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( .
and reduced to ultramicroscopic dimension and as the appearance
of these particles remains quite the same, we'may certainly assume
that the ultramicrones also are small crystals. )

The double refraction of the Hg sol must, therefore, be attributed
to the presence of ultramicroscopic tetragonal needles which, when
the liquid is streaming, arrange themselves parallel to each other.

Summarizing we thus may say that there exists continuity between
the crystalline suspensions of Pbl, and HgCl and the colloidal
solutions of these substances which form in definite eircumstances
and become birefractive when in motion. The double refraction of
these sols must be attributed to the crystalline structure of the
ultra-micrones.

In analogy herewith it is probable that also the ultramicrones of
the V,0;-s0l must be regarded as micro-crystals:

Delft. Inorganic and physico-chemical

' Laboratory Technical University.

Physics. — “The field of a single centre in BINSTRIN'S theory of
gravitation, and - the motion of a particle in that field.”. By
J. Droste. (Commumcated by Prof. H: A. Logrentz).

\

(Communicated in the meeting of May 27, 1916).

In two communications') I explained a way for the calculation of
the field of one as well as of two centres at rest, with a degree
of approximation that is required to account for all observable
phenomena of motion in these fields. For this 1 took as a starting-
point the equations communicated by EinsTeiN in 1913 %). EiNsTrIN has
now succeeded in formimg equations which are covariant for all
possible transformations®’), and by which the motion of the perihelion
of Mercury 1s entirely explained *). The calculation of the field should
henceforth be made from the new equations; we will make a
beginning by calculating the field of a single centre at vest. We
intend to calculate the field completely and not, as before, only the
terms of the first and second order. After this, we investigate the

1) Volume XVII p. 998 and vol. XVIII p. 760.

%) “Entwurl einer verallgememnerten Relativitatsthcorie und einer Theorie der
Gravitation", TeusNer. Or : Zeuschrift fur Mathematik und Physik, vol. 62.

8) “Qie I'eldgleichungen der Gravitation” Sitzungsberichte der Kon. Preuss. Akad.
der Wiss. 1915, p. 844. ‘
. 4 “Erklarung der Perihelbewegung des Merkui aus der allgemeinen Relativitats-
theorie” Sitzungsberichte der Kon. Preuss. Akad. der Wiss. 1915, p. 831,
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motion of a body, so small that it does not produce any observable
change in the original field.

1 The equations for the calculation of the field can be got from
a principle of variation. Where matier 1s absent (7%, = 0O) the varia-
tion of the integral

f f f G V' —yg da, dz, de, du,

must be zero, if the vamations of all ¢’s and thewr first derivatives
be zero at the threedimensional limits of the fourdimensional region
over which the 1ntegra1 18 extended Here G represents the quantity

- v 1) (ke i3] \kJ B
=9 Xgu — et (1
v=o 2 (e Tl B A (P iH)g’“

Gl sl [y (P Y
70 { l l = 3{) awl aw

For a centre at Test and symmetrical in all directions it is easily
seen that

ds® = w* dt® — u® dir? — v* (d9* + sn® 9 dp?), .. (2)

w, u, v only depending on r», and (&, @) representing polar coordi-

nates. Now, 1f g,, and therefore also ¢*2 are all zero, if i=/=j, G

breaks up into six pieces, each of them relating to two indices. We

collect the terms belonging to « and # and name thewr sum G ap
Now, if a, b, ¢ represent three different indices,

[ab]:O [aa]:__lagan {ab]_Lagaa [aa:l Lagaa
¢ 1o < 0w, | a |l f0ap | a | ®da.
So

ab

c

abd

a

agaa
oz,

Let the first sum n (1) contribnte to Ga,ag the terms, in which
t=a, j=@, or 1=2p, j=a. By taking for ¢ and 3 successinely
the six couples of indices and adding the expressions, we get exactly
the first sum of (1).

Let the second sum mn (1) contribute to G- 2z those terms
which one of the differentinted g’s contains the index e, the other 3.
So that sum too will have been broken up into six pieces, one of
which relates to « and .

In that way we obtain

a agﬁﬁ BJ“/ a ag““
2y — gt 42
e = Y (9'35%)4“ a@,g(g 5 )+ 9% 5o (9 av,g)+

0 0 0g O
+gﬁﬁamx(mag’@'g fgmgrs 3 g e (3

a=l=; =l=8 Bmz aﬂ: 3

aa

=0, = — { gce

a
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The equations of the field being covariant for all transformations
of the coordinates whatever, we are at liberty to cboose instead of
r a new varable which will be such a function of 7, that in ds?
the coefficient of the square of its differential becomes unmty. That
new variable we name r again and we put N

ds* = wdt* — dr® — v* (d9° + sin® Sdp?) . . . . (4
w and v only depending on ». We now find
4uw'™ 4" 49"y’ 4 4"

Gh:_—w_’ Gs—r:G,nz_T7 G = Gt?: = ’ Gs?:—v—”_‘v_”'

v

In these equations accents represent differentiations with respect
to ». So ’

Now, as l/—_—_g::v? w sin &, the function to be integrated in the
principle of variation becomes
4 (w—wv" — 2vv'w'—2vwv" —v w") sin Y.
We now apply the principle to the region ¢, <t<¢,, », Sr<7,.
By effecting the integrations with respect to ¢, & and ¢ we find
the condition

:

2, N
({f(w ' —2vv'n' —2vuw"—v*uw"ydr = 0,
"
This gives us .
Sov" v =1 . . . . . . . . ()

-

and
v + v'w' 4w =0 R (0]

These are the equations of the field required.

2. To solve (6), we ntroduce stead of » the quantity «=wv
as an independent variable by which, on taking account of (5), (6)

changes into

d d
(1—2") = — 22 dw

« e

Tins equation 1s satisfied by w — 2. The other particular solution
is now also easily found, viz.

. 1—a

w =1 -—%a;logl_*_w.

But we want w to be a finite constant if o' =1 \for » = o).
Then w must be equal to z, if we take the constant to be 1 (the
speed of light then approaches to 1 at large distances from the
centre).

[y
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The ntroduction of » in (5) gives
dv  2av
dlb 1—
from which we immediately find
o N
v = y -
11—’

¢ being a constant of integration.
Differentiating this relation with respect to », we gel

' , 2az  da
G v \
or, v’ being equal to «, . R
2adx
d?’ = '(1_—&:2)5. . —
So (4) changes into
al 2
ds’ = &’ dt* — ———da’ - (dn‘}2 + sin®* I dop?).

(1—a%)" (I—a

So we have now been led again to mtroduce another variable
instead of », viz. 2. The form obtained leads us to introducing the
variable § =1 — «&!. Then

2

dst = (1 —5) dt* —

oE §2-——g—;(dﬂ? + sin® 9 dp?).
.-
Lastly we put - .

g o
=
1
This # is not the same as occurs 1n (4). We obtain

a dr* Y . .
de' =| 1 — — ) dt’ ————— — r* @ J-sin®* ¥dp*) . . (7)
§ 24
] e '
”
We have chosen the coordinates in a particular manner; it 1s
now of course also very easy to introduce for s another variable,

which is a function of ». 1) “

3. From (7) we can immediately deduce some conclusions, The
point (r, &, ) lies at a distance

fl/l—-—— I/l————l—alw(l/————lJrl/—) ®)

1) After ") After the commumcation to the Academy of my calculations, I discovered
that also K. ScHWARzZSCHILD has calculated the field. Vid : Sitzungsberichie der
der Kon. Preuss. Akad. der Wiss. 1916, page 189. Equation (7) agrees with (14)
there, if B 1s 1ead instead of 7.

s
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from the point, where the radius intersects sphere r —=g¢, if » > a
and supposing that (7) remains valid up to r =e. In future we will
always make these two supposilions, as we shall see, that a moving
particle outside sphere » — « can never pass that sphere, we may,
i studying its motion. disregard the space r < a. Should (7) cease
to be valid as soon as r becomes < R, we need only exclude the
space r < R from the conclusions which will still be made, to make
them valid again.

If » be very large with respect to «, the proportion d:2 ap-
proaches to 1. -

The circumference of a circle » = const. is 2ar by (7); this shows
bhow r can be measured. Circle « has the circumference 2z,

One might in (7) perform a substitution ¢= f(r,v). Then a term
containing drdv would arise and the velocity ¢ of light, travelling
along r, would have to be calculated from an equation of the form

F rx)+ F,(rx)e—F,(nt)c =10

and would have fwo values, one for light coming from the centre,
the other for hight moving towards it. Moreover these values would
depend on ¢ In consequence of the last fact we should not mame
the field stationary and the first fact does not agree with the way
in which time is compared in two different places. So, if we want
to retain both advantages, such a substitution is not allowed, though
it may, of course, always be done, if we are willing to give up these
advantages.

We will point out that, as (7) is known now, G can be found
as a fanction of ». The resnlt is G =0, as it must always be found
where matter 15 absent.

4. We now proceed to the calculation of the equations of motion
of a particle in the field.
The equations of motion express the fact that the first varation

of the integral
Iy
f Ldt
t

will be zero, if the vared positions for { =1 and ¢ =1, are the

same as the actual ones. L represents the quantity
!

ds ‘2
L:(%zl/l.___a__._a_-—7-”"——1"57:71‘19(;)2,. . (9)
Ty

r

1




o L def,.fd”}
, where : r'_—_—_—z = _.—:—(e
: Cov ) at’ dt j ot

One of the equations of _motion is .

BL) 0o . -
, -d‘varp- T
~or: i P
7? sin’ -3-(p -
——T—"—const,.

which proves, that @; once ‘being zero, keeps that value.

"Now, as"'we can always choose o and’ L in ‘such a ‘way that
’ ¢ becomes zero for a certain value.of ¢ and as ¢ Wlll then alwa)s

remain zero, the motion takes _place in a plane

We choose - the cooxdmateq in. such a manner, that thls plzme -

~ becomes the plane: :—2-. Then. (9) passes mj:o -

The equatlons of motlon are

oL .
& dcp)-—

From these two it follows that

A D L dIN L
s 2 - ) =0 -
! 4dt(L?"., .(p') )
or ' ‘ »

o dt'L-

Inetead of the two . equatlons (11) we may’, conslde1 the system
-con31stmg of (11 ‘and (12). The twu systems are equwalent o,nly

in case 7=/=0; so for. the cuculal {motion we shall have to. 1etu1n

‘ to the second equation (10). .
7 We now obtain
| e

r

. (p S
=:const., —== const o
R L

~and so

L= 1'-'—~'—-,—~—'-—r'>’('p?‘ . '

4Oy Wy
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‘7 ¢ = const
a \
==
r
Th]s ylelds the equatlons
. N 1 ‘ v
— (13)
S RCE R
‘ émnd : o .
S o i R 7))
a : :
1—— o ~
. T

"We will now juét express the. quantities ¢ and ‘7 in ¢, » and ’;

this is “easily done by dlﬂ‘elentmtmg (13 and (14) with lespect to .
- The 1esult is - ‘

L e N (1)

SRR e Sk
i 1'_’__‘/' '
T . - 7 o ' S .
: } } -,a :».'\‘ o L. 3 a _-7.2 . ~
o ,:._'_'___. 1.'__ —_— ,-—-—— l—'—' .
N

5 Fnom (15) and (16) it follows if F= (p:O

. 29t “ T

This is the accelexa,tlon in case of a pamcle at rest. It is directed

towards the centre. ,
o 7 has its' greatest value (at 1est) at ‘the d1sta,nce r=4%ea ﬁom the
' (,entle, the : greatest value of d is attamed for »=%a.

The motion may. be circular. As 7 is then continually zero,

- we 1etmn to the. eqnatlons (11).- The second shows

' 0L .
| S =0
i.e. ] S ‘ - o
- -(})’—a- R ¢ 1)
@ ) : 2rt . .
Subshtutmg thlS in (lO) and putting 7 :0 we hnd
' : ' Sa
IRREIT T ‘\:“L_ =] 2
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s0 that » must be >>2a, if L* or, what comes to the same thing,
ds* shall be positive.
Formula (17) 1s the same as in NEWTON’s theory.
7. We will now consider the case of ¢ bemg continually zero,
1.e. that the particle always moves on the same radius. From (13)
we easily conclude (we shall afterwards show this in general 1e.
if ¢ be not 1dentical zero) that the particle never reaches sphere r = a.
If we call
7 . dd

S

* d=—
a\?t dt ~
1——
r -

for abbreviation velocity and acceleration, then (13) gives us for the
velocity the formula

&2:(1—§)(1~A+Aﬁ)_. C ... (18)

and (16) for the acceleration

' 24°
g=— — l/lTﬁ—_——— L)
2r® 7. o
1— 2
r

If we substitute (18) in (19) we obtan

X} [)4 (24 " o
d:—(l——ZA-{—ZA—)I/l——. )
2 r r

From (19) follows, that the algebraic value of the acceleration
only depends on the position and the velocity of the particle and
does not change 1if we reverse the direction of the velocity. The
constant 4 is never negative (as L >0). If 4 lies between O and
1 (4 =1 included), then every value of r 15 possible according to
(16) We then have a particle moving towards infinity or coming
from 1t. For this motion the acceleration will, according to (20),
once become zero, if 24 —1 >0, i.e. 4> 14, viz. for

2Aa.
241" |

d=

r=

for greater values of r the acceleration 1s directed towards the centie

(attraction), for smallev values of r from the centre (repulsion). The
acceleration 1s then zero in these positions viz. r = «, 7 = 2Aa7(A——1),
r=o. In the first interval there will be repulsion, in the second
attraction, witlin either interval there is an extreme. If 4> 1
then, accor?mg to (18), » cannot be greater than Aa/(4—1). Then

-
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the motion is that of a particle first going away from the centre

.and then returning when r = Ae/(A—1) The value 24¢/(24-1),

ot 7, for which the acceleration becomes zero, 1s smaller than
Aaf(A—1). The particle aseends (during which there is first repulsion);
at a given moment the acceleration becomes zero for »r —= 24a/(24—1),
then we get attraction, which for r= Aa/(4 —1) has exhausted
the motion and makes it return; the acceleration of the reversed
motion 1s first positive, then becomes negative for » = 24a/(2.4--1)
and the motion stops (nfinitely slowly) for # = «. In case that 4
lies between O and L, so that » can have all values, there 1s no
point where the acceleration becomes zero. According to (20) there
is then always repulsion; the velocity is maximum at an infinite

distance viz , according to (18), V11— A which lhesbetween 1V'2 and 1.

8. We now return to the general case, where neither 7 nor ¢ are
continually zero. We must then take equations (13) and (14) as a
starting point, by eliminating dt we find
1 B 1 /dr\* B

——. (—)-——:A. N 1))

1_3 Pt l—ﬁ drp »3

r r

Expressing dip mn 7 and dr we obtain
Bdr

e

a
Putting now —=—ua, we get
r

dop =

\

—da
. da® (1D
|/ s e 0525

So ¢ becomes an elliptic integral in the variable », and r therefore
an elliptic function of ¢. Of ‘
At (1—Ae®

dop =

w“~——m“"—]—Bgv+ i =0
let @,, x,, @, be the roots, so that
da’ (4A—1)e?
e, 4+e,+e,=1, a,2,4e,0,to,z,= R (22)

B B
then we can introduce as constants of integration the quantities

@, ®,, ¥, (connected by the relation 2, - @, + 2, = 1) mstead of
A and B.

-10 -
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If we now introduce a new variable

[o— 1
r=w — %

putting

6 = & — ¥,

€ ==&, —

€ =&y — %, -
we obtain

—al

dg —= .
/ I/(z"el)(z'_ez)(z_es)

and we have
e, begte=0. . . . . . . . (24
Now, introducing the A-function with the roots e,, e,, ¢,, we Tget
e=Ple+ 0), )
whete C is a constant of integration, which may be complex; the
real part is without signification as 1t only determines the direction
in which ¢ will be zero. We take

=P+, . . . . .. . (2H)-
and then find
" -
=3 PGe ) L (20)
From (14) now follows
24, 2 .
Bdt =— i ﬁa dp = —a’ d
h 1% ° (1—-2) HF(l—a)V (e—a,) (w—a,) (@a—a,)
p [
or
B —dz

@ GV )z~ )z —¢)

The problem under consideration gives rise to four consiants of
integration; two of which are ¢, and ¢,, the two others s (which
can have only particular :/alues) and a constant which arises after
mtegration of (27) and is of no consequence as it only determines
the moment at which t=20.

From (27) it now follows immediataly that the particle can never
reach sphere r—=—wea. For, if » became «, then z became %; (27)
shows that this would require an intinitely long time. Sphere r—e,
therefore, is never veached.

It also follows from (27) that an infinitely long -time is required
for z to reach — 4. This 1s not at all strange, z = — } correspond-
g to r = oo. It may occur (if two ¢'s coincide) that there is siill
another value of »r which cannot be attained, but 1s gradually
approached; we will treat this case wheve it occurs.

(27)

-11 -

23) -
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9. Let us now first consider the case ¢, —=e, = ¢, = 0.
Equation (23) becomes

dp=——u . . . . . . . . (28

SO -
(29)

The value 3« of 7, corresponding to z =20, is, as is seen from (27),
a value which is not attamned. (29) shows that the motion takes place
m a spiral which, extending to circle » —=¢, making there with the radius
a finite angle, and, turning an nfinite number of times, approaches
to cirele »=3« on the inside. The particle can never get out of
sphere 7 =3¢ and a motion such that the particle were from the
beginning outside sphere r — a (and such that ¢, — ¢, = ¢, = 0), is

d 2
impossible according to (28), as (E:_o) should then be negative.

1 .
When » approaches to 3« then ¢ approaches to 3a1/6 and conse-

X 1
queptl_y the velocity to ‘—/3 _
10. We now™ come to the case of two ¢’s being equal and differ-
ent from the third. Calling (the three ¢’s being real) the greatest e,
the smallest ¢,, we have two cases, viz.

by == €y = —%le,, € =€, == — §é&.

We first turn to the case e, —= ¢, =—1¢,._

Excluding as before the interior of sphere 7 = «, r must be > ¢,
so0 <% We put ¢,=e¢,= —a’, ¢, = 2a*; a be positive. Thqn
(23) passes into

— dz
dg

B (¢ + a*) V'z—2a?
It is seen that z must be greater than 2¢’, and, as z must be
smaller than %, we must have
2<% . . . .. . . . (30)
If 20* = 2, the particle is at rest on sphere » = a.
Now putting 2z = 2a* 4 y* we get
~ dy

and so &

-12 -
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y=—a3igkap3). !
This gives us ’

fl
= S 1 ]
VT I 2 1 8 Gay V) 1)

The case a =— O has been discussed 1n 9, we therefore put
a==0. When ¢ =0,r=a &+ 24", 16 a value between r —«
and » = 3a. When ¢ approachesto & a3 (a value which, from (30),
exceeds a) r should approach to zero, according to (31). But fist
r must become equal to @, viz. when ¢ becomes

2 V'2-6a*
(l):(p“:al/S'W”gT ~

and for this, according to (27), an wnfimte time is required as then
z=1%. So the motion 1s as follows- ¢ changes from — ¢, to ¢,
corresponding to r — «. The greatest value of » is reached at the

~ moment when ¢ =0, viz.

P =

+2a< “

when ¢@=—, (as well as when ¢ = ¢,) » becomes a. If 7 ap-
proches to zero, ¢, increases indefinitely and the motion approaches
more and more to that which has been -discussed in 9.

131. The case ¢, = ¢, = — }e,. .
Put ¢, = ¢, = a*, ¢, = — 2 a’, then (23) passes into
(l 2
dp = — il S (32
(z2—a?) VZ+2d .
As 2> —2a", we may put z=— 2a® -4y ' Then we get
2 dy
d(/) = TL.
y*—3a®

Now, 1if 2> a? and therefore 3* > 3 a*, we get
y = a V/3 cotgh (+ ap 1/'3)
and
o
= ..« . . (88
g 1—2a® 4 8 a? cotgh® (3 ap 1V'3) (33)
If, on the contrary, z<C a® and consequently ¥* < 3a?,
- y=ayBtgh(daqpd),
and so !

[41
= : e e e A
"T et eyl Gap V9 (*34)

z cannot pass «* and must moreover lie hetween — 1 and

whe

-13 -
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So we have the following cases:
A. a*2%. z hes between — 3 and j ; formula (33a) holds,
varies between o« and «, the first value 1s attained for

1, a/ 34+ V272
p=1tp, = — log — P
P aV'3 al/3——l/2a2—~7_};
and the second for

1 , aV'3 4+ V212
VB VB Viery -

An nfinitely long time 15 required to reach either position

B. a*<3; z between a and 3 Formula (33) must be applied, »
varies between ¢ (3 -+ @°) and «, ¢ then changes from o to
1 # V2a* +2+al'3
~aV§gvﬁw+%—ﬂVS

The orbit comes fiom » — ¢ and approaches in a spiral to circle
1 =ua: ¥+ a?).

C +t<a*< %; z between — 3 and a® Formula (33a) now holds,
» varies between w and e- (3 4+ a*); ¢ changes from s, to o The
oibit comes from infimty and tarns 1n a spual round the circle
r=a.(} -} a*), which lies between circle 2« and circle e.

D. <%, z between — 2a® and a* Formula (33az) must be
apphed , » varies between «-(* — 24 and « (} + a”); ¢ changes
from O to o The orbit 1s a spuwal, coming from cuele a (3 — 2a2),
which may have any radins >> 3a, ‘and appiroaching in a mfinite
number of turnings to c¢ircle « (¥ -+ "), which lies between circle
2e¢ and circle 3a

12. Now we will suppose the roots ¢,, ¢,, ¢, to be all different.
As regards these roots, we may then distinguish two mamn cases,
viz. the case of three real roots and the case of one real and two
conjugate complex roots In the first case we put ¢, >e¢, >e¢;, m
the second ¢, be the real root and the imaginary part of ¢, be
positive. In either case we put, as usual, ¢, = Puw,, ¢, = Po,,
e, = po , with w,— o, + 0, (not — 0, — v,).

The three voots are real. The only values possible for 7 s 1n equation
(25) now are 0 and o, (or congruent values). In the first case z
varies from o to ¢, and from ¢, (0o o, while ¢ changes from 0 to
20w, and from 2w, to 4w,. One must, however. remember that,
according to (27), z may not exceed lhe values — } and § (1.e.r = o
and 7 =«), but must remamn between them. So if ¢, > %, it 18
impossible for ¢s to be zero. If ¢, < §, z varies between ¢, and 3
and so » between «/(} 4 e,) and « This case corresponds to 10 and
14

P=(,=

¥

Proceedings Royal Acad Amsterdam. Vol. XIX,

-14 -
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118 into which it passes when ¢, = ¢, == — } ¢, and when ¢,—=—2e,.
In the other case (7s=w,) z varies from ¢, to ¢, and from ¢, to
¢,, while ¢ changes from 0 to 2w, and from 2w, to 4m,. There
are various cases:
4. e, 22 z varies between —1 and 2, ¢ between ¢, and 4, for
which -

—+=PGF P + v,) and $=PEF P+ @y);

¢, lies between 0 and w,, ¢, between 0 and 2w, (p, > @,). 7 changes
between o« and . This case corresponds to 114 and passes into
it for ¢, = ¢, == — 1.

B. ¢, £—1,6, <2 z varies between —1 and ¢, ¢ between ¢,
and 2w,; r changes from o to ¢/ 4 ¢,), a value between 2« and
«. This corresponds to 11C, m which it passes for ¢, = ¢,, @, then
becoming infinite.

C. ¢, >—2%,¢, <% z varies between ¢, and ¢,, ¢ between — oo
and - w; 7 changes from e/} - ¢,), which may have all values
> 3a, to e/ -+ e¢,), which may have all valnes between 2« and ¢.
The case corresponds to 110, in which it passes for ¢, = ¢, > 0;
if e, <C O there is no corresponding degencrated case.

Two roots are conjugate complez. The value which in (25) is
possible for is is 0. Then z varies from o to ¢, and back. So if
¢, 2 %+ this case is impossible. If —1 <{e, <2, z varies betwcen 3
and ¢,, ¢ between a value ¢, for which

PGy =%
\situated between 0 and 2w, and 4w,—¢,. 7 changes from a to
a/(t 4 e,), which may have any value > «, and then returns to «.
This case can pass into 10, if e, and e, approach to the same
negative value: and, 1if ¢, becomes negative, it may divide itself
into 118 on the one hand and 11C or 11D on the other (11C if
e, < —1, 11D if ¢, > —1).

We now have a survey of all possible motions. We must, however,
remark that not all the motions take place with a velocity smaller
than that of light, as in case of some of them'(e.g. 114 and 124)
A and so also L is negative. We have not separately mentioned
all those cases. In 11 eg. a*< 1, means that the velocities are
smaller than that of light. In 12 for that purpose ¢, e, + ¢, ¢, + ¢, ¢,
has to be > —1%.

13. It is now necessary to consider the place taken up in this

survey by the well-known motions of the planets and comets. These
motions all take place with small velocities; we will call a quantity
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such as the square of the velocity of a planet, a quantity of the
first order. In Newron’s theory, which aeccounts very exactly for
the motions, «-r is found to be of the same order as the square
of a velocity; this we take from Newron’s theory. In (13) A4 must
then be a quantity, differing’ little from 1; we represent it by

! ,

A:l-}—;g. )

In (14) B is a quantity of order 4. We represent it by
B=Va:2

and take 2 positive. The constants 2 and u then take the places of
A and B. If we subsutute these constants in (21), this equation

becomes
22 1 1 1. /dr\\? 1 . 51
7.1_—‘1{ 1 —£T—4 :ﬂ?ﬁ —/r—z‘-—l,t. . » « ( a)

r r

The constants 7 and u are moderately great. The formula passes
mto the corresponding one of NEwton’s theory, if we put «=0.

We then obtain
A? 1 /de\? 1
_-——(-—q)—-—:y, e
dep 2

7 Pt 7

The equation gives rise to an ellipse, if u is positive, to a para-
bola if w =0, to a hyperbola if w 15 negative. In NEwToN’s theory
4u < 2% In consequence of the introduction of the constants 2 and
the equations pass into v

& e, ta, =1 @&, Ffo2+o0, =a(Ptpa), 2o, =upa’ . (220

We see from these that the roots 2, #,, 7, approach very nearly
to 1,0,0. The quantity e«(2* - u«) is positive. Because u <1 2* the
roots prove to be all real. @, is somewhat smaller than 1, about
02?, v, and @, are of the order of «; they are both positive it wis
positive, else they have opposite signs; 2, becomes zero if w=20.
We- will therefore put ‘
z,=1—2an,
, 2, = a(m 4+ n),

&y = a (m — n).
Now a, 4 @, + «, =0 as it ought to be; if 2 <m we have to

deal with the quasi-elliptic motion, if 2 >m with the quasi-hyper-
14%

¥
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bolie, if » = m with the quasi-parabolic. The constants 7 and » take
the places of 2 and u. We obtain

e, =% — 2 am, )
e=—%+eam+n) . . . . . . (34
eg—=—314+ «(m—n)'

In (22) and (26) we now must take, in the case of elliptic motion,
18 = w,, as ¢ mcreases indefinitely, z remaining finite. In the case
of the parabolic and hyperbolic motion » becomes infinite and so
2= —%; z moves between ¢, and ¢, and again [s=w,. So (26)
becomes -

o -
—=1+rlg+ o)
Now we have the formula

(el —63) (62 - 63)

Pyt wyj=e¢ +

P p—e
and so
! 2 (el_ea) (62_33)
r N + s + P '% P—e,
or from (34) .
¢, —e
——m— 2 _r 3 37
- m—n - nP%(p-——ez (35)

This is the equation of the orbit requited. If we now let « become
zero, ¢, and e, coincide, ¢,—e, becomes 1, and the A-function dege-
nerates. We then obtain '

— = m—n 2nsin*l o =m—ncosep . . . (35a
P 2 i

and this equation shows once more that, if a==0, forn < m the
motion is (quasi-lelliptic, for m >>mn (quasi)-hyperbolic, for n =m
(quasi)-parabolic. For n =20 it is circular, also if « is not supposed
to be zero. The elliptic case is case 12 C, the hyperbolic 1s 12 B,
the parabolic is 12 B, ¢, being supposed to be -—1 there.

14. Let us now examine the motion of the planets a little more
in detail. Equation (35) shows that 4w, 1s the period; asthe A-func-
tion is almost degenerated we may take

4

dor, — )
Ve —e,+Ve,—e,

A further approximation is not necessary as, after expanding the
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roots in a series of ascending powers of «, the terms of degree 0
and 1 do not change any longer. From (36, it follows in this way
4w, =2 (1 4+ 3 em) =27 - 3am=x .

Now (35) shows that m —n is the smallest, m - n the greatest

1 —
value of —. From this or from (35a) it follows that m is the
r

reciprocal value of the parameter p of the orbit and n/m represents

the excentricity; so

_n _1 37)
E=— o P

This gives for the motion of the perihelion per period 3a7/p cor-
responding to the value calculated by Hinsrein.
To conclnde we will calcnlate the periodie time. From (14) follows,

r* dep
Bdt = .
a
1 — —
r

If we put in this ¢« = 0" we obtain the corresponding equalion of
NewroN’s theory; we may therefore expand the denominator and
obtain as a tirst approximation
Bdt = »* (1 + —oi) dp=oridp 4+ ardp . . . . (38)

”

~

We must now substitute for r the value taken from (35). Let us
for a moment mtroduce the elliptic function sn with the modulus
k, defined by

e T 2an
= = 1
e,—e, l1—3amtan

(39)

(35) passes 1nto

1 -
—=m—nt 2y Ve —e ;. . . . . (40
r

4* 15 of the first order, and consequently very small. If we put

smp=snigVe—e, . . . . . . (4)
we find by differentiation
cos padp =} Ve, —e, V(1 — sin® ) (L — & sin® ) d'p‘

or
S d
y Ve —e,dip = ——T,
2V TR AP V1—F sin®
Now as (40) passes into

—=m —n + 2nsin® ¢,
7

(38) becomes

-18 -



214

\B l/e_l_—_—e:dt: dyp + ady '

(m-n+2nsin®P)® I/l—/cgsinﬂtp (m-n+ 2nsin® p) V' I-Fsin*p

If a=%k=0 we pass into NewroN’s theory. Soin the first fraction

we may expand the denominator and neglect %%, etc., and in the

second fraction we may put £=—=0. Putting 4* = 2en in the first
fraction we obtain

1L 22 du,
1B ‘/31“‘93 dt = ran sm' hd ay + w_ﬁ_ﬂ_'____
m —n+ 2n sin? P m  n+2nsin
(m—n+ Bnsin’ )’ 2 i’
'_- 1 —La(m —n) Sadp 12)
T (m—n-+ 2nsin®)? m—n-+2nsin* P

From the values of @,, 2,, ¥; we get, considering (22),

BY B 1/7 1-8am+-an t
b BT 2m \ 1 - 2am + a*(m*—n?)) *

We may write

2m ,
Bt (e—e) =], (1 + aim— )]
ot a
and so (42) passes into
. 3 P dyp sodyp
* 2n - (m—n-2nsin*)®  m- n--2nsin® P

We will call the time in which » is periodic the periodic time;
it is the time in which ¢ increases by 4w, and ¢ by =. So

o . dp T dy
S = e | =
2m (m—n+2nsin®P,* m——n -} 2n sin® P
0 0
_ am Jan
- (m*—n2ys (P —n?)E
In connection with (37) we get from this, @ representing half the
major axis :

[Sd

l/f—— P=at + -Z}aa%, )
22
or with the same degree of approximation
—z—;vlr-/l-;—é T=(+ a)%.
We so obtain instead of KreLer's third law
e+a° o«

Ta—_ - 8713 ‘ (4’3)

We can also ask after the time required by ¢ to increase by 2a.
This time depends on the place from which the planet starts; it is
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greatest for the perthelion, smallest for the aphelion. As a mean
value of all these times we may consider
3
T = T(l——a ,
- 2p
For this time Keprkr's third law becomes

’ o \}? o
a — T = —.
1—¢° B8®

This deviates from KrprLEr’s law less than (43).

Chemistry. — “The Metabolism of Aspergillus niger.”” By Dr. H. J.
WarerMaN. (Communicated by Prof. J. Bomsexen.)

{Communicated in the meeting of May 27, 1916,

In 1esearches described in previous communications ') I have
demonstrated that the quantity of different elements accumulated in
the cells of Aspergillus niger is subject to very great variations. The
investigation was carried out quantitatively for carbon, nitrogen and
phosphorus and qnalitatively for the element sulphur Whereas from

' 100 parts by weight of .carbon, assimilated as glucose, 55 parts, for
instance, are absorbed after three days in the fungous material, this
after 21 days amounts to only 31, s0 not quite 60°/, of the quantity
originally taken up. The same applies to the nitrogen and parti-
cularly to the plosphorus in a still higher degree.

The quantity of nitrogen present in the cells falls in course of
time to */;—'/, of the quantity present in the young cells and with
phosphorus even to ‘/,—'/,,. Also the sulphur is accumulated in
young cells. On increasing age the superfluous quantities of the
said elements are excreted.

On account of experimental difficulties .I have given up the idea
of deterrmning the progressive comise of the hydrogen and the
oxygen separately, but bhave now decided to calculate the sum of
these two elements accumulated in different periods in the fungous
material. For, if we know the quantity of dry substance, likewise
the percéntage of carbon, nitrogen, phosphorus and ash, it is possible
to determine with sufficient accuracy for my purpose the joint
amount of hydrogen and oxygen.

1) Folia microbiologica, Hollindische Beitrage zur gesamten Microbiologie I,
422 (1912); These Proceedings November 30 (1912) p. 753, February 22 (1918)
p. 1047 and 1058, March 22 and April 256 (1918) p. 1349; Handelingen X1Ve
Ned. Natuur- en Geneesk. Congres p. 125.
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