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Contributions to Einstein’s theory of gravitation.
by L u d w i g F l a m m .

A . E i n s t e i n has significantly improved the understanding of his new theory of
gravitation by the summary which he gave recently.1)∗1 The popular accounts given by
M . B o r n2) and E . F r e u n d l i c h3) have also been clarifying. However, the exact
solutions for gravitational fields with spherical symmetry, which were found and dis-
cussed by K . S c h w a r z s c h i l d4) are particularly instructive. In the present lines,
the author wishes to add further conclusions to these. In particular, the remarkable
properties of the gravitational field will be made quite clear. In this way, the phys-
ical assumptions of the general theory of relativity might perhaps appear even more
transparent. Furthermore, the motion of light in a gravitational field can be treated
more accurately than before. Likewise, a strict numerical computation of the constants
relevant for the gravitational field of the Sun might be desirable.

§1. It is advisable to first consider the case of the gravitational field inside a ball of
incompressible fluid, which was discussed by S c h w a r z s c h i l d later. The presence
of the gravitational field manifests itself by the fact that M i n k o w s k i’s line element
can no longer be reduced to the special form

d s2 = d t2 − d x2 − d y2 − d z2

by an appropriate choice of coordinates. Rather, in the simplest case it now reads

d s2 =

(
3 cosχa − cosχ

2

)2

d t2

− 3

κρ0

(
dχ2 + sin2 χdϑ2 + sin2 χ sin2 ϑ dϕ2

)
,

where the coordinates have already been chosen in a particularly suitable way. Here, χ
is a coordinate which increases radially from the centre of the fluid ball, reaching the
value χa at the boundary surface, and ϑ and ϕ are the usual spherical coordinates. The
constant ρ0 stands for the density of the fluid ball and κ stands for the gravitational
constant of E i n s t e i n’s theory, which has the value

κ =
8πk2

c2
,

where k2 is the usual gravitational constant

k2 = 6.68 · 10−8cm3g−1sec−2

1) Die Grundlagen der Allgemeinen Relativitätstheorie, Ann. d. Phys. 49, 769, 1916. Published
separately by Johann Ambrosius Barth, Leipzig 1916.

∗1 Translator’s note: The footnotes in the original text were numbered starting from 1 in each
column. Here they will be numbered sequentially throughout the text.

2) 17, 51, 1916.
3) Naturwissenschaften 4, 363 and 386, 1916. Published separately by Julius Springer, Berlin 1916.
4) Berliner Sitzungsberichte 1916, p. 189 and 424.
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and c is the speed of light.
It is practical to write for the line element

d s2 = d τ 2 − d σ2, (1)

that is, to split it into a temporal part

d τ =
3 cosχa − cosχ

2
d t

and the spatial part

d σ2 = R0
2
(
dχ2 + sin2 χdϑ2 + sin2 χ sin2 ϑ dϕ2

)
.

Here the new constant

R0 =

√
3

κρ0

was introduced. As S c h w a r z s c h i l d remarks, the above expression for d σ2 repre-
sents nothing other than the line element of the spherical space with radius of curvature
R0; hence, this must be the geometry inside the fluid ball.

In order to gain an overview of the relations it is enough, because of the spherical
symmetry, to consider the geometry of any planar section through the origin, thus for
ϑ = π

2
. In this case the line element reads

d σe
2 = R0

2
(
dχ2 + sin2 χdϕ2

)
. (2)

One can see that these are the same metric properties as on a sphere of radius R0.
According to Fig. 1, one can think of this as being generated by rotating the circle
around the vertical diameter AB. Then the meridional element of arc-length is

M

A

B

R

R
0

dR

σm

dσ
m

χ

Fig. 1
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d σm = R0 dχ,

if R0 is the radius of the meridian circle, the element of arc-length on the parallel circles
is

d σn = R · dϕ,
if ϕ is the angle of rotation and

R = R0 sinχ

denotes the distance from the axis of rotation. Hence, the line element on this sphere is
given by the formula (2) as well.

A striking difference of the geometry on the sphere compared to E u c l i d e a n
geometry consists, for example, in the fact that the circumferences of concentric circles

U = 2πR

do not increase proportionally to the radius σm, but instead they are obtained from it
by the complicated formula

U = 2πR0 sin
σm

R0

.

Thus, the circumference reaches a maximum for

σm =
π

2
R0,

to decrease again and to shrink back to zero completely for

σm = πR0.

One has
dU = 2πd σm · cosχ, (3)

and, hence,
dU ≤ 2πd σm,

while in Euclidean geometry only the equality sign holds. Exactly the same relations
must hold for radius and circumference of the circles within every central planar section
of the fluid ball.

For a better understanding of the following, a small rearrangement will be made.
Since

dU

2π
= dR

equation (3) can also be written as

dR = d σm · cosχ
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and, in this form, can be read off directly from Fig. 1, because χ also represents the
angle between the element of arc-length and the horizontal. Therefore, the formula (2)
can also be given in the form

d σe
2 =

dR2

cos2 χ
+R2dϕ2. (2’)

But then this is the general expression for the line element on a surface of rotation,
where χ denotes the angle that the tangent to the meridional curve, which can be quite
arbitrary, makes with the equatorial plane.

§2. Now we can, in an analogous way, examine the first case which was treated
by S c h w a r z s c h i l d, the gravitational field of a point mass. The line-element in its
simplest form has the same structure as above and reads

d s2 =
(
1− α

R

)
d t2 − dR2

1− α

R

−R2
(
d ϑ2 + sin2 ϑ dϕ2

)
.

One quantity is completely new in this expression, the constant α, and has the value

α =
2k2M0

c2
,

where M0 stands for the central mass, as would be obtained from astronomical measure-
ments. The line-element will be decomposed again according to formula (1).

The spatial part of the line-element is again of a non-Euclidean nature. Once more,
due to the spherical symmetry it seems to be enough to restrict the consideration to the
metric properties in an arbitrary planar section through the origin, i.e., to ϑ = π

2
. Now

one obtains
d σe

2 =
dR2

1− α

R

+R2 dϕ2. (4)

This line-element is also of the form (2’), because one can put

cos2 χ = 1− α

R
,

and it is also identical with a line-element on a surface of rotation. Denoting by z the
coordinate in the direction of the rotational axis, the equation for the meridional curve
follows from

d z

dR
= tgχ =

√
α

R− α

as
z2 = 4α(R− α).

This describes a parabola with parameter

p = 2α,
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whose equation is referred to the axis and directrix as coordinate lines, as seen in Fig. 2.
Thus, the expression (4) is identical with the line-element of that surface which is ob-
tained by rotating this parabola around the directrix ZZ ′.

The meridional radius of principal curvature of this surface of rotation is

ρm =
d σm

dχ
= − 2R

sinχ
.

The orthogonal principal curvature radius is given by the line MP in Fig. 2 and it has
the value

Z

Z ′

Z

M

C

π

P

A

z

B

R
D

S FO

χ

χ α α

AS = SB

BC = 2α

Fig. 2

ρn =
R

sinχ
.

So one finds for the G a u ß curvature of this rotational paraboloid

K =
1

ρmρn
= − α

2R3
.

However, for the sphere discussed in the previous section the G a u ß curvature is

K =
1

R0
2 ,

i.e., positive and constant. For the present rotational paraboloid the curvature is neg-
ative and variable; it decreases in absolute value with increasing R. And for this very
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reason the geometry on that surface is even more involved. Though on the sphere the
dependence of the circumference on the radius was not as simple as in Euclidean ge-
ometry, it was uniform over the entire sphere. For the rotational paraboloid at hand
it is additionally dependent on the location of the circles on the surface. The metric
properties in any planar section through the point mass are of exactly the same nature.

§3. The mass point, which generates the gravitational field, is found at the vertex
S of the meridional parabola. The surface of rotation of the branch Sπ of the parabola,
as seen in Fig. 3, already maps to the full sectional plane through the centre, preserving
the metric properties. The peculiarity that the point mass has a finite circumference,
an equator of length 2πα, as S c h w a r z s c h i l d has already emphasized, is clearly
noticeable in the figure.

N

ππ ′

P

M

·G·G′

χ

χa

O SS′ FF ′

α α α α

Fig. 3

In the exterior of the fluid ball, as discussed in the first paragraph, the line-element
is the same as for a central point mass. The relationship between the interior of the
fluid ball and its exterior is given by boundary conditions, which simply consist of the
fact that on the boundary the coefficients of the two line elements together with their
first derivatives have the same value.

For our representation of the metric properties in a plane through the centre, this
implies that the sphere, which represents the geometry in the interior of the fluid, must
touch the rotational paraboloid which is valid in the exterior. In Fig. 3 this is indicated
by the circular arc GAG′, which touches the two parabolas. Now, the surface of rotation
for the combined curve AGπ uniquely represents the entire sectional plane through
the centre preserving the metric properties. The angle χ, which grows on the spherical
segment up to a maximal value χa at the boundary, slowly decreases along the subsequent
part of the rotational paraboloid down to zero. The whole could be regarded as some
kind of a funnel surface.

§4. Thus, the dimensions of the elementary rulers, which are represented by d σ, are
subject to such influences in the gravitational field that using them for measurements—
this is called “natural measurements of space”—does not, in general, lead to a Euclidean
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geometry. A quite analogous fact holds for the measurement of time by elementary
clocks, the so called “natural time measurement”, which is represented by d τ . In general,
it is no longer possible to simply identify d τ with d t as in the M i n k o w s k i world, but
the connection is more involved. However, the speed of light is given by the equation∗2

d s2 = 0

as in the M i n k o w s k i world. From this one finds

d σ

d τ
= 1;

thus, the naturally measured speed of light is constant. In particular, the units are
usually chosen from the outset in such a way that this constant assumes the value 1. In
this sense, also in the general theory of relativity the postulate of the constancy of the
speed of light holds.

It is of importance to have a closer look at the significance of the proposition just
derived. Expressed in coordinates, which are mere parameters in the formulation of the
gravitational field, the speed of light is by no means constant; in fact, it has different
values in different directions even at the same location. But, when measured with mate-
rial rods and clocks, the propagation of light also appears homogeneous and isotropic in
a gravitational field. Choosing as an elementary clock the molecule which emits the red
cadmium line, and fixing its period as the unit of time, one immediately realises that —
due to that constancy of the speed of light— the metric unit of length must be covered
at all times and in all locations by the same number of wavelengths of the red cadmium
line. Fixing, in addition, the elementary rod to be the lattice distance of the sodium
chloride crystal, then one arrives at a like conclusion in view of the constancy of the
“naturally measured” speed of light. Thus, the theory of general relativity is based on
the fundamental assumption that, for instance, the ratio between the wavelength of the
red cadmium line and the lattice constant of the sodium chloride crystal is an absolute
constant. Even in a general gravitational field, it must be completely independent of the
location, the orientation and the instant of time.

Therefore, if the elementary rulers and clocks are influenced by the gravitational
field, then the propagation of light must be influenced in exactly the same way, so that
when compared to each other they do not show any differences. The same must hold
for all the other physical phenomena. This might be why one can describe the motion
of a point particle by the simple variational equation

δ

∫ P2

P1

d s = 0, (5)

even though the expression contains only quantities related to the metric properties. The
influence of the gravitational field on the motion of a point particle is entirely in line
with the change exhibited by elementary rods and clocks; relative to one another, the

∗2 Translator’s note: The original has d 2s = 0 here.
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behaviour of the phenomena has remained the same. In this way, the general principle
of relativity can be given a more concrete formulation.

§5. Since light propagation satisfies the condition∗3

d s2 = 0,

it must be contained as a special case within the equations (5) for the general motion of
a point particle. Indeed, one only needs to put to zero the one constant h in the interme-
diate integrals for the particle motion that have been derived by S c h w a r z s c h i l d5)
in order to satisfy the above condition. Hence, in the gravitational field of a central mass
the equations for the propagation of light read:

(
1− α

R

)(
d t

d s

)2

− 1

1− α

R

(
dR

d s

)2

−R2

(
dϕ

d s

)2

= 0

R2dϕ

d s
= Δ,

(
1− α

R

) d t

d s
= 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6)

The second equation represents Kepler’s second law∗4 and, since the speed of light at
infinity equals 1, the constant Δ has a very clear meaning. It is nothing else than the
length of the perpendicular from the centre to the light ray, if it were not changing its
direction coming from infinity; it is, so to speak, the distance Δ, by which the light ray
at infinity misses the centre.

After introducing
1

R
= x,

the equation for the trajectory derived from the system (6) reads quite analogously to
S c h w a r z s c h i l d’s (

d x

dϕ

)2

=
1

Δ2
− x2 + ax3

and, hence, represents the equation for a light ray in the present gravitational field. It
follows that

dϕ =
Δ · d x√

1−Δ2(x2 − αx3)

and, hence, also leads to an elliptic integral as with the planetary motion. Upon intro-
ducing the new variable

μ = Δ · x√1− αx

one has, up to quantities of second order in α,

Δ · x = μ
(
1 +

α

2Δ
μ
)

∗3 Translator’s note: The equation below was again changed from the original d 2s = 0.
5) ibid., p. 195, equations (15), (16) and (17).
∗4 Translator’s note: the original says here “Flächensatz” = area theorem.
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and one obtains
dϕ =

d μ√
1− μ2

+
α

Δ

μ dμ√
1− μ2

.

Denoting by ϕa the angle that is swept out by the radius vector, when an element of the
light ray from infinity reaches its closest approach to the central mass, which is the case
for

d x

dϕ
= 0,

then one has
ϕa =

(
arcsinμ− α

Δ

√
1− μ2

)1

0
=

π

2
+

α

Δ
,

since μ meanwhile increases from 0 to exactly the value 1. With the light ray element
hurrying on from the perihelion back to infinity, the radius vector sweeps out the angle
ϕb, for which one finds

ϕb =
π

2
+

α

Δ
,

as well. The radius vector would have swept out the angle π in total if the light ray was
propagating in a straight line. Hence, the light ray incurs the deflection

ε = ϕa + ϕb − π =
2α

Δ
(7)

in the gravitational field, which coincides with the formula6) calculated by E i n s t e i n
for this case. However, the derivation given here is completely identical to the calculation
of the perihelion movement of the planets7). Hence, the influence of the gravitational
field on the light rays has the same cause. Therefore, one can also regard the deflection
of light rays as a perihelion shift.

The value of the coordinate R reached by the light ray element at the perihelion can
also be calculated. It follows from the system of equations (6) for

dR

d s
= 0

in the form of the relation
R2 −

(
1− α

R

)
Δ2 = 0.

Finally, up to quantities of second order in α, this gives

R = Δ− α

2
. (8)

Thus, one could use the quantity R in the denominator in equation (7) instead of Δ
without affecting the accuracy of the final formula.

§6. The numerical calculations in relation to the gravitational field of the Sun have
nearly all been carried out in a more or less approximate way by E i n s t e i n and

6) Ann. d. Phys. 49, 822, 1916.
7) A . E i n s t e i n, Berliner Sitzungsberichte 1915, p. 831.
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S c h w a r z s c h i l d. However, in the following the author wishes to present a unified
and exact recalculation of the relevant constants. The astronomical quantities employed
were taken from the table of constants at the end of the “Theoretische Astronomie”
by W . K l i n k e r f u e s8). Thus, in particular, the calculations used the equatorial
horizontal parallax of the Sun

π = 8.80′′

and the speed of light
c = 2.9986 · 1010cm sec−1,

as fixed at the astronomy conference in Paris. The equatorial radius of the Earth was
taken from B e s s e l’s value.

For the product of gravitational constant and solar mass one obtains

k2M0 = 1.324 · 1026cm3 sec−2.

From this one determines the value of the important quantity α as

α = 2.945 · 105cm,

which was given by S c h w a r z s c h i l d only approximately as 3 km. It is easy to see
that due to the bending of the light rays the true solar radius, which is determined from
the apparent solar radius in the usual way, is in reality the quantity denoted by Δ in
the previous section. We denote this quantity by Δa if it is referred to the special case
of a light ray grazing the surface of the Sun. From the apparent solar radius according
to A u w e r s one obtains

Δa = 6.9545 · 1010cm
and one should determine the corresponding value for Ra for the solar radius from equa-
tion (8). However, with the current status of the accuracy of astronomical measurements
one can still identify the quantities Ra and Δa. With the numbers given above one ob-
tains for the total deflection of a light ray grazing the surface of the Sun

εa = 1.75′′

in good agreement with the calculation by E i n s t e i n.
Finally, here are the constants which one obtains when the Sun is regarded as a ball

of incompressible fluid. The relation

sin2 χa =
α

Ra

reveals the angle χa at the solar surface as a small quantity for whose calculation the
formula

χa =

√
α

Ra

8) 2nd edition by H . B u c h h o l z, Braunschweig 1899, p. 927.
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suffices. This yields
χa = 7′4.5′′;

therefore this funnel surface mapping the geometry within a central cut of the solar
system is quite flat. Again, for the radius of curvature

R0 =
Ra

sinχa

of the spherical space inside the Sun the simplified calculation

R0 = Ra

√
Ra

α

suffices. The numerical calculation shows that the radius of curvature R0 in the interior
is 486 times larger than the radius Ra of the Sun. Or, computed in centimetres,

R0 = 3.38 · 1018cm,

which would represent a distance reaching from the Sun out to the planetoid belt.

S u m m a r y.

Every planar cut inside a ball of incompressible fluid carries the same geometry as a
sphere (§1). Around a central mass every central cut has the same geometry as a surface
which is generated by rotating a parabola around its directrix (§2). The spherical shell
which represents every central cut of the fluid ball preserving its metric properties must
touch the segment of the rotational paraboloid which serves the same purpose in the
exterior (§3). The principle of a constant, and notably “naturally measured”, speed of
light is a fundamental assumption also for the general theory of relativity (§4). The
deflection of light rays passing by a central mass can also be interpreted as the motion of
the perihelion similarly to the planets (§5). The deviations from the Euclidean geometry
in the solar system are extremely small (§6).

Physical Laboratory of the Imperial and Royal Technical University in Vienna.∗5

(Received 3. September 1916.)

∗5 Translator’s note: In the original text: “der k. k. Technischen Hochschule”. k. k. = kaiserliche
und königliche = imperial and royal was the usual pair of adjectives added to the names of state-owned
institutions in the Austro-Hungarian empire.
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