviation in the geodesic field. The law of interchange of
partial differentiation leads to the identity

atx(up) _ 0% _ dw(uy)
v ou v du

(5.137)

We wish now to calculate the absolute derivative of the vector field
w*(u,p) on the geodesic T'(v). Let us use the definition (3.34) of this
derivative and find by use of the Christoffel symbols instead of connec-
tions T

Du~  duwe n { a }83:‘9

- (5:138) Du = au t |8 ) u

ate o
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We have thus created a new vector field along each I'(») and can therefore
repeat the process of absolute differentiation. The remarkable fact
appears that this second differentiation leads us directly to the Riemann
curvature tensor. Indeed, we find

] D 9 [ Duwe a Duw
o D = aal(Be) + 0% o B

%nserting for Dw*/Du from (5.138), we obtain by use of (5.135) and
5.137)

- D> 9 (9% a | 9xf 9z dx? a | 9%f dxv
(5.140) Dz = %(W) + { } [ }

B vl 0u v du B v| our v
9P % a v | 9P dx* dx?
B v auauav+ B vl {uv] du ou v

We now apply the equation of the geodesics (5.134) in order to eliminate

the terms 9%/du?. A simple rearrangement and some obvious cancella-
tions lead to the result

(5.141) ”111)2;0—: N (lﬂaal:v B [ﬂavlla * {Yaf’ {";5}

_["" T | \92f o
v of 18]/ ou au®

Comparing this result with the definition (5.10) of the Riemann curvature |
tensor, we can simplify (5.141) to

Dy= dr® . ox¥
(5142) ——-Du2 = Raﬂh 5; w’ (_9_1;_

The equation system (5.142) is an ordinary second-order differential
system for the geodesic deviation w=(u,) along a fixed geodesic T'(v).
To illustrate the result, let us consider the case of Euclidean space in
which the Riemann tensor vanishes identically. Hence the differential
system (5.142) reduces to

- D2we
.143 =T =
(5.143) DuE = ©

We may choose a coordinate system in the large in which the Chris-
toffel symbols vanish identically and use as curve parameter u the arc
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length s. We find, then,

27yt
(5.144) %’; =0  w(s) = a%s + be

where a* and b are constant vectors. Since the geodesics in Euclidean
geometry are straight lines, we find the elementary result that the dis-
tance between two points moving with speed 1 along two given lines
which are infinitesimally near is a linear function of time. The Riemann
tensor measures, by (5.142), the departure from this linear behavior.

To illustrate the physical meaning of (5.142), let us consider an observer
moving on a timelike geodesic and observing an object which moves
near him on its own geodesic. The observer may use his arc length
ds = cdt = dx° as time measure and will interpret the geodesic deviation
z* = ew*(s) as the Euclidean distance vector of the object. Here ¢ is a
small positive factor measuring the distance of the object at the first
moment of observation. According to (5.142), an acceleration of the
object relative to the observer will be seen as

d?z

a = Bowe?

(5.145)

since in his coordinate system = = (1,0,0,0).

Consider, on the other hand, the following problem in classical mechan-
ics and Euclidean geometry. Suppose that observer and object move
in a field of force which is mass-proportional and varies in space. If
Fi(z*) is the vector of acceleration connected with this field, the object
will be accelerated relative to the observer according to

d%t

(5.146) e

= Fi(ak + 2¥) — Fi(a*) = Py z’° + 0(z%)

if 2% is the vector from observer to object. The analogy between (5.145)
and (5.146) is evident. We are led to the intuitive interpretation

. aFi
(5. 147) RlOkO > 6—‘x7°

If the force field possesses a potential o(z?) such that

d¢

(5.148) Fi=—-F, = — e
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we find the correspondence

. 9?
(5.149) Rigo & — 5;%57,

Thus the condition for a Laplacian potential V2p = 0 leads to
(5.150) Rigo = 0

We come automatically to the Ricei tensor. To obtain an equation
which is in tensor form and coordinate-invariant, we have to demand
more generally that

(5.151) Rtops = Ryg =0

as a generalization of Laplace’s equation. This consideration gives
additional motivation to the choice of the field equations (5.117) to
describe the gravitational field in empty space. The reader should also
observe the analogy and differences between our present heuristic consider-
ations and those of Sec. 5.7. While in the preceding section we con-
sidered the case of weak gravitational fields in the large, we dealt in this
section with the approximate form of (5.117) for arbitrary gravitational
fields, but in small distances. In both cases the analogy between the
classical and relativistic formulas is striking. g

To understand the physical significance of the equation of geodesw
deviation (5.142) let us return to the Einstein box, discussed in the
Introduction. We have seen that an observer in such a box could not
decide whether the box was in a gravitational field or in accelerated
motion in flat space by performing experiments with a single test body.
This is due to the mathematical fact that at a given point in a Riemann
space we can introduce geodesic coordinates; in this case the equation
of motion of a freely falling body becomes #* = 0, which is precisely the
same as the equation of force free motion in flat space, i.e. in special
relativity. However, every laboratory has a finite size, and the Riemann
tensor cannot be transformed away, so that we can, in principle, measure
the inhomogeneities of the gravitational ficld by observing the relative
motion of several freely falling bodies, using (5.142) or its classical
analogue (5.146). For example, consider an experiment in an earth based
laboratory in which two balls separated horizontally by 1 m are allowed
to fall simultaneously a distance of 1 m. The two trajectories will
converge by about 1075 em since the balls move toward the center of
the earth. (To a first approximation they move on parallel trajectories,
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as they would in an accelerated laboratory in flat space.) Thus one
determines that one is in a gravitational field and not in an accelerated
laboratory. We emphasize that the mcasurement of a gravitational
field, as manifested by a nonzero Riemann tensor, requires the observa-
tion of the trajectory of more than one freely falling body.

5.10 Algebraic Properties of the Riemann Tensor

The number of algebraically independent components of the Riemann
tensor is reduced by symmetry; in dealing with solutions to the field
equations the number of algebraically independent components 18
reduced yet further. In order to clarify this, Petrov has introduced a
notation with indices that run over six values. With this notation we
can also obtain an intrinsic classification of space-time geometries in
terms of the algebraic properties of the Riemann tensor; this classifica-
tion is analogous to the classification of electromagnetic fields as radiation
and nonradiation fields.

The first set of two indices of the Riemann tensor Rag,s assumes 16
values: 00, 01, . . ., 33. However, from (5.51) the tensor is antisym-
metric in these two indices, and so it is clear that we need the values of
the tensor for only six pairs of indices. The same is true of the second
set of two indices. We are therefore led to introduce the Petrov mapping
which associates pairs of tensor indices with a single index as follows:

Tensor indices: af = 23, 31, 12, 10, 20, 30; Easys
(5.152) ) )
Petrov index*: A = 1, 2, 3, 4, 5, 6;Rus

The Riemann tensor is thus completely deseribed by the 6 X 6 matrix
R.z; all nonzero algebraically independent components of the tensor
oceur in the matrix Ryp. Moreover, the symmetries in the index pairs
expressed by Egs. (5.51) are now embodied in the very simple statement
that R4p is symmetric, Rqp = Rps. We next write Ryp in terms of
3 X 3 submatrices, two of which are symmetric by virtue of the symmetry
of RABZ

M N
5.153 Ris = M =MT = QT
( ) AB (NT 0 Q=Q
Then the cyclic symmetry (5.53) may conveniently be written as the
condition that the trace of N vanish,

* We denote the Riemann tensor in the Petrov indication by R in order to avoid con-
fusion with the contracted Riemann tensor. Observe that, for example, Ri1 = Rasss,
but Rii = R"1.1.
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(5.154) Tr(N) =0

Thus the algebraic symmetries of the Riemann tensor are simply sum-
marized by the statement that Ryp is a symmetric 6 X 6 matrix for
which Tr(N) = 0. From this we see in a very transparent way that
it has 20 algebraically independent components.

If we work in a special coordinate system where the metric is Lor-
entzian at a given point, the field equations (5.117) yield further simpli-
fications. For this purpose it is convenient to consider the mixed tensor
R85 <> R4z, To raise the Petrov index 4 we note from (5.152) that
values of A from 1 to 3 correspond to two spatial tensor indices and
therefore imply no sign change when raised. Values of A from 4 to 6
correspond to one space and one time tensor index and imply a sign
change. Thus just as with tensor indices and the Lorentz metric we can
raise a Petrov index by multiplication with a very simple matrix GA¢

I 0

AC —
(5.155) G (o —1

) RABZGACRCBZ( M N)

—NT —Q

Using the mixed Petrov matrix R4z, we can write the field equations in
elegant form

R% =0=Tr(@) =0
(5.156) R = 0= NT = N
Rij =0= Q = —M

If we combine these relations, implied by the field equations, with (5.153)
and (5.154), implied by the algebraic symmetries, we see that R4z can be
characterized by a simple statement

M N

4, =
(5.157) R4y (_N W

) M=M" N =NT Tr(M)=Tr(N)=0

This matrix has only 10 algebraically independent components, but we
emphasize that this will be true only in a coordinate system in which the
metric is Lorentzian at the point of interest.

The mixed matrix (5.157) is not only very simple but is well suited to
the study of invariants. This follows from the fact that a coordinate
transformation of the Riemann tensor corresponds to a similarity trans-
formation of the matrix R45. To show this we write the transformation
of the tensor as
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= Az 018 dxr dxT
(o159 B = (55 57) v (55 570

Thanks to the symmetry properties of the tensor, we need not sum over
all the indices u» and Ar but only over those corresponding to a Petrov
index in (5.152). Thus we may write two equations that correspond
term by term (see Exercise 5.7):

- dxze 9% ) dxr dx”

(ﬂw, Y8
Petrov

RAB = SACRCDSDB

We easily verify that S4¢S8Cz = 845, that is, S is the inverse matrix of S,
and so we have established that R45 and R4 are related by a similarity
transformation. This result will be very useful since many algebraic
properties of a matrix are invariant under similarity transformations.

To classify the space-time geometry, it is convenient to use not the
Riemann tensor but its self dual, defined as

(5.160) R(+)a675 = R, + 7 *R"Bya

Here *R*.; is the dual of the Riemann tensor (see Sec. 3.5)

(516101) *Raﬁ'ya = %‘eaﬁm‘Rar'ﬁ

(5.161b) RaB'ys = —%eaﬁd7 *Rdf’ys

We shall show that *R.s,s has the same symmetry properties as Fagys
and also that the contracted tensor *R%,s is zero; then the same rea-
soning used for RS, earlier implies that *R*%,; corresponds to a 6 X 6
matrix *R4, analogous to R4 in Eq. (5.157). To show first that the

contracted tensor *R%,; is zero we use the antisymmetry of e## in the
definition (5.161a) to write

(5.162) *Raﬂaﬁ = %eaﬂﬂRa‘ruﬁ = %eaﬁﬂ{Rafaé}(ura)
From the symmetry of the Riemann tensor expressed in (5.39) we see
that this is indeed zero. To obtain the symmetries of the dual tensor

we impose the field equations on (5.161b)

(5.163)  RoBes = 0 = —1e™7 *Rorpy = — 1% {* Rt} (arar
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It is clear from this that {*Rags}(apy is zero, which implies that *Rusys
has the same symmetries as Ragys; that is, Eq. (5.39) or equivalently
(5.51) and (5.53) hold for *R.s,s. Thus *Re8,; corresponds to a 6 X 6
matrix *R4p in the same way as the Riemann tensor corresponds to R45.
We continue to work with a local Lorentz metric, so that eqgys is equal
t0 €apys. It is then easy to show from the definition (5.161) that the
matrix *R4z is given in terms of the 3 X 3 matrices M and N as

R4, =
(5.164) R4g (Zlf N)

Thus corresponding to the self-dual tensor RHe8_; is the matrix

RHP4, = (z}; _;f)/: PRJ
(5.165)

P=M+iN JEC “i>
7 1

The matrix P will be referred to as the Petrov matriz. Since it is a com-
plex 3 X 3 traceless symmetric matrix, like R4z and R4 it has 10
algebraically independent components.

Our classification will be according to the eigenvalues and the multi-
plicity of the eigenvectors of R®=8; the self-dual Riemann tensor, or
equivalently the matrix R4, These satisfy the equation *

RMas 75 = \[Jas
(5.166) 0
RP4UB = \U4
and are therefore defined invariantly even though our analysis will use
the special form of R®45 given in (5.162), which holds only in a special
coordinate system. Specifically, R®45 transforms as in (5.159), UB
transforms via UC = S€,UP, and X is invariant.

The direct-product relation (5.165) between R4 and the 3 X 3
Petrov. matrix P allows us to express the nonzero eigenvalues and eigen-
vectors of R4 in terms of those of P, in effect reducing the problem to
that of a complex 3 X 3 matrix instead of a real 6 X 6. Indeed the
eigenvectors of R® 45 will be the direct product of those of P and /.
We define for P and deduce for J the following eigenvector relations

a
(6.167) Pt = ¢ ¢ = b>

c
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(5.167") i 1
Jn = oy a=0andn=( ) or o=2andn=(i>

—1

Thus R 45 has at least three zero eigenvalues, and so must the tensor
R@®e8 ;5. For our classification we consider only the remaining eigen-
values, which may or may not be zero; they and their corresponding
eigenvectors are given explicitly by the direct products

o TR

(5.168) AN=2 Ut=¢® (1> =1 .
. ia

b

c

Moreover, since P is traceless by (5.157), the sum of the eigenvalues 7

(and \) must be zero, which leaves only two independent eigenvalues to

consider.

To complete our classification of the interesting eigenvectors and
eigenvalues of R™4; we consider the Jordan canonical form of P.
According to Jordan, any n X n complex matrix is related by a similarity
transformation to a matrix of the form

7w 1 0 0
Cl 0’7’110

(5.169) C = . C; =

Cw

Ti

That is, the only nonzero elements of C; are 7;’s along the diagonal and 1’s
along the first superdiagonal. (Observe that complex symmetric
matrices cannot necessarily be put into diagonal form by a similarity
transformation and that similarity transformations do not in general
preserve symmetry.) The eigenvalues and eigenvectors of C' are very
easy to obtain; we easily verify that each C; submatrix has eigenvalues
equal to 7; and only one eigenvector, (1,0, . . . ,0). Thus C has at
most N distinet eigenvalues and N distinet eigenvectors. In general,
the number N may be less than the dimension of the matrix, and so C
may not have a full complement of eigenvectors. Since the eigenvalues
and the algebraic relations among the eigenvectors are invariant prop-

erties under similarity transformations, the Jordan canonical form of P

provides a complete description of these properties and will serve there-
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fore to classify the space-time geometry. There are only five interesting
possibilities for the Jordan canonical form of a traceless 3 X 3 matrix.
We list these in Table 5.1, along with the consequent eigenvector and
eigenvalue complement, according to Petrov’s naming scheme; flat space,
R®4p = (, is not included.

TABLE 5.1 PETROV CLASSIFICATION

Number of Number of

Petrov distinet distinet
type Jordan form of P eigenvectors eigenvalues
T1 0 0
I 0 = O 3 3
0 0 T3
Ti+T1e+73=0
T1 0 0
ID 0 71 0 3 2
0 O —21'1
o1 0
II 0 71 0 2 2
0 0 —'27'1
01 0
IIN 0 0 0 2 All zero
0 0 O
010
111 0 0 1 1 All zero
0 0 0

In this section we have made frequent use of a local Lorentz coordinate
system for convenience, but we again emphasize that the invariant nature
of the eigenvalue problem (5.166) gives our classification scheme invariant
meaning. One use of the scheme is thereby immediately evident; two
solutions of different type cannot be transformed into each other by any
coordinate transformation. Such intrinsic differences arc very important
in the physical interpretations of general relativity.

We have found that unlike the electromagnetic field, which may be
classified simply as radiation or nonradiation, the gravitational field has
a much richer fivefold classification structure. This stems from the
nonlinearity of the field equations; the:lack of superposition in the
gravitational theory prevents us from decomposing the field into simpler
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structures and therefore demands the richer classification scheme. In
the problems for the following chapters we shall illustrate the use of the
Petrov classification and its physical meaning. For example, the
Schwarzschild solution, the gravitational analogue of the Coulomb field
in electromagnetism, is Petrov type ID, whereas plane gravitational
waves are type IIN. ‘

Exercises

5.1 How many algebraically independent components does the Riemann
tensor Rag,s have in two dimensions? How many does it have in n
dimensions?

5.2 Show that for a metric of a two-dimensional space, of the form,
ds? = (dzb)? + G%(2")(dx?)? one has
d*d

Rlys = -G @‘1)—2

Obtain all nonzero components of the Riemann tensor from this.

5.3 What is the Riemann tensor R%,, for the two-dimensional surface
of a sphere? What is it for the surface of a cylinder? What is the
Riemann scalar B = R#, for these surfaces? ‘

5.4 Consider a three-space imbedded in four-space in the particularly
simple way goo = 1, go; = 0, with the other g;; independent of the time
coordinate. How are the four-space Christoffel symbols related to the
three-gspace symbols?  What is the relation between Rgsys in four-space
and Ry in three-space?

5.5 (continued) What is Re? What is Go? What is the Riemann
scalar in four-space? What is the Riemann scalar PR in three-space?
Relate Gop and P R.

6.6 Consider a geodesic triangle drawn on a sphere as follows. One
vertex is at the north pole and the two others arc on the equator, sep-
arated by 90°. Parallel-displace a vector around this triangle using the
geometric result of Exercise 3.1. How is the vector changed after a
complete circuit? (You may wish to choose a convenient initial orienta-
tion for simplicity.) Interpret your result and compare with Prob. 5.1.

5.7 Verify explicitly that (5.159) is cquivalent to (5.158); i.c., the
factors of 2 in (5.159) are correct.
5.8 Prove that the right dual tensor and the left dual tensor of the

Riemann tensor, as defined in (5.160), arc equal. (Is this true if the
Einstein equations do not hold?)
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Problems

5.1 1In the plane, the total angle A through which the tangent to a
closed curve turns in one circuit is always 2r. On a curved surface the
corresponding A is defined as the sum of angles being measured in the
successive local tangent planes. A will generally differ from 2x. A
beautiful theorem (Gauss-Bonnet) says that

2r — A= [RdA

the integral of the curvature scalar over the enclosed area. Consider a
sphere of radius ¢ and on it a “geodesic triangle” formed by three geo-
desics making a right angle at each vertex (see Exercise 5.6). Test
the theorem for both the areas that can be considered enclosed by this
triangle.

5.2 A conformally flat space is defined as one with a metric tensor of
the form g¢,, = f(¢*)n.,, where f is an arbitrary positive function and 7,,
is the Lorentz metric. Show that for such a metric the Weyl tensor,
defined as

C"Vpd = R”vpa + ngMp - gva“n + ng'up - Rypg“a - %(gwgup - gt'pguo')R
is zero.

5.3 If the Einstein free-space field equations are satisfied, then the
Weyl tensor is identical with the Riemann tensor. This implies that a
conformally flat space for which R,, = 0 is actually flat. " Show this
also by a coordinate transformation.
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CHAPTER

6

The Schwarzschild Solution and Its
Consequences: Experimental Tests of

General Relativity

The free-space field equations (5.119) are nonlinear and hence difficult
tosolve. However, by imposing symmetry conditions dictated by physical
arguments on the line element, we can greatly simplify the field equations
in special eases.  Onc such case is the time-independent and. spherically
symmetric line eclement; the resultant field equations were solved
exactly by Schwarzschild in 1916. This solution is of particular impor-
tance since it corresponds to the basic one-body problem of classical
astronomy. Indeed, the only reliable experimental verifications of the
field equations (5.119), which we shall treat in Secs. 6.3, 6.5, and 6.6, are
based on the Schwarzschild line element. In this chapter we shall obtain
Schwarzschild’s solution and discuss its consequences.

6.1 The Schwarzschild Solution

Consider the free-space field equations that we obtained in Chap. 5,

o0 ko= L L - L o

We shall seek a solution which is time-independent and radially sym-
metric. By virtue of the requirement of radial symmetry, such a solu-

185
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tion should represent the external field of a spherically symmetric body
stationary at the origin. The limiting form of the line element at large
distances from the origin may be expected to be Lorentzian and thus to
be expressible in spherical coordinates r, 6, and ¢ as

(6.2) ds? = c*dt* — (dr® + r*df? 4 r*sin® 6 de?) cdt = dx°

Next let us consider the above symmetry requirements and try to form

the simplest line element which meets the demands of time-independence

and radial symmetry. The reasoning which follows is based on plausibil-
ity only, in order to guess a heuristically reasonable and convenient line
element. We should expect the line element to be invariant under
inversion of the coordinate interval da® (representing time); that is,
ds? should be invariant under the replacement of dz® by —dux°®. This

dictates that we use Gaussian coordinates in which the off-diagonal ele-

ments go; of the metric tensor are zero and the line clement has the form
goo (dx°)? + gi dat de* with the gy independent of 2°.  This is referred to
as a static metric; it is to be distinguished from a metric which is merely
independent of time, or stationary, as discussed in Sec. 3.7. Second, if
there is to be no preferred angular direction in space, the line element
should be independent of a change of df to —df and a change of de to
—de. This requires that there be no terms of the form dr d6, do de, ete.,
in the line element, so the metric tensor must be entirely diagonal for
the type of solution we desire. Thus we may write ds? as

(6.3) ds? = Actdt* — (B dr? + Cr?d6* + Dr? sin® 6 de?)

Furthermore, by our assumption of radial symmetry, the functions 4, B,
¢, and D must be functions of r only. One more simplification of the
form of the line element can be made on the basis of symmetry: we can
suppose that the functions C(r) and D(r) which appear in (6.3) are equal.
This can be seen as follows: A displacement by ¢ = r d6 from thenorth pole
(6 = 0) corresponds to ds? = —Cé?, and a displacement by ¢ = r dy along
the equator (8 = w/2) corresponds to ds? = —De*. If 6 and ¢ are to
represent angular coordinates, we should expect these quantities to be
equal due to isotropy, which requires that C = D. Then

(6.4) dst = Ac*dt* — Bdr: — C(r? d6> + r? sin? 9 de?)
"The above line element represents the simplest form which is dictated

by the symmetry requirements; however, it is possible to obtain a further
simplification by a judicious choice of a radial coordinate. Specifically,
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consider a radial coordinate defined by

(6.5) F=C0)r
It then follows that
(6.6) Cr? = 2
and
—2
(6.7) Bdr? = 5(;(1 + %%@) di* = B ae

By means of (6.5) we can express B also as a function of the new radial
coordinate 7. It is now clear that writing the line element (6.3) in
terms of # by substituting from (6.6) and (6.7) yields a linc element in
which the coefficient of the angular term d6* 4 sin?8 de? is 1. This,
however, is equivalent to taking C' = 1 in the line element (6.4), so we
conclude that, by a suitable choice of the radial coordinate, we can put
the line element in the form

(6.8) dst = Actdi* — B drt — r2(d6°® + sin® 0 de?)

with only two unknown funections of . In order to exhibit clearly the
signature of g,, and the sign of the determinant ||g.. || = ¢, let us write
A(r) as the intrinsically positive function e*™ and B(r) as " The
line element accordingly is written as

(6.9) ds? = e dt? — O dr? — r2(df? + sin? § de?)

This equation represents the final form of the line element we shall use in
obtaining the Schwarzschild solution; as we have constructed it, the
demands of time-independence and radial symmetry are clearly met.

The coordinate r used in (6.9) has a clear physical meaning. Consider
a spherical surface defined by a constant value of r, on which points are
labeled by @ and ¢. The line element on this surface is

(6.10) ds* = —r2(d6? 4 sin? 6 de?)

The physical length of the equator, defined as the line § = =/2, is obtained
by integrating v/ —ds? from (6.10) from ¢ = 0 to 2r, which gives

(6.11) l = /;)2” Vv —ds? = [027r7"dg0 = 2rr
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This is identical to the flat-space result for a spherical surface. Thus
by a measurement of the physical length of a great circle we can deter-
mine the value of the coordinate r for the sphere considered. Similarly
it is easy to show that the physical area of such a sphere is 4772, as in flat
space, which again allows us to determine the value of r. It is thereby
clear that r is geometrically distinguished, and, moreover, the three space
coordinates r, 6, and ¢ correspond closely to the variables used by
astronomers in actual observations.

Even with the simplified metric form of (6.9), the work of computing
the 40 Christoffel symbols appearing in the field equations is rather
tedious. There is, however, a simple and convenient artifice which we
may use to obtain all the nonzero Christoffel symbols. The Euler-
Lagrange equations of the geodesic lines in the form

}7’0%’"=0 :E’Ed—xr

o a
(6.12) F* 4 { T

B

contain all the Christoffel symbols. Conversely, if we know the Euler-
Lagrange equations for the geodesic lines, we can identify all the nonzero
Christoffel symbols; the identification is especially simple for a diagonal
metric tensor. The Euler-Lagrange equations can be obtained from the
variational problem

(6.13) 8 ds = 6f[er(29)? — (72 + 7260 + r?sin? 0 ¢D)]* ds = 0
However, since we are using s as the variable of integration, we can just
as well consider the equivalent and somewhat simpler variational problem

in which we square the integrand of (6.13), according to the results of
Sec. 2.3. That is, instead of (6.13), we use

(6.14) 8f[e7(2%)? — (eM? + r262 + 72 sin% 0 ¢%)] ds = 0

Using F to represent the integrand, we write the Euler-Lagrange equa-
tions for this variational problem in the form

(6.15) d <6F> _9F

ds\oz=) ~ 9z~

We shall write out the four equations (6.15) explicitly and compare with
the form in (6.12). We identify z! = r, 22 = 0, and 23 = ¢. The com-
parison will allow us to write out explicitly the non-vanishing Christoffel
symbols. ‘
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The Euler-Lagrange equation for z* = 2° is obtained from (6.14) as
(6.16) 4 (9o = 0
s
Denoting differentiation with respect to » by a prime, we then have
(6.17) 04 Ve =0
This is a particularly simple equation because of the time-independence

of the line element. Comparing (6.12) with (6.17), we obtain the follow-
ing nonzero Christoffel symbols whose upper indices are zero:

R

Similarly, for the variable r, we have the Euler-Lagrange equation

’
14

(S

(6.19) P4 AN 4 B e E0)?2 — e Mrf? — rsin? e = 0

The only nonzero Christoffel symbols with the upper indices 1 are

therefore
1 1
[0 0} = e {1 1] =

1 _ ﬂ 1 w2 g
{2 2}——6 r {3 3] rsin? 6 e

Continuing in this way, we obtain the Euler-Lagrange equation for the
variable 6,

(6.20)

(6.21) § + % 67 — sin 6 cos § ¢* = O
so the correspdnding nonzero Christoffel symbols are

(6.22) |22ll = [122} = % {323‘ = — sin 6 cos 4§

The final Euler-Lagrange equation for the variable ¢ is

i 2.
(6.23) ¢+2c0t0¢0+;r<p=0
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so the corresponding Christoffel symbols are

(6.24) {233] = [332] = cot [133} N ‘331] 2%

We now have all the nonzero Christoffel symbols displayed in (6.18),
(6.20), (6.22), and (6.24).
The field equations (6.1) contain contracted Chrlstoffel symbols of the

form [TTB}; these may be written in the convenient form (log v/ —g);s
according to (3.11), which allows us to write the field equations as

(6.25) R, = (log vV =g — {uav}la + [ g ‘ {BTV}

T K

- [ﬂ} (log v/ =), = 0

Using the line element (6.9), we can write the expression log v/ —g
explicitly in terms of the coordinates r, 6, ¢, and t. The metric tensor is

e® 00 0
0 —e» 0 0

26 , =
(6.26) gu 0 0 — 0

0 0 0 —r?sin?@
so the determinant ¢ is
(6.27) g = |lgwl = —er Wi gin g

Thus

(6.28)

We are now ready to write out the field equations (6.25) in terms of
r, 8, ¢, and t.
First let us consider the u = » = 0 component of (6.25)

(6.20) Roo = (log V' =9)io0 — [oa0]|a + {160, {6T0]

- {0’0] (log v/ =) = 0
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Many of the terms appearing in this equation are identically zero; the
nonzero terms are displayed in (6.18), (6.20), (6.22), (6.24), and (6.28),
and we are left with

1 1 0 1 —
(6.30) Ro = — [0 OJI1 +2 {0 0}':0 1} - {0 0} (log vV/=g)n
= —@re b e - e (CFN 4 )~

This reduces to

— —e " v'? N 2y
Boo = =, (” ty oty

2 !
(631) V' _%Vlg _ %%r”/ + _;t —
We proceed in similar fashion for the p = » = 1 component of Eq. (6.25)

(6:32) Ru = (log V' =g)us — { 1(11]5r lrﬁll {ﬁTl}
- [171} (log V' —g)ir = 0

Discarding identically vanishing terms, we obtain

(6.33) Ru = (log v/ =¢)nn — {111}1 + {100} [100’ [ ’ { }

R TR RN E A PR

1" )\// 2 , , )
(634) Rn = (L—;_ - “‘> — %)\, + —i—V 2 + %)\/2 + ;2

that is,

2

This reduces to

(6.35) Vi — Y - =0
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Equations (6.31) and (6.35) now represent a system of two ordinary
differential equations which we may solve for the functions »(r) and A(7).
Subtraction of (6.35) from (6.31) yields

(6.36) v 4+ N =0
Thus
(6.37) v 4+ N = const =k

We can choose the constant & to be zero by a simple device. Replace
the time coordinate ¢ by another coordinate ¢ exp (k/2); from (6.9) it is
clear that this is equivalent to replacing » by » + k, so that (6.37) becomes

(6.38) A= —v

We shall see that this choice of time coordinate has the very desirable
feature of making the line element asymptotically equal to the flat-space
line element (6.2). The coordinate ¢ which we select in this way will be
seen to correspond to the physical time as measured by an observer at
infinity.

Substituting —\ for » in (6.35), we obtain a second-order ordinary
differential equation for A(r)

7
(6.39) N — N 3} ~0

This can be more conveniently written as
(6.40) (re™)" =0
Integration is then trivial, and we have
(6.41) (re™)’ = const

It will be convenient to leave (6.41) as it stands (with an undetermined
constant) and proceed to the component corresponding to Ra» of the
system of equations (6.25); the reason for this will be apparent in the
next paragraph.

Proceeding as with the Rgo and R equations, we have

(6.42) Ry = (log v/ = @)z — [zaglla + [762} lBTZ}

{7} o V=i
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Substitution of the nonzero terms from (6.18), (6.20), (6.22), (6.24), and
(6.28) gives ’

(6.43) Ry = (log v/ —¢)j212 — {212]1 + [212} {221] + {221] {212}

" {233} {233} B {212] (log V' =¢)1 = 0
that is, '

a2 .
(6.44) Ry = 56 (log [sin 6]) 4 (¢7r)" 4+ 2(—e™) + cot? §

—l—e—)r(w_l_g) =O
2 T

By virtue of (6.36) this simplifies to
(6.45) () = 1

Th?s is precisely.the same as Eq. (6.41) except that the unknown constant
Vv*'hlch appeared in (6.41) is now identified as 1. Integration immediately
gives

(6.46) e =71 —2m

Where. —2m is an arbitrary constant of integration. Thus, from the three
equations R.OO = R11 = R3 = 0, we have solved for the functions »(r)
and A(r) which appear in the line element (6.9)

(6.47)

N 0
¢ 1 —2m/r

Consider for a moment the result (6.47). As we noted, it was only
necessary to use three of the ten equations in the system (6.25) to obtain
what appears to be a complete solution (6.47). Apparently, then, we
have a consistency problem remaining: Are the other seven equations
in the system (6.25) conststent with the solution (6.47)? We shall show
that the remaining diagonal element Rs; of the Ricei tensor is indeed zero
by virtue of the solution (6.47), so that (6.47) and the equation R3; = 0
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are consistent. As before, we write

(6.48) Ry = (log vV —9)ins — {3a3} + =763} {,873}

»
— [373} (log v/ —¢);, = 0

Discarding the identically zero terms, we get

A e {313}11 - {323}12 +2 {133} [313] 2 {332} {323l
- {313’ (log V' =¢)i1 — {323: (log v/ =¢)js = 0

Observe that, by virtue of (6.28) and (6.38), we have

(6.50) log v/ —¢g = 2 log r + log |sin 6]

Hence
. J .
(6.51) (re™ sin® 9)’ + 35 (sin 8 cos 6)
. . N & R
+ 2(—e™ sin? § — cot 6§ sin 8 cos §) 4 re™ sin® 0 - + cos?8 =0

This simplifies to
(6.52) sin? 8[(e)’ — 1] = 0

By virtue of (6.45) this is identically zero, so we see that the equation
R;; = 0 is indeed consistent with (6.47). We leave it to the reader to
verify that all the off-diagonal elements of the contracted Riemann tensor
are identically zero when explicitly written in terms of the coordinates
and that (6.47) is therefore a completely consistent solution of (6.25).

Let us now summarize the results of this section by exhibiting the
Schwarzschild line element

_ 2m 2 dr _ 2(dp2 o2 2
(6.53) ds* = (1 — T) (dx%)? — T om/r r2(d6® + sin® 8 de?)

This result must be considered to be the main achievement of general
relativity theory in the field of celestial mechanics; it is an exact solution,
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which corresponds historically to Newton’s treatment of the 1/r2 force
law of classical gravitational theory. The rest of this chapter will be
devoted to investigating the physical consequences of the line element
(6.53).

Tt is evident that the Schwarzschild line element approaches the flat-
space form (6.2) at large . We may therefore identify ¢ with the time
measured by an observer at a large distance from the origin. Thus the
coordinate time is, in this sense, a distinguished coordinate. It is impor-
tant to keep in mind that the physical meaning of the coordinates is inti-
mately related to the metric, as this example demonstrates.

The unknown constant of integration m which appears in the Schwarz-
schild line element can be determined by an appeal to correspondence
with Newtonian theory. Recall that, in Sec. 4.3, we found that a geo-
metric theory of gravitation will reduce in the classical limit of weak fields
and slowly moving bodies to the Newtonian theory if goo = 1 + 2¢/c?;
¢ s the classical potential for the gravitational field. In the present case
of a point mass, ¢ is simply —«M /7, where M is the mass of the particle
and « = 6.67 X 107% dyne-cm?/g? is the gravitational constant. Thus,
in the classical limit, goo = 1 — 2«M /c*r. Comparing this with (6.53),
we see that

(6.54) m ="

c?

The constant m has the units of distance and will be referred to as the
geometric mass of the central body.

We have here obtained the Schwarzschild solution by imposing the
conditions of spherical symmetry and time-independence. However, it
can be proved (Birkhoff, 1923) that the requirement of time-independence
is superfluous and that any spherically symmetric distribution of matter,
even if in radial motion, leads to the same line element exterior to the
matter distribution. This result is called Birkhoff’s theorem. The deri-
vation is straightforward but more cumbersome than that presented in
the text, since A and v are treated as functions of r and ¢ (see Prob. 6.1).
A consequence of Birkhoff’s theorem is that a radially pulsating distribu-
tion of matter can emit no gravitational waves since the metric exterior
to the distribution is static. Such waves can therefore be emitted only
by more complicated deformations of a massive body.

Before continuing to the next section, it should be noted that, on the
spherical shell » = 2m, the coefficient of dr? in the Schwarzschild line
element becomes infinite and the coefficient of (dz°)? is zero; r = 2m is
called the Schwarzschild radius. For ordinary stars.this is characteristi-
cally a very small number; for the sun the Schwarzschild radius is about
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3 km, which is well ¢nside the sun, where the free-space field equations
(6.25) are not valid and the Schwarzschild line element is not an appro-
priate description of the space-time geometry. The existence of this
singularity is therefore of no consequence for the description of planetary
motion.

It is clear that a star of roughly solar mass would have to be com-
pressed to exceedingly high density before the bulk of its mass could be
inside the Schwarzschild radius. The study of just this situation has
become of great interest in recent years since it now appears likely from
theoretical studies that a significant fraction of the stars in the universe
may actually reach and exceed such densities in the process of gravi-
tational collapse, which occurs at the end of their existence as normal
stars. - We shall return to this subject later in this chapter and again in
Chap. 14.

6.2 The Schwarzschild Solution in Isotropic Coordinates

In the preceding section we obtained the Schwarzschild solution (6.53)
in terms of a set of spherical polar coordinates: 7, 8, ¢, and ¢ The
choice of this particular set of coordinates was motivated by the radial
symmetry, time-independence, and relative simplicity required of the
basic line element (6.9). However, it is characteristic of general relativ-
ity that there are usually many convenient coordinate systems available
in which to work, and the coordinates r, 8, ¢, and ¢ in which (6.53) is
expressed are not the only coordinates which correspond to our intuitive
notions of radial and angular markers. In this section we shall consider
another convenient set of coordinates and investigate the Schwarzschild
line element expressed in the new coordinates.

The main reason for seeking an alternative set of coordinates is that we -

would like to express ds? in a form which is independent of the particular
space coordinates used. More specifically, we would like to put the line
clement in the form

(6.55) ds? = A(r)(dz®)? — B(r) do*

where do? is da? 4 dy? 4 dz? in Cartesian coordinates or dr? + 72 d6* +
r?sin? 6 de? in spherical coordinates, ete. This sort of line element agrees
most closely with our intuitive notion of space, which is based mainly on
Fuclidean geometry. Indeed, to illustrate this, consider two vectors
in three dimensions, £ and #*. In the metric (6.55) the cosine of the angle
between these vectors, £:/|¢| Inl, is the same as if we were in Euclidean
space; this is due to the fact that the factor B(r) cancels in the above ratio.
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For this reason the line element (6.55) is called a conformal line element.
The coordinates in which the line element takes the form (6.55) are called
isotropic coordinates.

To obtain isotropic coordinates we shall attempt to use the following
particularly simple coordinate transformation: The coordinates 6, ¢, and ¢
remain unchanged, while a radial coordinate p(r) replaces r. In terms of
these coordinates we ask that the Schwarzschild line element have the
isotropic form

(6.56) ds®'= <1 — 2%) c? dt* — N (p)[dp® + p2(d8® + sin? 0 de?)]
2m
(1= )t — v 0

These demands lead to the mathematical problem of finding two functions
of p, r(p) and A(p), for which the two forms of the Schwarzschild line
element, (6.53) and (6.56), are consistent. Comparing the coefficients
of the angular interval (d6? + sin? 6 d¢?) in (6.53) and (6.56), we see
that we must have

(6.57) = A2
A similar comparison of the radial intervals gives

dr?

(6.58) gy

= A2 dp?
Substituting for A2 from (6.57) and taking the square root, we obtain an

ordinary differential equation for »(p):

+dr dp
6,59 —_——— =
( ) /1% = 2mr p

An easy integration then yields
(6.60) + log [(r* — 2mr)* + (r — m)] = log p + const

To evaluate the constant and determine the sign of the left side of (6.60),
consider » much larger than 2m; asymptotically we must have

(6.61) + log (2r) = log p + const

For large radial distances we wish r and p to be asymptotically equal, so
we must choose the plus sign and take the constant to be log 2. Equa-
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tion (6.60) then gives

(6.62) VrE=2mr + (r —m) = 2

In order to solve this algebraic equation for r as a function of p, note that
(6.63) [(r —m) + V12 = 2mr][(r — m) — V't = 2mr] = m?

- Dividing this by (6.62), we obtain

2

(6.64) (r —m) — V71t —2mr = %

Addition of (6.64) above to (6.62) yields

mZ
(6.65) r—m=p+~4—p
Thus, finally,
mZ m 2
(6.66) r=p+z;+m=p(1+§;)

From Eq. (6.57) and the above it follows that the function \(p) is

T m\?
(6.67) A= 5 (1 + 2p)

Let us now return to the isotropie form of the Schwarzschild line ele-
ment (6.56) and express it in terms of the coordinate p. According to
(6.66), the coefficient of df is

089 (1-2) =1 -

=l T w0 m/2)?

Thus, by (6.56), (6.67), and (6.68), the Schwarzschild line element in
terms of isofropic coordinates is

2_(1—m/2p)22 2
(669) ds? = (1—‘_’_—7”/‘2‘;‘5‘26 dt

- (1 + ;)4 (dp* + p? dB% + p? sin? 0 dy?)
p

4
= ng 1%2‘32 ctdr — (1 +§’%> do?
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We have now succeeded in putting the Schwarzschild line element in
isotropic form; in such a form it should still be directly comparable with
the approximate solution (4.142) obtained by a correspondence argu-
ment. In order to make a comparison, note that the constant of integra-
tion m which appears in the isotropic line element (6.69) evidently serves
as a measure of how much the line clement differs from the Lorentzian
form ¢*dt* — do?; indecd, m = 0 gives precisely the Lorentzian form.
Thus, for a weak gravitational field [in which case (4.142) is a valid
approximation], we expect m/p to be a small quantity compared with
1 for physically significant values of p; that is, m/p < 1. We may then
expand (6.69) to first order in m/p,

(6.70) ds® = (1 - @) (1 — —”3) e de — (1 + %> do?
P p p
, 2
g(1 M?zn—)czdﬁ — <1 +_‘Ln)daz
p p

If we compare this with (4.142), we see that we must have within our
approximation

~ 2m\ 2¢ 2« M

and we thereby obtain the same result as in Sce. 6.1,

(6.72) m = M

Thus both the original Schwarzschild solution and the above isotropic
form lead by a correspondence argument to a consistent identification
of the constant of integration m.

6;3 The General Relativistic Kepler Problem and the
Perihelic Shift of Mercury

The principal results of the preeeding sections are the Schwarzschild
solution (6.53) and the identification of the constant of integration m in
(6.54) and (6.72). In this scction we shall use these results to study
the motion of a test particle in a Schwarzschild field, which should dircctly
correspond to planctary motion in the gravitational field of the sun.
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This problem is the relativistic analogue of the classical Kepler problem
of planetary motion in an inverse-square force field.

As a guide in investigating the relativistic problem, let us recall some
of the main features of the classical problem. Kepler’s first law states
that a planet describes a closed elliptical orbit with the sun at a focal
point. However (more realistically), the presence of such small influ-
ences as other planets moving in the sun’s field causes a perturbation
in the motion of a given planet, and the resulting orbit is not precisely
elliptic. Indeed, one may think of the actual orbit as a slightly bumpy
ellipse which may precess in the plane of motion; that is, the perihelion
(point of closest approach to the sun) shifts about and does not always
oceur at the same angular position.

The fact that the idealized classical orbit is a closed ellipse is a result
peculiar to the Newtonian inverse-square law; in fact, Newton himself
found that, if the force of gravity were proportional to 1/r** instead of
1/72, then a planetary orbit would not be closed and a perihelic shift of
order & would occur. Indeed, this result was taken to indicate that, since
planetary orbits are very nearly closed, the Newtonian inverse-square law
must be quite accurate, as in fact it is.

Let us now ask what differences might be expected between the pre-
dictions of classical celestial mechanics and general relativistic celestial
mechanics. Since Kepler’s first law is experimentally verified to be cor-
rect to high accuracy, we might expect the relativistic theory merely to
add a few bumps to the nearly elliptic orbits and contribute somewhat
to perihelic motion. Since angles are much more conveniently measured
in astronomy than are distances, it is natural to concentrate on perihelie
motion. Conveniently enough, there is, in fact, a well-known discrep-
ancy in classical mechanics concerning the perihelic motion of the planet
Mercury. Because of Mercury’s high velocity and eccentric orbit, the
perihelion position can be accurately determined by observation; the
difference between the classically predicted perihelic shift (due to pertur-
bation by other planets) and the observed perihelic shift is 43 seconds of
arc per century. Even though this is a very small difference, it is about
a hundred times the probable observational error and represents a true
discrepancy from the very precise predictions of celestial mechanics
which has bothered astronomers since the middle of the last century
(Leverrier, 1859).

The first attempt to explain this discrepancy consisted in hypothesizing
the existence of a new planet, Vulean, inside the orbit of Mercury, and
much theoretical work was done to predict the position of Vulean, using
the known perturbation on Mercury’s orbit. However, careful observa-
tion failed to discover the hypothetical planet, and the hypothesis was
finally abandoned in 1915 when Einstein used general relativity theory
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to explain the observed effect. Let us now proceed to investigate the
general relativistic Kepler problem and, as an application, study the
motion of planetary perihelia.

We must first decide which radial measure to use, either the r of (6.53)
or the p of (6.69). A perihelic shift involves the angle between successive
mintma of the radial distance; since p(r) is a monotonic function of r
outside the Schwarzschild singularity [by virtue of (6.62)], the minima of
both r and p(r) for a planetary orbit occur at the same angular position, so
we can use equally well either the original coordinate r or the isotropic
coordinate p. It will prove more convenient to use r and the line element
(6.53) since the resultant equations of motion will be more similar to the
equations of motion for the classical Kepler problem and easier to
interpret.

As we stated in Sec. 4.3, the motion of a body in a gravitational field
follows a four-dimensional geodesic line. Hence, to find the orbit of

a planet, we need the Euler-Lagrange equations for the following vari-
ational problem:

(6.73) 5fds =0

where ds is given by the Schwarzschild line element (6.53). As in Sec.

6.1, we may simplify calculations by considering the equivalent vari-
ational problem

(6.74) 6/ {(1 — 27m> c¥? <1 - g?) 72 — r2[f% 4 sin20 ¢?] } ds = 0

(As before, a dot indicates differentiation with respect to s.) The three
Euler-Lagrange equations for 6, ¢, and ¢ associated with this variational
problem are the following:

(6.75) ——js (r?4) = r?sin 6 cos 8 @2
d

6. 2 (2 sin? 6 ) =

(6.76) @ (r?sin? 8 ¢) = 0

(6.77) C‘fs [(1 - 2-?) J -0

Note that we have not included the Euler-Lagrange equation for r; it is
more convenient to divide the line element (6.53) by ds? to obtain a
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fourth differential equation,

-1
©78) 1 = (1 - 27’”) i — (1 - 2"—“) #1267 + sin? 0 ¢?)

r

Using the above four differential equations for ¢, 7, 8, and ¢ as functions
of s, it is possible to obtain and solve the equations of a planetary orbit.
In classical mechanics the orbit of a body in a central force field lies in
a plane. We can show that the same holds true in the present theory.
By an appropriate orientation of the axes we can make 8 = =/2 and
6 = 0 at some initial s. Then, from (6.75), it follows that, for all s,

6.79) 0

pol 3

since the initial conditions determine a unique solution of (6.75), and
(6.79) is surely such a solution. Substitution of § = #/2 in (6.76) allows
us to integrate (6.76) immediately:

(6.80) . r¢ = h = const

Equation (6.77) integrates to
(6.81) (1 — QTm) {= 1 = const

Substituting the results (6.79), (6.80), and (6.81) into (6.78), we obtain
the following differential equation for r(s):

-1 -1 2
(6.82) 1= (1 - 3’3) 2 — (1 — Lm) i &2
r r r

As in the classical Kepler problem, one can simplify matters by con-
sidering r as a function of ¢ instead of s. Denoting differentiation with
respect to ¢ by a prime, we then have

dr T
.83 P22 L
(6.83) 7 P
TFrom (6.80) and (6.83) we obtain
h
(6.84) Fo=or = ~ r’
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The differential equation for r(¢) is then obtainable from (6.82):

_2m _22—h2/2_§2_ _2_771
(685) (1 T) = ¥ '7':17' 72 1 ,

Following once more the example of the classical Kepler problem, we
substitute for the dependent variable

1
which implies
! u,
(6.87) r= =

Using these relations, we can convert (6.85) to a differential equation for
u(e):

(6.88) (1 — 2mu) = ¥ — h*u'? — Rl — 2mu)

This reduces to

272 ¢
(6.89) W = (C-—lhz—l) + ZhTu — w4 2t

which is immediately integrable:
du

(6.90) ¢ = ¢t 01 2 ‘ %
’ v <C % —l—%u—u?«i—?ﬂwﬁ)

This is an exact solution to the problem; it expresses the angle ¢ as an
integral of w = 1/r, and conversely it gives u as the inverse (implicit)
function of ¢.

Unfortunately, even though (6.90) is a complete solution to our prob-
lem, its form is not particularly enlightening; u(¢) is given in implicit
form, and the approximate classical form of the trajectory (an ellipse) is
not at all evident in (6.90). To make the problem more transparent and
to establish a closer connection with the classical Kepler problem (which
involves a second-order differential equation), we shall convert the first-
order equation (6.89) to a second-order equation by differentiation with
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respect to . We obtain

(6.91) 2u'u’ = 2}%? w — 2uu + 6muy/

One possible solution is then obtained by :wsetting the common factor w’
equal to zero:

(6.92) u =0 u = const r = const
Thus circular motion occurs in relativity theory just as in classical theory.
[This could also be inferred from the first-order equation (6.89).] . The

other possible solution, which is much more interesting, will result from
canceling the common factor %’ from (6.91):

(6.93) Wt = % + 3muz

This last equation is quite similar in structure to the orbit equation
of the classical Kepler problem. Indeed, for the sake of completeness and
comparison, let us recall the derivation of Binet’s formula for the motion
of a particle of mass m in a central field of force with potential funetion
mf(r). We assume, as before, that the motion takes place in a plane
6 = 0. Suppressing a common factor of m in the Lagrangian, we find

L[/dr\ |, (do)?
90 vea|(@) e (@) ] o

whence the differential equations of motion

2
(6.95) % =7 (%0)2 — f'(r) 7 do _ H = const

where f'(r) = df/dr. Consider now the trajectory equation for r = r(¢),
and also introduce the function

(6.96) wle) = s

We then have

(6.97) — = = r’(cp)g— = —Hu'(¢)
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where u'(¢) = du/de. Hence the first differential equation in (6.95)
becomes

(6.99) =~ (ot = Hudle) — 110)

Rearranging this, we obtain

1 !
(6.99) W= g L0

which is Binet’s general formula describing the (1/r, o) relation for a

central force. . '
For the special case of a Newtonian potential, f(r) = —«M/r, Binet's

equation (6.99) becomes
(6.100) W=
where H is twice the constant areal velocity:

(6.101) H = r2g—t‘e = const

The analogous term in the relativistic equation (6.93) is m/ hf,hwwhich, by
virtue of (6.72) and (6.80), is explicitly given by ’

m kM _ kM
(6.102) 32T Ea(de ds) . oiri(de/d)i(dt/ds)?

Furthermore, we know from Sec. 4.3 that, for slowly moving bodies ip
weak gravitational fields, (dt/ds)? is approximately 1/c?; substituting this
in (6.102), we obtain an approximate form for m/h*:

m . «M _ &M
(6.103) BT ride/dl)t T H?

Thus we see that the relativistic equation (6.93) differs from the classical
equation (6.100) through the addition of the quadratic term 3mu? and has
a slightly different constant term m/h%  One might furthermore expect
the term 3mu? to be small relative to the leading constant term; we may
easily verify that this is indeed the case by forming the ratio of it and
the constant term m/h2.  This ratio is 3u?h?, which, by virtue of (6.80), is
3r2¢? = 3[r(de/dt)]* - 1/¢®  The quantity r(de/dt) is the lateral velocity
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of the planet (the veloeity perpendicular to r), so the above ratio may
be written as 3v%agera/c?, which is always very small and equal to
7.7 X 10~8%1in the case of Mercury. The close similarity between the rela-
tivistic equation (6.93) and the classical theory (6.100) is now quite clear.

Equation (6.93) may be interpreted, by the above comments, as the
Binet equation of motion in classical mechanics for a field of force with
the potential

—<M S v = mH? = «Mh?

rs

(6.104) @) =

Observe, however, that for different values of H, the indicated modifi-
cation of Newton’s law would be different. Thus this analogy may be
helpful in a geometric discussion of the trajectory, but has no real physical
significance.

For later argument we bring (6.104) into the form

(6.104a) o) = — <M (1 + ﬁ)

7.2

If v, denotes the lateral velocity of the planet, we may use the above
approximate equation u?h? = (1/r2)h? =< (v;/c)? and write

(6.104b) flr) =~ — il [1 + ( > ]

Since the planetary orbits are very nearly circular, we may also assume
v, = 2wr/T, where T is the period of revolution of the planet. Finally,
by Kepler’s third law, we know that r3/T? is the same for all planets, and
hence we have r(v;/c)? = C as common value for all planets. Thus

(6.104¢) 1) =~ — M [1 n Q]

r r

a formula in which the angular velocity of the planet has been eliminated.
This formulation of (6.104) will be of value later, when we shall discuss
contributions to the perihelic shift of nonrelativistic origin.

Let us now investigate the relativistic equation (6.93) with a view to
calculating the perihelion shift. We saw above that the term 3mu?
represents a small addition to the classical equations, so let us try a
perturbation approach. Define

I
<

(6.105) A=

S
g

e s L
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an(i the small dimensionless quantity

3x2M*?
The relativistic orbit equation then takes the form

eu?

(6.107) W' +u=4 + R

To solve this we assume a solution of the form

(6.108) u(e) = uolp) + () + O(e?)
and attempt to find ue(e) and v(e).

Substituting this form for u in the differcntial equation (6.107), we
obtain

(6.109) uy + e +uot+ e =4+ eul/4 4 0(e?)
Equating the zeroth-order terms in ¢, we have
(6.110) uy +up = A

which is essentially the classical equation (6.100). The soluﬁiign is easily
checked to be

(6.111) 1 uo = A + Becos (¢ + 8)

where B and & are arbitrary constants. By an appropriate orientation
of the axes we may make & equal to zero, in which case we obtain the
familiar equation of an ellipse, ‘

(6.112) o= A -+ Beos g

Similarly, equating the first-order € terms in (6.109), we obtain

2
=A+ZBCOS¢+—§—COS2¢

&,

(6.113) v 4 v =

(A+ )-|—QBCOS(,0+ 20032¢>

Note that we need only a nonhomogencous solution to this equation since
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the zeroth-order solution already contains a term B cos ¢, which is the
general solution to the homogeneous equation. Despite the cumbersome
appearance of (6.113) it is readily solved; since it is linear in v, we may
write v as the sum v = v, + v5 + v,, where v,, v5, and v, are solutions of the
equations

B? B?
54 vy + vy = 2B cos ¢ v;’-{—vo:ﬂcos&o

(6.114) o 4+ v, = A +
that is, we superpose the three solutions (6.114) to get (6.113). The
nonhomogeneous solutions to (6.114) are easily checked to be

(6.115) Vg = A+ﬂ vy = Besine v, = —a;cos&p

so a nonhomogeneous solution to (6.113) is

2

B? . B
(6.116) v =v, + v + v, = (A +§Z)+B¢s1n<p—6—Ac032<p

Combining this with the zeroth-order solution (6.112), we have the entire
solution for the orbit to first order in e:

(6.117) u = ug + ev

It

(A + ed +€§—2) + (BCOS<p — EBjCOSng) + eBe sin ¢
24 64
Using this solution, we can readily calculate the perihelion shift. Since
only the last term is nonperiodic, it is clear that whatever irregularities
oceur in the perihelion position must be due to this term. To clarify
further the effect of the nonperiodic term, note that, to first order in e,

(6.118) cos (¢ — ep) = €OS ¢ COS €p + Sin ¢ Sin e = €OS ¢ + €p sin ¢

80 the solution may be written as

B? B?
(6.119) uw = A + Bcos (¢ — ep) + e(A +ﬂ — 67{0052«9)

In this form the effect of the various terms on the orbit is apparent. The
basic elliptical orbit is represented by A + B cos ¢. The effect of the
last term is to introduce small periodic variations in the radial distance
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of the planet. Such effects are difficult to detect, and since they are
periodic, they cannot influence the perihelic motion. However, the ep
which appears in the cosine argument does indeed introduce a nonperio-
dicity, and since ¢ can become large, the effect is not negligible. Accord-
ingly, let us write (6.119) in the form

(6.120) u = A + B cos (¢ — e¢) + (periodic terms of order ¢)

The perihelion of a planet occurs when 7 is a minimum or when v = 1/ris
a maximum. From (6.120) we see that « is maximum when

(6.121) o(l — ¢ = 2rn

or approximately

(6.122) o = 2rn(l + ¢
Therefore successive perihelia will oceur at intervals of
(6.123) Ap = 2r(1 + ¢

instead of 27 as in periodic motion. Thus the perihelion shift per revolu-
tion is given by
cH?

2 2
(6.124) dp = 2me = 2rr (3" M)

For the case of Mercury, Eq. (6.124) gives a total shift of 43.03"" per
century. This is in excellent agreement with the observational result
of 43.11 4 0.45” which is unaccounted for eclassically. (For a more
extensive discussion of the observational problem, see the review article of
Finlay-Freundlich, 1955, and the article of Shapiro, 1972.) This fact
is of crucial importance; historically it was the first major observational
test of general relativity theory. . Recently, however, Dicke (Dicke,
1964) has questioned the excellence of this test by calling into question
the exact shape of the sun and hence its classical gravitational field.
We discuss this further in the following section.

6.4 The Sun’s Quadrupole Moment and Perihelic Motion

In Sec. 6.3 we derived a formula for the perihelic motion of a planet due
to the relativistic correction to Newton’s law of gravitation and showed
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that the result is in good agreement with observation in the case of
Mercury. We used this fact to strengthen our confidence in Einstein’s
field equations. Thus it is very important to discuss this effect critically
and evaluate all classical contributions. ‘

We mentioned in Sec. 6.3 that attempts were made in the nineteenth
century to explain the advance of the perihelion of Mercury by hypothe-
sizing a planet Vulcan between Mercury and the sun, whose influence
would cause the discrepancy between the predictions of classical celestial
mechanics and the actual motion. This explanation was given up since
the planet Vulcan was never observed. However, a very similar explana-
tion might be given for at least part of the effect, namely, that a very
small flattening of the solar sphere into an ellipsoid would also lead to
perihelic shifts. The perturbation on planetary orbits by a surplus
mass located in a ring around the equator of the sun would cause per-
turbations similar to those of a small planet just grazing the surface of
the sun. Such a solar flattening has been measured by Dicke and
Goldenberg (Dicke and Goldenberg, 1967), who find a flattening of
5.0 4 0.4 parts in 105. It is somewhat difficult to reconcile this value
with the rotation rate of the surface of the sun; it is necessary to make
the awkward assumption that the interior of the sun rotates faster than
the surface. This leads to some doubt whether the mass distribution
of the sun is flattened by the same amount as the visual sphere. If one
assumes that it is, however, this measurement indicates that the resultant
quadrupole moment contributes about 3.4 per century to the perihelic
shift of Mercury, so that relativity theory and observation would differ
by about 8 per cent for this crucial test. However, the measurements of
H. Hill (1974) yield a flattening of only 1.0 £+ 0.7 parts in 105, a result
fully consistent with a uniformly rotating sun. It is clearly of interest to
study this question further and to evaluate the quadrupole-induced
perihelic shift and the relativistic perihelic shift for all the planets.

We shall first calculate the potential created by a sphere which is
widened by a bulge around its equator. This potential will depend only
on the distance r from the center of the sphere and the azimuthal angle 9
from the polar axis. It has to be unchanged if we go from any point in
space to its mirror image in the equatorial plane. Hence, if we develop
the potential f(r,0) in spherical harmonics, the leading two terms will be
of the form

kM 3cos? — 1 1
(6.125) f(r,8) = — - [1 + D ~—-T2——] + 0 (F‘)

That is, the usual potential of a sphere has been corrected by the addition
of a quadrupole term. The factor D can easily be calculated on the
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basis of the details of the deformation, but its precise value is not impor-
tant for our discussion. Since we assume that the deformation from
the spherical form is small and will use the potential relatively far
from the center of the sun, we shall neglect the terms O(1/74%). Since

‘all planets near the sun lie essentially in the plane of the ecliptic where

§ = w/2, the potential f(r,6) acts on them as if it has the purely radial
dependence

(6.126) o) = — M _

7

The motion of the planets lies in the equatorial plane and may be
described by the relation r = r(¢). We have, by Binet’s formula (6.99),
the following differential equation for the function u(e) = r(p)~! in the
field of force (6.126):

1
w?H?

(6.127) W'+ u = S 6) = 1 M+ 3Bud) = A + S

where H = r*(d¢/dt), and we have defined parameters

M 3cM
(6.128) A= ’-‘fﬁ € = —;ﬁ

B

The dimensionless quantity e may be considered as small since the factor
B depends on the deformation of the sphere and is very small. We can
therefore use the result of the perturbation theory applied to the formally
identical problem (6.107). We found in (6.124) the corresponding peri-
helic shift per revolution é¢ = 2me, which becomes in the present problem,
by virtue of (6.128),

_ 6w

Astronomers observe the shift in the perihelic motion after many
revolutions of the planet. They express, therefore, the perihelic shift per
century by the formula

do  6mcM

B

where T is the period of revolution expressed in units of centuries. We
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may also relate the constant H of areal velocity to the period T. If r
is the mean distance of the planet from the sun, we may integrate the
relation

(6.131) r?— =H

over one revolution and obtain the approximate relation
(6.132) 27r* = HT

(Note that this is not valid for some of the minor planets with a large
eccentricity, e.g., Iearus.) Thus (6.130) becomes

T3

Finally, we make use of Kepler’s third law of planetary motion, which
asserts that

(6.134) — =0

has the same value for all planets. Hence (6.133) reduces to

_ (3eMBCH\ .

Since only r varies from planet to planet, we recognize that the quadru-
pole-induced perihelic shift for different planets would vary as the —3%
power of their distance from the sun.
Let us next compare the result with the prediction of the general
relativity theory. We have the following formula from Sec. 6.3
3k M?
(6.136) do = 2m (6—237)

from which follows the perihelic shift per century,

_61FK2M2 1
T e HTT

(6.137) 8
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in which the period T' of the planet is expressed in centuries. We derive,
by use of (6.132) and (6.134),

3R

(6.138) S S

r=7

The perihelic shift as predicted by Einstein’s formula thus varies as the
—35 power of the distance of the planet from the sun.

It is very important to note that the r dependence of the relativistic
effect is different from that of the quadrupole effect. Thus, in prineiple,
it is possible to evaluate both contributions. For example, since both
effects are small perturbations to the usual classical orbit, the total effect
may be written as a linear sum

2 N 2( V4
(6.139) S =\ MO

2mc?

3xkMBC?% —
ens "

where according to relativity theory N = 1. Thus it is necessary to
measure the shift of two or more planets to obtain an observational value
for XA and B; one would thus test relativity theory as well as measure the
solar quadrupole moment.

The values of the perihelic shifts as presently known and as calculated
from relativity theory are given in Table 6.1. The quadrupole-moment

TABLE 6.1

Distance r Shift S, seconds of arc/century

from sun,

X 10° m Calculated Observed
Mercury f 58 43.03 43.11 + 0.45
Venust 108 8.6 8.4+4.8
Eartht 149 3.8 5.0+ 1.2
Icarusi . 161 ) 10.3 9.8 + 0.8

f Data from Duncombe (1956).
1 Data from Shapiro et al. (1971).

correction suggested by Dicke is not included. The separation of rela-
tivistic and quadrupole effects is not feasible at present, but much more
precise measurements should be possible with the use of planetary radar
reflection (Shapiro et al., 1971). Such measurements should soon pro-
vide much more accurate values of the shift for the inner planets.
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6.6 The Trajectory of a Light Ray in a Schwarzschild Field

In this section we shall treat a second interesting case of motion in the
sun’s gravitational field, the trajectory of a light ray. This problem is
particularly interesting because, as with Mercury’s perihelion shift, the

predictions can be subjected to observational test within the solar system.

In order to treat this problem we need to make two assumptions about
the propagation of light rays in a Riemann space: (1) As with the case of
a massive test particle, we assume that the trajectory is a geodesic line in a
four-dimensional space. (2) In special relativity the path of a light ray
(which lieson the light cone) is characterized in space-time by its null line
element, ds* = 0. We assume that the same is true in general relativity.
Thus, in-short, the light-ray trajectories are null-geodesic lines.

When discussing null geodesics we must observe that the curve param-
eter s which we have been using until now is no longer admissible since
s=0 holds on null geodesics. We have to return to the original concept
of parallel displacement, i.e., to ask that a null vector dz=/dg be parallel-
displaced in terms of the arbitrary parameter q according to the general
law

d [dx a | dxf dxv
6.140 2 (= @t _ o
(6.140) dq(dQ) * ‘B v} dq dq

By the general theory this vector will preserve its length; that is, it will
remain a null vector. It is easy to see that the above differential equa-
tions for the null geodesic are equivalent to the variational problem

dr* daf
(6.141) s [ 9o8 gg~ dg 9 = O

The parameter ¢ belongs to the family of distinguished parameters dis-
cussed in Sec. 2.3. Recall that all parameters of this family are linearly
related. In the case of the Schwarzschild metric, we find the equations
of motion for ¢ and ¢ as before [(6.80) and (6.81)]:

- 2 . =
(6.142) r*p = h = const (1 — Tm>t = [ = const

The dots now denote differentiation with respect to ¢, and we have
assumed as before that 8 = x/2. Instead of Eq. (6.82), however, we now
obtain, since ds? = 0,

-1 -1 h2
(6.143) 0= (1 — ZLYL) c2z — (1 L. 2_m) 2 — _}L

r
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Thus, proceeding as before with the substitutions w(e) = 1/r(e), we
obtain

(6.144) 0 = ¢ — R’ — h2u(1 — 2mu)
and by differentiation with respect to ¢,
(6.145) W@ + u— 3mud) =0

Temporarily discarding the special solution u = const, we finally arrive
at the equation for a light-ray trajectory

(6.146) u’' 4+ u = 3mu?

Before continuing with (6.146), let us return for a moment to the formal
solution u = const, which entered the theory through differentiation of
(6.144). This solution would describe light rays circling the attracting
center at a fixed distance » = ry.  Such singular solutions occurred also
in the theory of planctary motion, and in that theory they have physical
reality. The situation in the present case is different. Observe that
the general equation (6.93) admits « = wu, as a solution for an appropriate
choice of the initial angular momentum. However, u = g is a solution
of the light-ray equation (6.146) only if uz! = ry = 3m. ‘Hence the
singular solutions of ¥’ = 0 eannot be changed continuously 1nt0 solutions
of the more general equation (6.146) except at 7o = 3m. Thus these
solutions are in gencral unstable. Indeed, the gencral cquation for
light rays should be of second order so that rays through every point
and in every direction are possible. This condition is fulfilled by (6.146),
but not by %' = 0.

It is interesting to note that (6.146) can also be deduced from (6.93)
by intuitive reasoning. Equation (6.93) describes the orbit or trajectory
of a particle in the Schwarzschild field :

(6.147) ‘ w4 u = %} + 3mu?
Using the expression for m given by (6.72) and the (cxact) expression for
m/h? given by (6.102), we can write this as

(6.148) w oy = M ( @)2 4 g <Mu?

ctri\de c?

This equation for the geodesics follows dircetly from the variational
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problem (6.74) and involves no approximation. In order to specialize
this to the case of a light ray, we must additionally set ds? = 0. Since
the angular interval de will in general be nonzero as the light ray sweeps
by the sun, we conclude that, for the limiting case of a null geodesic,

m kM dsZ_O

It follows that the equation of the trajectory is, in agreement with our
preceding derivation,

(6.150) _ w' + u = 3mu? (null geodesic)

As with the orbit equation of Sec. 6.3, we can show that the term 3mu?
is small relative to the other terms of the equation. To do this, form the
ratio of 3mu? to the term w; that is, consider 3mu. Using the definition
of the Schwarzschild radius r, = 2m (Sec. 6.1), we may also write this
ratio as $(r,/r). As we mentioned in Sec. 6.1, the Schwarzschild radius
of the sun is of the order of a kilometer; thus, for a trajectory outside the
sun’s surface, the above ratio is evidently very small. This allows us to

regard 3mu? as a small perturbation term in Eq. (6.150). Accordingly,
let us call

(6.151) 3m =€
and write the equation of the light-ray trajectory as
(6.152) w4 u = eu’

As in Sec. 6.3, we shall use a standard perturbation approach to treat
the above equation; we suppose a solution to (6.152) of the form

(6.153) u = up + e + 0(e?) e = 3m
Substitut/ing this in (6.152), we obtain

(6.154) ull 4+ uo + e’ + e = eul + O(e?)
Equating the zeroth-order terms in ¢, we have

(6.155) w4 ue =0
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This has the solution (see Fig. 6.1)
(6156) Uy = A sin ((p - <p0)

which, by an appropriate orientation of axes, may be written without the
arbitrary constant ¢q:

(6.157) uo = 4 sin ¢

In terms of the first-order radius r = 1/u,, this becomes

(6.158) rsin ¢ =

B

Since r sin ¢ is simply the Cartesian coordinate y, this evidently repre-
sents a straight line parallel to the z axis. This is indeed precisely
what we should expect: in first approximation the light ray is not deflected
at all by the sun’s gravitational field. TFrom Eq. (6.158) it is clear
that the distance of closest approach to the origin (the sun) is 1/4, so
we shall call this constant 7o and write the zeroth-order solution as

(6.159) Uy = isin )

To

Next, equating the first-order e terms of (6.154), we obtain

(6.160) v 4 =ud = lzsin2 o = LZ (1 — cos 2¢)
73 2r2
Fig. 6.1

Deflection of light by the sun. The dotted line is the
undeflected path r sin ¢ = ro, and the solid line is the
deflected path. §is the angle between the undeflected
path and the asymptote to the deflected path.




218 Introduction to General Relativity

To solve this we use a trial solution with unknown coefficients:
(6.161) v =a -+ B cos 2

Differentiation gives

(6.162) v = —4B cos 2¢
so that
(6.163) v/ 4+ v =a — 38 cos 2¢

Comparing this term by term with (6.160), we see that (6.161) will be a
solution if

1
2r

1

(6.164) a = =

B:

o
=13

Thus a solution of the differential equation (6.160) is

1 1
U_Q—n%+67—§cosz<p

(6.165)
Using this and the zeroth-order solution (6.159), we have the full first-
order solution to the trajectory equation (6.152):

(6.166) u = 1 sin ¢ + —5—2 (1 + 4 cos 2¢)
To 27‘0

As we have seen above, the trajectory of a light ray as given by (6.166)
is essentially a straight line [u = (1/ry) sin ¢] with a perturbation of
order e. The effect of this perturbation will alter the trajectory to pro-
duce a small overall deflection; that is, light approaches the sun along
an asymptotic straight line, is deflected by the gravitational field, and
recedes again on another asymptotic straight line. The total deflection
can be measured observationally for the case of starlight grazing the sun
and arriving finally on the earth. Let us therefore see what total deflec-
tion is predicted by (6.166) for such a situation.

The asymptotes of the trajectory will clearly correspond to those values
of the angle ¢ for which » becomes infinite or (equivalently) » becomes
zero in (6.166). These asymptotes are nearly parallel to the z axis and
correspond to ¢ being close to zero or . Thus considering the asymp-
tote near ¢ = 0 first and calling & the small angle between it and the
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 axis, we approximate sin ¢ by 6 and cos 2¢ by 1. Then, setting u = 0
in (6.166), we obtain

1 4 ¢
(6.167) . 0_7‘_06+§Qr—§
or

2¢ 2m
(6.168) 5———3—%————5

The minus sign indicates the light ray is bent inward by the sun. A
similar procedure for the other asymptote, for which ¢ is taken to be
m — 8, yields the same value, § = —2m/r,. Thus the total deflection
of the light ray, the angle between the asymptotes, is

(6.169) A= dm_ M
To CTo

For a light ray which just grazes the sun, Eq. (6.169) predicts a deflec-
tion of 1.75”.  The early attempts to compare this prediction with obser-
vational data utilized photographs taken during solar eclipses. The
positions of stellar images near the sun during an eclipse were compared
with the positions 6 months later, with the sun no longer in the field of
view. This procedure is inherently difficult since very small displace-
ments of the images have to be measured. As a result the observational
results obtained have ranged from 1.5" to nearly 3" (von Klitber, 1960).

With the advent of large radio telescopes and the discovery of the
pointlike sources of intense radio emission called quasars the deflection
can now be measured using long-base-line interferometric techniques
when such a source passes near the sun. Measurements range from
1.57 to 1.82", each with an accuracy of about 0.2”. It should be pos-
sible in time to reduce this error to about 0.01"" and obtain an extremely
accurate test of the theory (Sramek, 1971).

6.6 Travel Time of Light in a Schwarzschild Field

Another interesting problem concerning the behavior of light in a
Schwarzschild field is the question of travel time between two given
points. Because space-time is curved in the presence of a gravitational
field, this travel time is greater than it would be in flat space, and the
difference can be tested experimentally.

We can easily calculate the time delay. It is simple to show that the
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curvature of the path, as discussed in the preceding section, makes a
negligible contribution to the time delay when one considers a ray of
light traveling between the earth and another planet. Thus we can
approximate the path by a straight line, which we choose to be parallel
to the z axis; r sin ¢ = 7, 8 = /2. Clearly ro is the distance of closest
approach to the sun (see Fig. 6.1). The wrelationship between the time
and space coordinates along the world-line of a light ray is given by
setting the Schwarzschild line element to zero:

d
(6.170) 0= (1 _ 3?-) e 2 7 de?

r _
@ = 2m/r)

From thé equation of the path of the ray we can reexpress r? dy? in terms
of r and dr, so that we obtain

dr? 72 dr?

(6.171) U =T gmmr T T = 2mn 0 = )

o drt (1 — 2mrl/r?)
=/ — 2m/r)?

~We now take the square root of this, expand to obtain ¢ d¢ to first order
in m,

dr _2m mrd
(6.172a) cdt = ‘\/T-————Wﬁ (1 + - 7)

then integrate

(6.172b) ¢t = (V12 — 1} + V' — 1)
V2 =i+ ) (Vi =i+ )
2

—|—27ﬁlo Wrg
23 r2

The integration is taken from r = 7 to r,, the planet radius, and from
r = 19 to 7., the earth radius. It is evident that the first term above is
the flat-space result for the earth-planet distance, while the other two
terms represent an effective increase in the distance. For the solar
system we may regard r as a very reasonable radial coordinate and ¢ as
an approximate physical time. Note that, as may be expected, the
main contribution to the inecrease in travel time comes from the part

-
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of the trajectory closest to the sun, i.e., for small values of r asis evidenced
in the terms proportional to m in the integrand (6.172a).

The experimental verification of the delay has been carried out by
sending pulsed radar signals from the earth to Venus and Mercury and
timing the echoes as the positions of earth and the planet change relative
to the sun. For Venus near superior conjunction the measured delay
amounts to about 200 us. The measurements are within 5 per cent of
the calculated delays. These measurements constitute the first entirely
new test of general relativity in over 50 years (Shapiro, 1972).

6.7 Null Geodesics and Fermat’s Principle

We may obtain an interesting interpretation of our principle that light
rays travel along null geodesics in space-time and connect it with a well-
known theorem of classical optics. We assume a line element that is
time-independent. or, in invariant language, stationary. The spatial
coordinates will be denoted by 2 and the time coordinate by ¢t. The

path of a light ray is then characterized by the following two conditions
for a null geodesic:

(6.173) ofe(zh,a't) dg = 0
and
(6.174a) ds* = A%*d* 4+ gy daf dab = 0
L dt\? dz’ dz*
PRy — 2,2 7 g =
(6.174b) L(xh,a5t) = A% <dq> + gix aq da 0

where a dot denotes differentiation with respect to g.
We wish now to compare the integral

(6.175) ' J = [e(ziiil) dg

along the actual light trajectory with the same integral taken over an arbi-
trary trajectory in space-time which is near the null geodesic, has the
same endpoints P; and P, in the three-space, and satisfies the condition
of light velocity £(z%4%f) = 0. There are many nonstationary curves
between P, and P, for which the condition (6.174) is fulfilled. They may
start at different moments ¢; at P; and end at different moments ty at P,.

On the one hand, it is evident that the integral (6.175) is zero for all
competing trajectories since its integrand is identically zero. On the




