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and redllced to llltramicroscopic dimenslOfl and as the appearanee 
of these pal'tlCles l'emains quite the bame, we-may eertainly assume 
that the ultramicrones also are small crYRtals. . 

The double refraetion of tlle Hg sol must, thel'efOl'e, be attl'ibuted 
to the presence of ultl'amicl'oseopie tetragonal needies which, when 
tlle hqnid js skeaming, arrange themselve~ parallel to each other. 

Sllmmal'izing we thllS may say that there eXIst':l continuity between 
the cl'ystalline suspensions of PbI 2 and fIgCI and tbe colloidal 
solutions of these substanees whieh form in definite ~ireumstanees 
and become birefraetive when in rnotion. The double l'efraetion of 
these sols must be attributed to the crystalline strueture of the 
u ltra-micrones. 

In analogy her~with it is probable that a]so the ultramlCrones of 
the V20.-s01 must be regarded as micro-crystals; 

Delft. Ino1'ganic and physico-cllemical 
Labol'at01'y Techniéal Univel'Sity. 

Physics. - "Tlte field of a single centl'e in EINSTEIN'S tlte01'y of 
éavitation, ancl· the motion of a pa1'ticle in that field.". By 
J. DROSTE. (Commumcated by Prof. H: A. LOHENTZ). 

(Communicated in the meeting of May 27, 1916). 

Iu two communications 1) I explained a way for the calclllation of 
the field of one as weU as of two een tres . at rest, with a degl'~e 
of approximatlon that is required to account for all observable 
phenomena of molion in these fields. For this I took as a starting­
point the equations eommu-nicated by EINSTEIN m 19J 3 l). EINSTEIN has 
now slleceeded jJl fOl'mmg eqllations WhlCh are coval'iant tOl' all 
possible transfol'mations J), and by whieh the motion of tbe pel'ihelion 
of ~Iercllry IS entirely explained 4). The ealcnlation of the field ShOllld 
hencetorth be made from the new equations; we will make a 
begil\lling by calculating the field of a single eentl'e at rest. We 
intend to calculate the field completely and not, as befol'e, only the 
tel'ms of the first and ,secolld order. Aftel' this, we investigate th€' 

1) Volume XVI! p. 998 and vol. XVlU p. 760. 
2) "Entwurf einer verallgememerten Relativitatsthcorie und einer Theorie del' 

Gravitation", 'fEUBNER. Or: Zeltschrift ful' Mathematik und Physik, vol. 62. 
S) "Die L"eldgleichungen der Gravitation" Sitzungsberichte der Kon. Preuss. Akad. 

der Wl~S. 19]5, p. 844. . 
\ , 

• 4) "Erklarung der Perihelbewegung des MerkUl aus der allgemeinen Relativlt,lts-
theorie" Sitzungsberichte der Kon. Preuss. Akad. der Wiss. 1915, p. 831. 

• 1 
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moilon of a body, so small that it does not produce any observable 
change in the origmal field. 

1 The eq llatlOns for the calculaüon of the field can be got from 
a principle of val'iation. Where matter IS absent (l't J = 0) the varia~.­
tion of the integral 

JJJJ G V g d·1]l d·1]2 dm 3 d,~ 
must be zero, if the varIations of a.ll g's and thmr first derlvatives 
be zero at the threedImenslOnal hrmts of the fourdImenslOnal region 

.over wluch the mtegral IS extended Here G represents the qllantIty 

G=2;;.gn(a:z ~z:(_ 0:, l~/( ~ 2;;7c(lz1( ll~Z(-li;Uk:DgzZ,(l( 
\ t.7/ =:2 glei [tJ] [Z 7J = 1 (OgZI --r- 'Og,l _ 'OgzJ). 
Ilc \ I l l 'OiEJ 'Omz '0.1]1 

For a centre at rest and &ymmetrical in all dlrecüons it is easlly 
seen that 

ds2 = 10 2 dt2 
- u2 d1,2 - v2 (d{P -l- 8zn2 

{} d(p2) , • (2) 

10, u, v only depending on 1', and ({), (p) representing polar cOOl,di­
nates. Now, If ,q'J and therèfore also gZJ are all zero, If i =/= j, G 
breaks u p In to SIX pleces, each of them relatIng to two mdlCes. We 
collect the terms belonging to a and (J and name the11' sum GX(/{IJ[3. 

Now, If a, b" C l'epresent three dIfferent indices, 

[a bJ= 0, [a a] = _ ~ ~gaa, ra bl = t ~gaa, [a a] = i ~gaa. 
IJ O' Uil1e a umh a uma 

80 

I a b! 0 I a a! àgaa lab I àgaa ~ a Ct I àgaa - - lace -lnaa _lg 
---, - - 2"11 '0-' -.ï.;; '0-' -I aaà-' 

IJ IJ me a mb a _ ma 

Let the first sum In (1) con trI bnte to G(};~ xf3 the terms, In whlClJ 
i = a, j = (J, Ol' Z = (J, J = a. By talnng fol' a and fJ suC'ce&Sl\ ely 
the SIX couples of indIces and addmg the expl'esslOns, we get exactly 
the th'st sum of (1). 

Let the seC'ond suro IJl (1) contl'lbute to arC/xf3 those terms 111 

which one of the dUlerentirttecl g'F, contmns the ll1dex a, the ot her {J. 

80 th at Sllm too wIll have been brok en up mto six pieces, Ol1e of 
which relateA to a and (J. 

In that way we obtain 

o ('Ogpf3) à ( àg(/.(/) à (' à9()'.~) G'IJ(/m~ = g~~ - gf3P- + .qf.~ _ g[3f3 _ + gP~ _ gC/.C/. _ + 
'O.c(/ om(/ '0.1]13 à.1]f3 om,3 à.1]f3 

+ gPF ~ (9~()'. àgf3(3) + gC/.~ gpf3 :2 gl! og~~ ogf3f3 . • (3) 
àtC~ oXC/. «=1=1=1=[3 O.'1h oml 
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The eqnations of the field being covarmnt fOl' all transformatIons 
of the coordmates whatever, we are at libel ty to choose instead of 
l' a new variabie whieh will be sneh a functlOn of 1', th at in d.s 2 

the coeffieient of the squa.re of Lts differential becomes umty, That 
new variabie we name r again and we put 

ds 2 = w2 dt2 
- dr2 

_ v2 (d{jo2 + sin2 {jo drp2) 

wand v only depen$img, on 1'. We now find 

(4) 

4w'" 4v" 4.v'w' 4 4V'2 
G/,=--, G;;,r=Gt1=--, Gt;;,=Gtrp = - --, G;;,'f=---' 

10 V v10 v2 v2 

In these eqnations accents represent dlffel'entlation& with respect 
to 1'. So 

4V'2 8v'w' 8v" 4w" 

vw v 10 

Now, as V g =- v2 w sin {jo, the functIOn to be mteg,l'ated 111 the 
prinCIple of variation becomes 

4 (w-wv'2-2vv'w'-2vwv"-v2w") S2n {jo, 

We now apply the principle to the reg ion tI ~ t ~ t2, 1\ ~ l' ~ 1'2' 

By effeetmg the integrations with respect to t, {jo and rp we find 
the condition 

, J , 

1<10 --wv'2-2vv'w'-2vwv"-v2w")d?' = Û, 

'j 

This glves us 
2vv" + V'2 = 1 

and 
vu;" + v'w' + wr/' = 0 

These' are the equahons of the field required. 

(5) 

• (6)' 

2. To solve (6), we Introduce ll1stead of l' the quantity ,c = v 
as an independent varIabIe by which, on taking accouiit of (5), (6) 
changes 111 to 

d 2 w dw 
(1 _!U

J
) - - 2!u - T 2w = O. 

d,1J 2 d,v 

TlllS equatlOl} IS satlsfied by w = tv. The other partJc111al' solution 
is now also easily found, viz. 

1-,v 
w = l-t,vlog--, 

l+!u 

But we want w to be a finite constant lf' v' = 1 ~fol' l' = (0), 
Then w must be eqnal to x, If' we take' the constant t~ be 1 (the 
speed of ltgh} then approaches to 1 at large distances from the 
centre), 
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The ll1tl'OductlOll of X 111 (5) gives 
dv 2a:v 

dd~ --1- {U J ' 

fr'om wlllch we unrnediately I find 
a 

v=--, 
l-.vJ 

a belllg a constant of ll1tegration. 
Diffel'entIating tlns l'elation wIth respect to 1', we geL 

2ax d.v' 
v' == --,'---

(1 ~iv2r dr 
or, v' bemg equal to x, 

\ 

2a dlv 
el1' = . 

(1_,'1.)2)2 .. 
80 (4) changes mto 

4a J a2 , 

dç2 = ,'1.)2 dt2 - ---- d,'I.)2 - (1_m2)'" (diP + sin~{Jo clrp2). (1 __ ,'1.)2)4 w 

80 we have now been led agal11 to mtroduce anothel' variabIe 
lflstead oJ I', VJZ. x, The form obtamed leads us to lIltrodncmg the 
variabie S = 1 - ,v~. Tben 

4aJ , a J 

ds' = (1 - s) dt2 
- ---- d§2 - - (cll't2 + sinl {Jo d rnJ ). 

(l-§) §4 §2 r 

LaRtly we pui -

This ?' is 1I0t the '3ame as OCCUl'S 111 (4). We obtam 

(ls2 = (1 -~) dt2 -~~ - 1,2 \d{;2 + sin2 {Joel p~) 
l' a 

] -- ' 

(7) 

l' 

We have chosen the cool'dlllates in a partIenlar' mannel' ; it IS 

now of course also very ~asy to intl'oduce fol' l' anothel' variabie, 
which is a function of r,l) 

3. Fl'om (7) we ean immedlately deduce some conclnsions, The 
point (1', 1't, (p) lies at a distance \ 

(J _r dl' =1'V~- a + alog(V1' -1 + V1'). (8) 
:J~V a r - a a 
~ ,1---

r 

1) Aftel' the commumcation to Lhe Academy of my calculatlOns, I dJscovel'ed 
that also K. SCHWARZSCHILD has calculated the field. Vld: Sitzungsberichte del' 
del' Kon. Preuss, Akad, der Wiss. 1916, page 189, Equation (7) agl'ees wüh (14) 
there. lf R IS lead instead of r . 

.. 

, . ~ 

1- , , - \ 

I, 
I 

I 

" .! 

t \ t .. ..!. ~ ~t) 

'1' 1 

I 
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from the pomt, where the radius mtel'sects sphel'e l' = a, if 1'.> a 
~nd snpposing that (7) l'emains valid -np to l' = a. In futUl'e we will 
always make these two suppositiol1s, as we shall see, that a moving 
particle ontside sphere T = a can nev,er pass that sphere, we may, 
lil studymg its motion. dlsregal'd the space ]' < a. Should (7) cease 
to be valid as soon as I' becomes < R, we need (lnly exclllne the 
space r < R from the ronclllslOns wlllch wIlI stIll be made, to make 
them valid again, 

If l' be vel'y large with respect to a, the proportion Ó: l' ap­
proaches to 1. 

The circumference of a eh'cle l' = const. is 2.1(1' by (7); this shows 
how l' ean be measllred. Ou'cle ft has the circnmference 2:t'a. 

One might in (7) perfol'm a substitution t = j(1', 1:). 'rhen a teem 
containmg d1'd1: would al'lse and the velocity c of light, travellmg 
along 1', would have to be calculated from an equation of the form 

F1 (1',T) + F2 (r,T) (J- F3 (1',t) (JJ = 0 

• and would have two vallles, one for light eoming fl'om the centre, 
the other for lIght moving towards it. Moreover these values would 
depend on t. In eonsequence of the last fact we should not name 
the field stationary and the fil'Elt fact does not agree with the way 
in which time is compal'ed in two different places. Sa, if we want 
to retain bath advantages, such a sllbstitution is not allowed, though 
it may, of course, always be done, if we are willing to give up these 
advantages. 

We wIlI pomt out that, as (7) is lmown now, G can be fOllnd 
as a function of 1', The resnlt is G = 0, as it mnst alway& be found 
where matter IS absent. 

\ 

4. We now proceed to the caleula,tlOn of tlle eq uatlOns of motlOIl 
of a partIele in the field. 

The equatiolls of motion express tile fact tlJat tile {h'st val'lation 
of the integral 
., 

wIll be zero, if tile val'led positions for t = tI and t = t2 are the 
same as the actual olles. L represellts the ql.:1antity 

ds V a ~,2 L - - 1 2 <>2 J' J a. 2 (9) - - - - -- - - -- - l' v -1' stn lT cp ,. • 
dt l' a 

1--
". 
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. 'whel'è' 
. d1', d{}., drp 

l' =-, *=-, (p=-, 
dt . dt .' . , :dt " 

. One of the equations of' motion is 

.d(aL) '. - -. =0 
dt .aq;· 

Ol" 

., , . 

which pl'oves, that /p; once being zero,keeps that válu~," 
'Now, as we can always choose.·{} and·cp insur.h away t~ .. at 

;p becomes zero foi' a certain value.of t arid 'as (p wiÜ then alw~yR~ " . 
rem~in zero, the motion takes. place iIi a' plane, . '. '~'. . 

. We' choose' the . cool'dinates, in. sueh a manner"that' this plane 
. . . 

. n '.' '. 
hecomesthe plane ~'t = 2' Then, (9) p{\,sses into 

Ol' 

V
· 'a'"" .',2' " ... 

. . ' 1. 2' 2 
L= 1 - - -'-- -1' (P, 
. ra· 

. . 1 -- - . 

The equations of inotionàre. 

d (aL) "'. - - -0 di ::\' . - , up . 
From these two it fol1ows tlIat 

r 

. d(, ',.aL" ' ,aL) '. 
- L-1'- -rp-. = 0 
dta;. . a~ ... · 

.( a). . 1- - " 
.d '1' _ . 
- -- _0 
dt .' L - .... " . 

\ ." 
(10) 

. (11) 

" 
-,' , 

(12) . 
. . 

Instead of the two. equations (11) we may, consider the syst~m) 
consisting of. (11)' and '(12). The .. ~twu' systems. are equivalent OJlly' 
in case i, =/= 0; so fol'. the cil'culàl'\lmotion we. shall ha've to return 

. to tp.e second equadon (10).,.. . '-, . 
We now obtain 

a· 
1--. 

r 
-:-. ----"L- ~:con8t., 

and so 

i '> 

'1,2q; '. .' , 

-.' =: const.,: 
L .', 

( " 
, '. 

I .,: ,,'." ':"~" '::, : 

'J ... ' . 
',\ 

./ ~ -' 

",: ' 

:... :.,. 

~. :, 

, , 

, 
,I 
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, 1,2~, , 
'-"- = aonst. 

a 
1--

l' 

This yields the equations 

and 

'1 
, a 

1-,-
l' 

a' , 
1--

r " 

. (13) 

(14) 

,We will now just express the, ei LHlntities ;p alld l' in rp, l' and 1'; 

this is easily done by diffet;entiating (13) and (14) with respect to t . 
. The 'result is 

fJJ1' a 2~~ 
(P-=--- ,,---

, 'a 1,2 r 
. (15) 

I
' , --

l' 

and , " 

" , a (':. " a)" 3, a ' 1:2 
, ,(' a) 

, ,,1' = ,-' -' . 1 ,..s,-7- + - . - -, -- + 1'ip2 1 - - .(16) 
, 21,2 , 1', 2 1,2 a, \ l' 

,'," / ,,1-- , 
l' ' 

, ,5. From (15) and (1'6) it' follows if 'I:-:.;P':'-'- 0 

, ;p = 0, ' ;: ~ ~,(l ~'~)' 
" , ,21'- r 

This is the 'accelel'~tion in' case of a partiele at rest.' It is dil'ected 
towards,' the centl'e.' 

.' ;:. has its' greatest value (at rest) at the distancè?' , t cc from the 

, cei1tre; the, , gl'eatest ,Talue of d is attailled fOl; I' = ia, 
',6.Th~ ,11iotion may be èil'cula;'. As?: is then cOlltinua~IJ ~el'o; 

we return to the, eq llati()ns (11).' r~he' second shows 

aL 
'~'-:- 0, ' 

. UT 

, , i. e. 

" " '(l.7) 

Su:bst.ituting this in (10)' aild putting ;, = 9 we find 

V=l- 3t;t, 
21', 

, / 

. :,"Î . "." ' .. , . '-. '. 
,', 

:. F , 
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so that I' must be > t a, if L2 Ol', what ('omes to the same thing, 
cls2 shall be posit! ve, 

Formula (17) IS the same as 111 NEWTON'S theor)'. 

\ 7. We wIll now conslder the case of r'p bemg contmually zero, 
I.e. that the partlCle tdways moves on thé same radIl1s. From (13) 
we easIly conclude (we shaU aftenval'ds show tlllS m general I.e. 
d r'p be not ldentICal zero) that the partiele never l'eaches sp here r = a. 

If we caU 

for abbl'eVlatlOn ,eloclty and acceleration, tl1en (13) gn'es us fol' the 
velocIty the formula 

;p = (1 - ~) (1 - A + A~) . 
'/' 'r • 

and (16) for the accele1'1:I.tlOn 
• l 

Ö=-~[Vl-~- 2d
2 1 

2r2 
- 1', V a 

1--
r 

If we subshtute (18) in (19) we obtalll 

if=~(l- 2A + 2A~)Vl -~. 
21,2 l' l' 

. (18) 

(19) 

. . (20) 

Fl'om (19) follows, that the algebraIC value of the accelel'atlOJl 
only depell<:Js on the posItlOn and the velocity of the partIcle and 
does not ehanÉ e If we re verse the dll'ectlOn of the velocity . The 
ronstant .A is never negatIVe (as L> 0). 1f A lies between 0 and 
1 (A = 1 included), thel1 every vallle of 10 IS posslble accordmg to 
(16) We then have a pal'tlcle moving towards infimty or commg 
from lt, For this motlOll the acceleratlOn wiU, accordmg to (20), 
onee become zero, if 2 A - 1 > 0, I.e. A > 1, viz. for 

2Aa 
1'- • 

- 2.1 - 1 ' 

fol' greater values of l' the acceleratlOn IS dll'ected towal'ds the cent! e . 
(attmctton), fol' smallel' vallles of l' from the centl'e (repulslOll). The 
acceleration IS then zero in these pOSItIons VIZ. l' = a, r = 2Aa7Vl-1), 
l' = 00. In the fit'st interval there W11l be l'epUISlOn, in the second 
attrartion, wJtlll"ll elthe1' mterval there is an extl'eme. If A> 1 
then, accordmg to (iS), 10 cannot be greater than Aa/CA-i). Then 

I 

\ 
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the motion is that of a partirle fil'st going away from the centre 
. and then returning when r = Aaj(A-1) The value 2,Aaj(2A-1), 
ot 1" fol' which the acceleratlOn becomes zero, IS smaller than 
Aaj(A-1). The partiele ascends ldurmg which there is first repulsion); 
at a ~Iven moment the acceleration becomes zero for 1'= 2Aa/(2A-1), 
thf'n we get attI'action, whi('h for l' = Aaj(A -1) has èxhausted 
the motIOn and makes it return; the acceleratlOn of the l'eversed 
motion IS first pOSltlve, then becomes negative for l' = 2Aaj(2A--1) 
and the motlOn btopS (mfinitely slowly) for l' = a. In case th at A 
hes between 0 and 1, bO that l' can have all values, there IS no 
point where the acceleration becomes zero. A('cording to (20) there 
is tllen ~lwaJs repulsion ; tile velocity ib maximum at an infinite 

dlstance viz , accordmg to (18),1/1-- A wInch hes between 1 V2" and 1. 

8. We now return to the geneml case, wh ere nelther 1: nol' cP are 
(,olltinually zelO. We must then take eqnatlOns (13) and (14) as a 
startmg point, by eltminatmg dt we find 

l' l' 

Expl'essmg elrl' 111 l' and ell' we obtam 

a 
Putting now - = tV, we get 

r 
\ 

-d.r: 
dep = V 3 2 Aa2 (1-A)a2 • 

lV -lV +-.r:+---E2 EZ 

. . (21) 

So (I' be('omes an elliptic integral m the variabIe 1', and l' therefol'e 
an elliptIc fUl1rtion of rp. Of \ \ 

Aa2 (1-A)a 2 

.v3 
- .v2 + - V +- ---- = 0 BZ EZ 

let xl' .'1.'2' ,va be the roots, so that 

(A-I)a 2 

EZ ,,(22) 

then we can introduce as constants of mtegration the qllantihes 
,'Cp tVz' a.'a (connected by the ,'elation tV1 + x2 + a's = 1) ll1stead of 
A and B, 

I 
\ \ 
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If we now introd~ce a new val'iable 

putting 

we obtam 

and we have 

el = mI - t, 
e~ = tIJ, - , 

ea = mB -- t, 

, . (23) _ 

el -~ e. + e, = 0 . . (?4) 

Now, introducing the p-functlOn with the roots el' e2 , e" we get 

z = PH (P + C), 
whele C is a constant of integrahon, whlch ma)' be complex; the 
real p3,l't is wIthout sigmfication as 11; only detel mmes tlle dll'eclion 
in whirh rp will be zero. We take 

z = PH rp + is) , (25) . 
and then tind 

a 
- = -t + P(trp + is) . (26) 
l' 

From (14) now follows 

Ol' 

1"drp 
Bdt=-­

a 
1---

l' 

. (27) 

The problem under eonsidel'ation glV~S l'ise to fom constants of 
integl'ation; two of w bieh al'e el and e2, tbe two othel's s (whJCh 
can have only parl1culal' ~alues) and a constant wbi('h arises aftel' 
mtegration of (27) and is of IlO consequence as it only detel'min~s 
the moment at which t = O. 

From (27) it now follows immedtataly that the particle ('an ne\'el' 
reach sphel'e l' = a. Fol', if l' became a, then z became t; (27) 
shows thai this would requil'e an intinitely long time. Sphere r= a, 
therefore, is nevel' l'eached. 

It also follows from (27) that an mfinitely long ,time is requiJ'ed 
fol' z to l'each - t. This IS not at all strange, z = -- t corl'espond­
mg to l' = 00. It ma)' oecur (if two e's coineide) that thel'e is ~till 

another value of I' wlticlt cannot be attained, but IS gradually 
approached; we will tl'eat th is case whel'e it oecUl's. 

- , , 



- 12 -

, 
I 

11 

so 

207 

9. Let us now first consider the case el = e2 = e3 = O. 
Equation (23) becomes 

2 2 
rp=-= . 

VZ V~-~ 
'I' 3 

(28) 

(29) 

The value 3a of 1', cOl'respondmg ro z = 0, is, us is seen from (27),\ 
a valuE' which is not attamed. (::l9) shows that the motion takes place 
m a spiral winch, extending to CIl cle l' =a, llIaking t here wlth the radius 
a finite angle, and, turning an mfinite number of times, approaches 
to Clrc]e l' = 3 II on the inside. The particie can nevel' get out of 
&phel'e r = 3 ft and a motion sllch that the pal'hcle wel'e from the 
begmmng outside sphere l' = a (and snch that el = e2 = e3 = 0), is 

impossible according to (28), as (~~yshoUld then be negative. 

1 
JVhen I' approaches to 3a then rp approaches to 3aV6 ánd conse-

. 1 
que,ntlJ the veloclt)' to V6' _ 

10. We 110W- come to the case of two e's being equal and differ­
ent from tlH' thlrd. Calling (tlle three e's being real) the gl'eatest el 
the smallest ea, we have two cases, VIZ. 

I ' 

e2 = e3 = - ~ e" el = e2 = - i eg. 

We first turn to the case e2 = es = - t el' ~ 
Exrludmg as befol'e the interior of sphere l' = a, }' must be> a, 

so z < t. We put e2 = e, = - a2
, el = 2a2

; a be positive. Then , 
(23) passes into 

- dz 
dep = -:---~-;=====:: 

(z + a2
) V z-2a2 

It is seen that z must be greater than 2a\ and, as z must be 
smaller than t. we must hare 

2a J < t .. 
If 2a2 = t. the partu'le is at rest on sphere l' = a. 
N ow puttmg z = 2a2 + y2 we get 

and so 

. (30) 
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y = - a V3 f.r! (i. a rp V3). 
Tbis gives ns 

r' 

1 
l' = -----------

-l- + 2 a2 -1- 3 a2 t.rlCi a I V3) 
(31) 

The Case a = ° !las been discussed In 9, we thel'efol'e put 
a =1= 0. When (p = 0, r = a . (t + 2(2

), I.e a value 'between l' = ~ 
and l' = 3a. When lP approaches to j( aV3 (a value wlllch, from (30), 

exceeds jt) 7' should approach to zero, according to (31). But filM 
}' must become eqlUl~1 to a, VIZ. w hen rp becomes 

2 V~ 
rp = lPo = -V . arc tg 

a 3 3a 

and for th is, accordmg to (27), an mfimte tune is required as then 
z = l So the motion IS as follows' (p changes from - ([lo to (Po' 

cOl'l'esponding to r = a. The gl'eatest value of l' is l'eached at the 
moment when rp = 0, viz. 

a 
1'= <Ra' 

1 + 2a2 ' if 

when lP = - rpo (as wel! as when (r = lPo) l' becomes a. If l' ap­
prorhes to zero, qJo incl'eases indefinitely and the motlOn approaches 
more and more to that whIeh has been -disrussed In 9. 

11. Tlw ca~e el = e~ = - § e1 • 

Put el = e2 = a2, e~ = - 2 a\ then (23) passes into 

dz 
drp = - (32) 

(z-a2
) Vz + 2 ((,2 

As z> - 2 0\ we may put z = -- 2 ((,2 + yJ . Then we get 

2 dy 
d(p= - . 

y~-3 a2 

Now, If z> a2
, and therefore y2 > 3 a2

, we get 

y = a V3 cotqh (t arp V3) 
and 

ct 

r = t-2 a2 + 3 a' cotgl~2 (t ap V3)' 
If, on the rontl'al'y, z < 0 2 and con\sequently y2 < 3rt\ 

• y = a V3 tgh (t a (p V3), 
and so 

ti 
r = ---r---

t-~a2 + 3a2 t.g7~J (t arp V3) 

. (33) 

. ( ~3a) 

z cannot pass (12' and must moreovel' he between - tand t. 
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80 we have the following cases: 
A. a2 ~ t. z hes between - ~ and ~ ; fol'mllia (33a) bolds, l' 

varies between 00 and (c, the first val ue IS attamed fol' 

1 a /3 + V-2a2_~-
(P = 'PI = --= lo.q ----:--;=-----:--;:::::== 

a V 3 a V 3 - V 2a2 
- t 

and the second for 

1 aVS + V2a 2+f 
<J) = (('2 = --= log . 

a V 3 a V 3 + V 2a2 +i 
An mfimtely long tIme IS l'equired to reach eühel' poslÎlon 

B. (l,J < ~; z between !l and i Fol'mula (33) must be applted, l' 

Val les between cc (t + a2
) and ll, (I' then changes from 00 to 

1 'V2a2 + t + a V3 
(f 3 = --= log -:-:;:;::::::::=~----:-

a V 3 1/2a2 + t - a V3 

The Ol'bit comes fIOm l' = a and approaches 111 a bpit'al to cÎlcle 
1 = u : \t + a2

). 

C t ~ a2 < t; z between -- tand a2
• Formula (33a) now holds, 

I' val'les between 00 and a' (t + a 2
); (J! changes from f I fo 00 The 

Ol bIt comes fI'om IIlfimty and llll'flS In a spu'al l'ound the cil'cle 
l' = cc . (t + a2

), which hes bet ween CIl'cle 2" and Clrcle Cl. 

D. a2 < t, z bet ween - 2a2 and (1,2 FOl'ffiula (33a) must be 
apphed, l' val'Îes between a' d- - 2a2

) and Cl (t + a 2
); (P changes 

fl'om 0 10 00 The orblt IS a spn'al, comlllg from cu'cle a (t - 2a2
), 

\'vhich mn)' have ally radius > 3a, 'and appIOuchmg m a mfimle 
number of tllrnings to ('ircle (( (t + cl), which lies bet ween cU'cIe 
2a and cu'cIe Sa 

12. Now we will suppose the roots el' e2 , es to be all dIfferent. 
As I'egards these roots, we ma) then dIstinguish two mam cases, 
VIZ. the case of three real roots and the case of one real and two 
conjugate complex roots In the fil'st case we put el> e. > es, III 

the second eJ be Lhe real root and the Imagmar) part of el be 
posith e. In either case we put, as usual, el = P(I)I' e2 = pw., 
e3 = Pro, with W 2 = (.)1 + Wa (not - W I - Ws)' 

Tlte th1'ee 1'OOtS a1'e 1'eal. The only vallles possible fol' is m equation 
(25) !I0W are 0 and W 3 (or congruent vaIues). In Ihe first case z 
val'Jes fl'om 00 to el and fl'om el (0 00, whIle (p changes from 0 to 
2w I and fl'om 2w I to 4w l • One must, however. l'emember that, 
accol'ding 10 (27), z may not exeeed lhe val nes - tand i (I. e. l' = Cl) 

and l' = a), but must remam between them. 80 If el> i, it IS 
Impossible for is to be zero. If el < i, z "arles between (ll and ~ 

and 80 l' between ((I(~- + eJ and (I Tllls case cOl'l'esponds to 10 and 
14 

Proceedmgs Royal Acad Amsterdam. Vol. XIX, 
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11 B into wbirh it passes when e2 = e3 = - } el and wben e~=-2el' 
In the other case (1's = ( 3 ) z varies from e3 to e2 and from e2 to 

e" v\Tbile lP changes from 0 to 2wI and from 2wI to 4ml • Thel'e 
are variOlls rases: 

A. e2 ~ l z varies between -t and t, r(i between ([1 and '12 for 
which 

-i- = P (t epi + ( 3 ) and j = P (t (P~ + wg); 

(PI lies between 0 and Wl' ep~ between 0 and 2w1 ((P2 > (PI)' l' changes 
bet ween 00 and a. This case corresponds to HA and passes into 

it fOl' e2 = el = -j-. 
B. e3 ~ -t ' e~ < l z varies between -t and e~, cp between (PI 

and 2wl ; l' changes from 00 to a/Ct + e2 ), a value between 2(( áiîd 
1I. This corresponds to 11 C, In which it passe':> fol' el = e2 , (ril then 
becoming infinite. 

C. e3 > -t, e2 < i· z varies between e3 and e~, ep between - (J:) 

and + 00; r changes fl'om a/ei + e3 ), which may have all values 
> 3a, to a/ei + e2;, which may have all ':alnes between 2lC and ('. 
1'he case êorresponds to l1D, in which it passes for el = e2 > 0 ; 
if e2 < 0 there is no cOl'l'esponding degenorated case. 

Two roots a1'e conjugate complex. The value which in (25) is 
possible fol' i 8 is O. Then z varies ft'om 00 to e

2 
and back. 80 jf 

e2 ~ f th is case is impossible. If -t < el < t, z varies between 1 
and e2 , cp between a yalue lPa for WhlCh 

P(t9'3) = t 
,situated betweell 0 and 2(3 ) and 4w2-t{a' l' changes from a to 
a/ei + e2), which may have any va\ue > a, and then returns to a. 
This case can pass into 10, if el and e3 appl'oaeh to the same 
negative value: and. If e2 becomes negatÏ\>e, it may divide itself 
into 11B on the one hand and 11 C or 11 D on the other (11 C if 

e2 < -~, 1 J D if e2 > -t). 
We now have a survey of all posslble motions. We must, ho wever, 

rem ark that not all the motions take place with a velocity smaller 
than that of light, as in case of some of them' (e.g. 11A and 12A) 
A and so also L is negati ve. We have not sepal'atfly mentioned 
all those cases. In 11 e.g. a2 <}, means that the velocities are 
smaller than that of light. In 12 for that purpose el e2 + e2 e3 + e3 el 
has to be >-f, 

13. lt is now necessary to consider the plare taken up in this 
survey by the well-Imown motions of tlle planets and comets. These 
motioJls all take plnce with small velocities i we will call a qnantity 
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sueh as the squal'e of the velority of a plan et, a quantity of the 
first order. In NEWTON'S theory, whieh accounts very exactly for 
the motions, a' I' is found to be of the same order as the square 
of a velocity ; Ihis we take from NEWTON'S theol'y. In (13) A mnst 
then be a quantity, diffel'ing-little ti'om 1; we represent it by 

f.,ta -
A=l + F' 

In (14) B is a quantity of order ~. We represent it by 

B= V~:). 

and take À positive. The ronstants ). and ft then take the plaees 0] 

A and B. If we sl1bsutnte these constants in (21), tlllS equalion 
become5 

l' 

1 1 1. (cl'!' )2 1 
. a - ---;; ;:t clrp - ~ = lt, 

1-- 1--

. (21a) 

1)1 'I" 

The constants ) and (t are moderately great. The formula passes 
lfIto the ('ol'respondmg one of NEWTON'S theol'Y, if we put ft = 0. 
We tllel1 obtain . 

),2 1 (d1')2 1 
-;- ~ dep -~=f.,t , (210) 

The eqllation gives rise to an ellipse, if (t is positi,'e, to a para­
bola if (t = 0, to a hyperbola if ft IS negative, In NEWTON'S theory 
4!J. < ).4. In conseql1ence of the introductlOn of the constants ), and tL 

tbe eq uatioflE, pass into , 

.'C
j
+tIJ2+il:3 = 1 .lJ j ,'l: 2 +,1J2,xs + tIJ 3,1\ = a (),2+tW), .'C j tIJ2,'l:3 =f.,ta2 , (22a) 

We see from these that the roots Xl' a:" T 3 approach very nearly 
to 1,0,0, The quantity a (i.2 + (tir) is positi\'e. Because (t < î ),4 the 
roots prove to be all 1 eaL ,'1\ is somewhat smaller than 1, about 
('1),2, ,1'2' and ''Va are of the order of a; they are both positive if.f.,t is 
positive, e]se they ha,-e opposite signs; {'v8 becomes zero if ft = 0; 
We· will therefore put 

,'l: j = 1 - 2 am, 

,'l:z = a (m + n), 

,'1: 3 = Ct (m - n). 

Now '~l + 'V2 + ,1'3 = ° as it ollght to be; if n < m we have to 
deal wirh the qua~i-elliptic motion, if n > 1n with the quasi-hyper-

14* 
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bolie, if n = 111 with the quasi-parabolic. The constants 111 and n take 
the places of I. and (1-. We obtain 

el =f-2 am, I 
e2 = - t + a (m + n),_ 

es = - t + ti (m- n) I 

(34) 

In (22) and (26) we now must take, in the case of elliptic motion, 
ris = ws' as (p mereases indefinitely, z remaimng finite. In the case 

of the pal'abolic and hyp9rbolic motion r becomes mfinite and so 
.z = - t; z moves between es and e2 and again is = WS' 80 (26) 
becomes 

a 
- =-} + p(1 cp + Ws)' 
l' 

Now we hM'e the formula 
(e -e ) (e - e ) 

p(tp+w~j=e8+ I 3 2 3 

P 1 p-es 
J and so 

or fl'om (34) 

(35) 

This is the equation of the ()t'bit requiIed. If we rlOw let ct become 
zero, es and e2 coinClde, el -133 beeo~nes 1, and the p-tullction dege­
nerates. 'Ve thell obtain 

1 
- = m-n + 2n sin2 ! cp = ?n-n cos (f! 
T I 

(35a) 

and this equation shows once more th at, if a =1= 0, fOl' 11 < m the 
motion is (quasi-)elliptir, fOl' m > n (quasi)-hypel'bolic, for n = m 
(qu~si)-pal'aboli('. For n = 0 it is cireular, also if a is not supposed 
to be zero. The elliptJc ease is case 12 0, the hyperbolic IS 12 B, 
the parabolic is 12 B, es being supposed to be -- t thel'e. 

14. Let us now examine the motion of the planets a little more 
in detail. Equation (35) shows thai 4w I IS the pel'Îod; as the p-fnnc­
tion is almost degenerated we may take 

. (36) 

A fll\-thel' appl'oxJrnation is not necessal'y as, aftel' expandmg the 

-. 
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roots in a series of ascending powers of cc, the terms of degree 0 
and 1 do not change any longer. From (36~ it follows in this way 

4w1 = 2.it' (1 + t CIm) = 2.it' + 3am:r , 

Now (35) shows that m -11, is the smallest, m + n the greatest 
, 1 

value of -, From th IS or from (3511) it follows that m is thE' 
r 

reciprocal value of the parameter iJ of tile mbIt and nim répresents 
the excentl'lCIty; so 

n 
e=­

m 

1 
P--, -

m 
, (37) 

This glves for the motlOn of the perihehon per pel'iod 3a7/r cor­
respondlllg to the value calculaled by EINSTEIN. 

To cOIlclnde we wil! calcnlate the pedodlC tIme. From (14) fo11ows, 

r Z drp 
Bdt=---

a 
1--

r 

1f we put lfl this a = 0" we obtam the cOl't'espondmg equalIon of 
NMVTON'S theory; we may therefol'e expand the denommator and 
obtam as a th'st approximation 

Bdt = 1,2 (1 + :) dep = r J dep + ardrp, , , • (38) 

We fiU&t now substItute for l' the value laken from (35). Let us 
for a moment mtroduce the elJiptic functIOn sn w!th the modulus 
k, defined bJ' 

, (39) 

(35) passes mto 

1 V---- = m-It + 2n sn' ~(P e1-e3 j , (40) 
r 

/.,2 IS of the first order, and l'onsequently very small. If we put 

Siltll,=snicpVeI-ea, , (41) 
we fiud by differentIation 

• cos ll' dtp = ~ Vel - e3 l-/ (1 - sin2 tp) (1 - kZ sin 2 tp) d'p 
Ol' 

V-- dtp 
~ el-en dIp =- V ' 

1 -Ic' sin' tp 
Now as (40) passes into 

1 
-=m-n+2nsin'tJ.', 
r 

(38) becomes 
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~ a~ 
! B Vel-ea dt = + -:----:-:-:-::---:--:-;::===::::==::=::=_ 

. (m-n+2nsin2tW VI-k 2sin2tIJ (m-n+2nsin2 l/') VI-k 2sin2 tp 

If ft = k = 0 we pass mto NEIVTON'S theol'Y. So in the fit'st fraction 
we may ex pand the denominator and neglect k\ etc., and in lhe 
seeond fl'action we may put k = O. Puttil:!g lt,2 = 2an in the first 
fraction we obtain 

V-- 1 + an sin2 tIJ adt/, 
~ B el -ea dt = dIJ' +- ----
- (m-n+2nsin2tl,)2 m n+2nsin2 tp 

_ l-ta(m -n) d _ iadtp 
tp +- (42) 

- (m-n + 2n sin2l/,)2 171 -n + 2n sin' tI' 
Fl'om 1 he val u ei:> of ''Vl> ,'V2 , [(Ja we get, eonsidel'ing (22), 

V- --V~ ( 1-3am+an )V B ~ ~_ - . 
2m 1- 2am+a2(m2_n2) 

We ma) write 

V2m 
B-l (et-ea)-t = - [I + 1 a (m - 11)] 
I a 

and so (42) passes into 

V a dtIJ -tadtl' I 

t - dt = ( . 2 )n + . 2111 m-n+2nstn tI' - 'In - n+2nstn2 ti' 

We '\\~ilI caD tbe time in which l' is periodic the pel'iodie time; 
it is the time in winch (jJ increases by 4(01 and tIJ by :r. 80 

_ ;r 7 

V ar' j' dll' J" I dtp 1 -7= +~a 
2 2m (rn-n+ 2nsin2 ti',' m-n+2nsin2 tIJ 

o 0 

:rm -fan = + . ('111 2 _71 2 )312 (m2_n2)~ 

In connection with (37) we get fl'om this, a repl'esenting half the 
major axis: 

Va q 1 

-- l' = a1ï + .1 aa1ï 
2:rV2 2' 

or with the same degl'ee of appl'oximation 

---Y~ l' = (a + a)-t. 
2nV2 

We so obtain instead of KEPLER'5 third law 

(a + a)3 a 
----=-

1'2 8.ït2 . (43) 

W'e can also ask aftel' the time l'equil'ed by rp to incl'ease by 2:r. 

This time depencls on the place fl'om which the planet starts; it is 

-,----
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greatest for the pel'lhelion, smallest fOL' the aphelion. As a mean 
value of all these times we may consider 

1~ = T(l- ~;} 
FOI' thls time KEPU!lR'S tlurd law becomes 

(a - 1 ae2e~J: Tt 2 = 8:2 ' 

This àeviates fl'om KEPLER'S lavIT lesB than (43). 

Cbemistry. - "The Metaboli81f! of Aspergilht~ n~qe1'." Sy Dl'. H. J. 

WA'I.'EHMAN. (Oommunicated by Prof. J. BOESEKE~.) 

(CommuDlcated in the meeting of May 27, 19l6.) 

In leseal'ches descl'lbed iu previous communications I) I have 
demonstrated that the quantity of different elements accumulated in 
the ceUs of Aspe1''[Jillus n~qe1' is subject to \'ery great variations. The 
investigatioll was carl'Ïed ollt quantitatively for carbon, nitrogen and 
phosphorlls and qnalitatively for the element sulphur Whel'eas from 

, 100 parts by weight of ,-carbon, assimilated as glucose, 55 parts, for 
instanee, are absol'bed aftel' tbree days in the fungolls material, thls 
aftel' 21 days amollnts to only 31, s? not quite 60°/0 ofthe qllantity 
origillally taken up. The same applies to the nitrogen and pal:ti­
culady to the phosphol'uS in a still higher degree, 

Tbe quantity of J1itrogen present in the cells falls in course of 
time to 2/5-1/3 of the quantity present in the young eells and with 
phosvhorus even to 1/7-1/1°' Also the sulphul' is accumulated in 
yonng celis. On increasing age the superfluous quantities of the 
said elements are excl'eted, 

On account of experimental difficulties.I have glven up the idea 
of detel'mming the progressive course of the hydrogen and the 
oxygen separately, but have now decided to calclllate the sum of 
these two elements accumulated in different pel'iods in the fnugous 

(, materlal. Fol', if we know the quantity of dry substance, likewise 
the percentage of carbon, nitrogen, pho&phorus and ash, it is possible 
to determine with sufficient accuracy fo)' my pllrpose the joint 
amollnt of hydrogen and oxygen. 

I} \'<'olia microbiologica, Holländische Beitrage ZUl' gesamten Microbiologie I. 
422 (1912); These Proceedings November 30 (1912) p. 753, \'<'ebruary 22 (1913) 
p, 1047 and 1058, March 22 antl April 25 (1913) p. 1349; Handelingen XIVe 
~ed, Natuur- en Geneesk, Congres p. 125. 


