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780 H. Weyl

3. On the Theory of Gravitation;
by Hermann Weyl.

Contents.

A. Additions to the General Theory.

§ 1. Derivation of a H a m i l t o nian principle for the solution of such
problems as can be dealt with considering our rather fragmentary knowledge
of matter today.

§ 2. The energy-momentum balance expresses quite generally the fact
that the H a m i l t o nian principle is valid for variations of the state vari-
ables that are brought about by an infinitesimal deformation of the four-
dimensional world continuum if the state variables are “carried along” by
the deformation.

§ 3. Principal deliberations regarding the connexion between theory and
observation. Derivation of F e r m a t’s principle of fastest arrivals for light
rays in the static gravitational field and of an analogous principle for the
trajectory of a point mass endowed with charge under the influence of grav-
itation and electricity.

B. Theory of the Static, Axially Symmetric Field.

§ 4. Simple derivation of the S c h w a r z s c h i l d solution for a point mass
and transformation to another coördinate system that is important for what
follows. Electrostatic and gravitational fields of a charged point mass.

§ 5. The construction of a special coördinate system, the uniquely deter-
mined “canonical cylindrical coördinates”, allows for the determination of the
field of rotationally distributed masses at rest as simply as in N e w t o nian
theory; there exists a general connexion between the N e w t o nian and
E i n s t e i nian solutions, expressible with the use of elementary functions.

§ 6. An analogue is valid for the electrostatic and gravitational fields of
rotationally symetrically distributed charges. The deviations from classical
theory are extremely small even at the length scale of atoms.
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Republication of: On the theory of gravitation 781

A. Additions to the General Theory

§ 1. A Hamiltonian principle

The gravitational equations have been reduced to a H a m i l t o nian principle
by H i l b e r t1, based on M i e’s theory2, more generally by H . A . L o r e n t z3

and by the founder of the theory of gravitation himself4. Its definitive
formulation fails though, since we do not know the H a m i l t o nian func-
tion (world density of the action) for the matter, indeed do not even know
which independent state variables should be used to describe the matter.
Under these circumstances, it seems of importance to me to formulate a
H a m i l t o nian principle that is sufficiently broad so as to encompass our
current sound knowledge of matter (in E i n s t e i n’s broad sense, i.e. knowl-
edge of the energy-momentum tensor). From this principle, which will differ
somewhat in form from those that have been presented hitherto, the following
laws should thus emerge, as though from a common source:

1. The inhomogeneous gravitational equations according to which the
energy-momentum tensor determines the curvature of the world. In this
context, the energy-momentum tensor will be comprised only of that valid for
the electromagnetic field in the æther and of the “kinetic” energy-momentum
tensor of the matter in the more restricted sense �uiuk, in which the invariant
mass-density � and the components ui (i = 1, 2, 3, 4) of the four-velocity
appear. Here no account is thus taken of the still unclear constitution of
important attributes of matter and of its cohesional forces;

2. the M a x w e l l - L o r e n t z equations, that, as in electron theory, gain
a concrete meaning from the fact that a convectional current appears as the
only electron current;

3. the law for ponderomotive forces in the electromagnetic field and the
mechanical equations, which determine the motion of masses under the in-
fluence of these forces and of the gravitational field.

Let xi be the four coördinates used to fix world points5,

gikdxi dxk(1)

1Gött. Nachr. 1915. Meeting from 20 November.
2Ann. d. Phys. 37 p. 511, 39 p. 1, 1912; 40 p. 1, 1913.
3Four papers from the years 1915 and 1916 from the Versl. K. Akad. van Wetensch.
4A . E i n s t e i n, Sitzungsber. d. Preuß. Akad. d. Wiss. 42 p. 1111, 1916.
5In my notation, I follow A . E i n s t e i n’s article “Die Grundlage der allgemeinen

Relativitätstheorie”, Ann. d. Phys. 49 p. 769, 1916, in particular the convenient rule of
omitting the summation signs.
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782 H. Weyl

Let xi be the four coördinates used to fix world points5,

gikdxi dxk(1)

the invariant quadratic differential form (with the index of inertia 3)6, whose
coefficients comprise the gravitational potential, and ϕi dxi the invariant lin-
ear differential form, whose coefficients ϕi are the components of the elec-
tromagnetic four-potential. I refer to the integral over some world domain
G

−1

2

∫
H dω with H = gik

({
ik
r

} {
rs
s

}
−

{
ir
s

}{
ks
r

})

as the field action of gravitation7 (contained in this world domain), and to
the integral

1

2

∫
L dω with L =

1

2
FikF

ik =
1

2
gijgkhFikFjh

as the field action of electricity. Here

Fik =
∂ϕk

∂xi

− ∂ϕi

∂xk

are the components of the electromagnetic field, and dω is the four-dimensional
volume element √

gdx1 dx2 dx3 dx4, −g = det|gik|.
In this phenomenological theory, in addition to the “field”, the “sub-

stance” arises, a three-dimensional, moving continuum that we can consider
(mathematically) to be divided up into infinitesimal elements. Each element
is endowed with a certain, unchanging mass or “mass charge” dm and an un-
changing electric charge de; as a representation of its history, a certain world

5In my notation, I follow A . E i n s t e i n’s article “Die Grundlage der allgemeinen
Relativitätstheorie”, Ann. d. Phys. 49 p. 769, 1916, in particular the convenient rule of
omitting the summation signs.

6Every quadratic form can be transformed linearly to a sum and difference of squares;
the number of negative terms that arise is called the index of inertia. The fact that this
is uniquely determined by the form is precisely the statement of the “law of inertia for
quadratic forms”.

7Editor’s remark: Weyl used the now-outdated notation for coordinates and the

Christoffel symbols. His

{
ik
r

}
is today’s

{
r
ik

}
.
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Republication of: On the theory of gravitation 783

line, whose direction is characterized by the ratio of the four differentials
dx1 : dx2 : dx3 : dx4, is associated with it. I call the quantity

∫ {
dm

∫ √
gik dxi dxk

}
(2)

the substance action of gravitation, where the outer integral extends over the
entire substance whereas the inner one extends over that part of the world
line of the substance element dm that lies within the domain G. We assume
that the motion of the substance is related to the gravitational field such
that the square root, i.e. the proper time ds, appearing in the inner integral,
is always positive. We convert (2), which is possible, into an integral

∫
�dω,

which extends over the world domain G. The invariant space-time function
� is called the absolute mass density. The integral describing the substance
action of electricity ∫ {

de

∫
ϕi dxi

}

is constructed in complete analogy to (2). The absolute electric charge den-
sity ε is defined by ∫

G

ε dω =

∫ {
de

∫
ds

}
.

The H a m i l t o nian principle reads:
The sum of the field and substance actions of gravitation and electricity

is an extremum in every world domain with respect to arbitrary variations
in the electromagnetic and gravitational fields that vanish at the boundaries
and with respect to analogous space-time variations of the moving substance
elements.8

Variation of gik (with a fixed electromagnetic field and fixed world lines
of the substance) yields the E i n s t e i n gravitational equations (I), variation
of the electromagnetic potential ϕi the M a x w e l l - L o r e n t z equations

(II)
1√
g

∂
(√

gF ik
)

∂xk

= J i = ε
dxi

ds
,

8We use rational units, i.e. chosen so that the speed of light in vacuum = 1 and
likewise E i n s t e i n’s constant 8πκ (κ = k/c2, k the gravitational constant); electrostatic
units following H e a v i s i d e.
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784 H. Weyl

and, finally, the variation of the substance elements’ world lines yields the
mechanical equations

(III) �

(
d2xi

ds2
+

{
hk
i

}
dxh

ds

dxk

ds

)
= pi,

where pi are the contravariant components of the force, the covariant com-
ponents of which are given by

pi = FikJ
k.

These laws are, of course, not independent of each other. In fact, the mechan-
ical equations (III) together with the equation of continuity for the matter
are a mathematical consequence of laws (I) and (II), as can be verified by a
simple calculation.

§ 2. Energy-momentum balance

According to the authors cited above — we return from the aforementioned
phenomenological theory to a strict one, which can today, granted, only be
formulated in general terms — the world is ruled by an action principle of
the following form ∫

G

(H − M) dω = extremum.

Here, the world density M of the action associated with the material processes
is a universal function of the independent state variables characterizing these
processes, their derivatives (first, perhaps also higher ones) with respect to
the coördinates xi, and of gik. To refer to a concrete example, M depends,
in M i e’s theory, not only on gik, but also on the four components ϕi of the
electromagnetic potential and on the field components Fik that result from
ϕi via differentiation. The derivation of the mechanical equations in the
phenomenological theory mentioned above suggested to me that perhaps in
general the principle of conservation of energy and momentum expresses the
fact that the H a m i l t o nian principle is obeyed by precisely those infinitely
small variations that are brought about by an infinitesimal deformation of the
world such that the state variables are “carried along” by this deformation.
This is indeed the case and it seems to lead to the simplest and most natural
derivation for the principle of energy.
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Republication of: On the theory of gravitation 785

If we set M
√

g = M, then the energy-momentum tensor Tik is defined by
the equation for the total differential of M:

1√
g
δM = −Tikδg

ik +
1√
g
(δM)0,

where (δM)0 collects the terms containing the differentials of the material
state variables linearly (e.g. of ϕi and Fik). The contravariant term gik trans-
forms under an arbitrary coördinate transformation

x̄i = x̄i(x1, x2, x3, x4)

according to the equations

ḡik = gαβ ∂x̄i

∂xα

∂x̄k

∂xβ

.

If this transformation is infinitesimal:

x̄i = x̄i + ε · ξi(x1, x2, x3, x4)

(ε denotes the infinitesimal constant, i.e. tending to zero), then for the dif-
ference of gik and ḡik

ḡik(x̄) − gik(x) = δgik,

with the arguments (x) and (x̄) referring to the same world point in the old
and new coördinate systems, one finds the equation

δgik = ε

(
gαk ∂ξi

∂xα

+ giβ ∂ξk

∂xβ

)
.

Applying the same procedure to the state variables of the material processes
and making use of the fact that the invariant M remains unchanged under
such an infinitesimal transformation, we obtain the law governing how the
energy-momentum tensor depends on gik and the material state variables.

Consider a world domain G that, when represented by the coördinates
xi, corresponds to a mathematical domain X in the domain of definition
of these coördinates xi. If the above infinitesimal transformation has the
property that the variations ξi together with with their derivatives vanish at
the boundary of the domain G, then this world domain in the new variables
x̄i corresponds exactly to the same mathematical domain X. I set

Δgik = ḡik(x) − gik(x) = δgik +
{
ḡik(x) − ḡik(x̄)

}

6
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786 H. Weyl

= δgik − ε · ∂gik

∂xα

ξα,

i.e. I take the difference of gik and ḡik at two space-time points, the second
of which has the same coördinate values in the new coördinate system as the
first in the old one; in other words, I perform a virtual displacement. For
all other quantities, Δ has the same meaning. If I use the abbreviation dx
for the integration element dx1 dx2 dx3 dx4, then

∫
M dx is an invariant and

hence∫
X

M dx =

∫
X

M̄(x̄) dx̄ =

∫
X

M̄(x) dx; therefore

∫
X

ΔM · dx = 0.

However
ΔM = −TikΔgik + (δM)0 (Tik =

√
g · Tik).

Here, the following has to be taken into account: In the transformed coördinate
system, as in the original one, – I choose M i e’s theory as an example – the
equations

∂ϕ̄k(x̄)

∂x̄i

− ∂ϕ̄i(x̄)

∂x̄k

= F̄ik(x̄)

hold. Since the labelling of the variables is immaterial, one has

∂ϕ̄k(x)

∂xi

− ∂ϕ̄i(x)

∂xk

= F̄ik(x).

The relations
∂ϕk

∂xi

− ∂ϕi

∂xk

= Fik

thus remain true when we switch over from the functions ϕi, Fik to the
functions ϕ̄i, F̄ik of the same variables xi; i.e. they remain unchanged for the
variation Δ (in contrast to the variation δ). According to the general action
principle in which we leave gik unchanged, i.e. due to the laws of the material
processes, one has∫

X

(ΔM)0 dx = 0 and thus also

∫
TikΔgik · dx = 0.

If we insert the expression for Δgik here and get rid of the derivatives of the
displacement components via integration by parts, then we have∫ {

∂T k
i

∂xk

+
1

2

∂grs

∂xi

Trs

}
ξi dx = 0,

7
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and thus the energy-momentum equations

∂T k
i

∂xk

+
1

2

∂grs

∂xi

Trs = 0(3)

have been proved.
For a variation of the gravitational field vanishing at the boundary of the

world domain G,

δ

∫
H dω =

∫
(Rik − 1

2
gikR)δgik · dω

holds, where Rik is the symmetric R i e m a n n curvature tensor and R is the
invariant

R = gikRik.

If we apply the above considerations to H instead of M (the fact that H also
contains the differential quotients of gik is immaterial here), then without
further calculation, we find that equation (3) is fulfilled identically upon
replacing Tik by the tensor

Rik − 1

2
gikR.

The energy momentum balance is thus not only a mathematical consequence
of the material processes, as we have just shown, but also of the gravitational
equations

Rik − 1

2
gikR = −Tik.

What takes place in E i n s t e i n’s theory of the old classification into geom-
etry, mechanics and physics, is the juxtaposition of material processes and
gravitation. Mechanics is the eliminant of the two, if you will; for the ex-
istence of the energy-momentum balance is on the one hand a consequence
of the laws for material processes, on the other hand , it is the necessary
condition for the matter to be able to imprint a metric on the world in accor-
dance with the law of gravity. Hence there are four extra equations contained
in the system of material and gravitational laws; indeed there must be four
arbitrary functions in the general solution, since the equations, because of
their invariant nature, leave the coördinate system of the xi completely un-
determined.9

9Cf. the derivation of the energy-momentum balance by A . E i n s t e i n, Sitzungsber.
d. Preuß. Akad. d. Wiss. 42, p. 1111, 1916 and the comments by D . H i l b e r t, Gött.
Nachr. 1917 (meeting of 23 Dec. 1916) on causality.

8

123



788 H. Weyl

§ 3. Connexion with observation. Light rays and trajectories in
the static gravitational field

The “objective” world that physics strives to distil out of our immediately
experienced reality – its testable content – can only be grasped using mathe-
matical concepts. However, to characterize the meaning this system of math-
ematical concepts has as applied to reality, we somehow have to attempt to
describe its connexion to the immediately tangible, a task for epistemology,
which, of its very nature, cannot be accomplished with concepts from physics
alone, but by a constant reference to that which is vividly experienced in the
mind. The connexion between the frequency of an electromagnetic field and
the sensory perception “colour” is, for example, of this sort. Quite generally,
it seems that it is the intensity of the energy-momentum current striking the
sensory epithelium that is primarily responsible for the corresponding inten-
sity of perception and the nature of the space-time variability for its quality.
Here I want to describe in more detail this connexion for a rather simplified
relationship between subject and object.

Imagine that we are in the four-dimensional physical world of single,
moving point masses, which emit light – the stars. For simplicity, we use
geometrical optics according to which the world lines of the light signals
emitted from the stars are singular geodesic lines. In general, the equations
of a geodesic world line read

d2xi

ds2
+

{
kh
i

}
dxk

ds

dxh

ds
= 0,(4)

where s is an appropriate parameter. It follows that

F ≡ gik
dxi

ds

dxk

ds
= constant.

The singular geodesic world lines are defined by the fact that for them in
particular this constant is zero (while it is positive for the world line of point
masses). We simplify the perceiving consciousness, the “monad”, to a “point
eye”. At every moment of its life, it occupies a certain point of space-time, it
traces out a world line; it perceives the points of this world line as following
one another in “temporal succession”. We consider a certain moment; let the
gravitational potentials have the values gik a the point P occupied by the
monad at this given moment; let dxi be the components of the element e of

9

123



Republication of: On the theory of gravitation 789

its world line at that point and the ratios of the dxi describe the world line’s
direction (velocity). We must assume that the direction is time-like, i.e. that

ds2 = gik dxi dxk > 0

holds. Instead of the differentials dxi, I write xi from now on, since all of our
considerations refer to the point P .

Two line elements xi, xi
′ are called orthogonal when

gikxixk
′ = 0

holds. I now claim that all line elements (originating in P ) that are or-
thogonal to the time-like e are themselves space-like. That is, they span an
infinitesimal, three-dimensional domain R upon which the form −ds2 im-
prints a positive definite metric. The monad experiences this domain R as
its immediate “spatial vicinity”. To prove our assertion, we take e to be the
fourth coördinate axis; then the first three components of e are equal to zero
and g44 > 0. We can set

ds2 =
4∑

i,k=1

gikxixk = g44

(
x4 +

g14

g44

x1 +
g24

g44

x2 +
g34

g44

x3

)2

− quad. F.(x1x2x3).

If we introduce
x4 +

g14

g44

x1 +
g24

g44

x2 +
g34

g44

x3

instead of the above x4 for the fourth coördinate, then one finds

ds2 = g44x4
2 − Q(x1x2x3).

Since ds2 has the index of inertia 3, the quadratic form Q must be positive
definite. All those elements and only those for which x4 = 0 holds are
orthogonal to e. This proves our assertion. We see, furthermore, that every
line element can be split up uniquely into two summands, one of which
is parallel to e (has components proportional to those of e) and the other
orthogonal to e. We call the direction of the second summand the “spatial
direction” of the line element. Such spatial directions orthogonal to e form
angles with one another that can be calculated in the usual manner with
the help of the quadratic form −ds2, which is positive for such directions.
Using this prescription, we identify (in the natural way) the angle between

10
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790 H. Weyl

the spatial directions of light signals emitted from two stars and meeting at
P , with the difference in the angles of the two directions in which the point
eye sights the two stars at the given moment. We consider this difference
in direction to be, at least approximately, something directly ascertainable;
indeed, in seeing, the qualitative can also have the feature of being “spatially
extended” (an aspect that cannot be traced back to the qualitative content
of perception). By making use of appropriate instruments for observation,
the observations of angles can be made more exact; however the task remains
for the consciousness of determining if two directions are distinguishable or
indistinguishable (cöıncidence of cross-hairs and position of the star, reading
off from a graduated circle). – At any rate, this simple scheme suffices in
principle for the description of how the observation of stars can be used to
test E i n s t e i n’s theory.

In connexion with what preceded, I want to show in the simplest way
how one can derive F e r m a t’s principle of fastest arrivals for a static grav-
itational field from the general principle “the world line of a light signal is
a singular geodesic line”. If we choose to describe a geodesic line by the
parameter s in accordance with equation (4), then it is characterized by the
variational principle

δ

∫
F ds = 0,(5)

valid for a virtual displacement for which the ends of the segment of the
world line being considered remain fixed. (Alternatively, one can start from
the equation

δ

∫ √
F ds = 0,

except for the case of singular geodesic lines). In the static case, we set
x4 = t; the quadratic fundamental form (1) has the structure

f dt2 − dσ2,

where dσ2 is a positive quadratic form of the spatial differentials dx1, dx2,
dx3 whose coefficients as well as f , the square of the speed of light,10 do not

10Translators’ note: For light, ds2 = 0 holds, which implies f = (dσ/dt)2 and is here
denoted as the “square of the speed of light”, which should not be confused with the
constant c.

11
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depend on the time t. In this case, if we only vary t, then

δ

∫
F ds = 2

∫
f

dt

ds
d δt =

[
2f

dt

ds
δt

]
− 2

∫
d

ds

(
f

dt

ds

)
δt ds.(6)

Therefore,

f
dt

ds
= constant = E

must hold. If we abandon the requirement that δx1, δx2, δx3 as well as δt
disappear at the ends of the interval of integration, then it follows from (6)
that we have to replace (5) by

δ

∫
F ds = [2E δt] = 2δ

∫
E dt.(7)

If we vary the spatial trajectory of the light signal arbitrarily, holding the
ends fixed, and imagine that the varied curve be traversed at the speed of
light, then

F = 0, dσ =
√

f · dt

holds for the original as well as the varied curve and (7) becomes

δ

∫
dt = 0 or δ

∫
dσ√

f
= 0,

i.e. F e r m a t’s principle. Time has been eliminated entirely; the last for-
mulation refers only to the spatial path of the light ray and holds for every
segment of it, if this segment is varied arbitrarily while keeping its initial and
final points fixed.

We can apply the same method to ascertain a minimal principle for the
trajectory of a point mass in a static gravitational field. Let us assume that
the point mass m moreover has an electric charge e and is subjected to an
electrostatic field with the potential Φ. According to § 1, the variational
principle then reads

δ

{
m

∫
ds + e

∫
Φ dt

}
= 0,(8)

where ds is the differential of proper time. If we vary t and not the spatial
coördinates, then the left hand side is

=

∫ {
mf

dt

ds
+ eΦ

}
dδt.

12
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792 H. Weyl

Hence

mf
dt

ds
+ eΦ = constant = E(9)

holds and if we abandon the requirement that δx1, δx2, δx3 as well as δt vanish
at the ends of the interval of integration, then the variational principle (8)
must be replaced by

δ

{
m

∫
ds + e

∫
Φ dt

}
= [E δt] = δ

∫
E dt.(10)

If we introduce the expression

ds =
√

f dt2 − dσ2

in (9) and set

U =
E − eΦ√

f

for brevity, then we find the law

U dσ√
f(U2 − m2)

= dt.(11)

If we suppose the varied spatial trajectory with fixed ends to be traversed
according to this same law for the speed, then we find that (9) is also valid
for the varied path. Therefore, we find from (10)

δ

∫ {
m2f

E − eΦ
− (E − eΦ)

}
dt = δ

∫ √
f(m2 − U2)

U
dt = 0.

We can insert expression (11) for dt here, since this expression remains valid
for the variation, by assumption; in this way, time is completely eliminated
and we find that the spatial trajectory is characterized by the minimal prin-
ciple11

δ

∫ √
U2 − m2dσ = 0.

11Cf. also T . L e v i - C i v i t a, “Statica Einsteinia”, Rend. d. R. Accad. dei Lincei 26

p. 464, 1917.
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B. Theory of the Static, Rotationally Symmetric Gravitational
Field

§ 4. Point mass without and with electric charge

For what follows, it will be necessary to make a few comments about
S c h w a r z s c h i l d’s determination of the gravitational field of a point mass
at rest12. Upon introduction of appropriate coördinates, a three-dimensional,
spherically symmetric line element necessarily has the form

dσ2 = μ(dx1
2 + dx2

2 + dx3
2) + l(x1 dx1 + x2 dx2 + x3 dx3)

2,

where μ and l depend only on the distance

r =
√

x1
2 + x2

2 + x3
2.

The length scale for measuring this distance can be chosen so as to render
μ = 1; we make this choice. For the four-dimensional line element, we have
to choose the form

ds2 = f dx4
2 − dσ2,

where f is also only a function of r. If we now set

1 + lr2 = h

and the square root of the determinant hf equal to w, then a short calcula-
tion, which for convenience we perform for the point x1 = r, x2 = 0, x3 = 0,
yields the value

−2lr

h
· w

′

w
for H = gik

({
ik
r

}{
rs
s

}
−

{
ir
s

} {
ks
r

})
.

The prime denotes a derivative with respect to r. Moreover, let

− lr3

h
=

(
1

h
− 1

)
r = v;

then one has to solve the variational problem

δ

∫
vw′ dr = 0 or δ

∫
wv′ dr = 0;

12Sitzungsber. d. Kgl. Preuß. Akad. d. Wiss. 7. p. 189. 1916. [Translator’s remark: See
GRG 35. p. 951. 2003 for an English translation.]
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here v and w are to be taken to be the independent functions to be varied.
The variation of v gives

w′ = 0, w = constant

and by making appropriate use of the not yet fixed unit of time: w = 1. The
variation of w gives

v′ =0, v = constant = −2a;

f =
1

h
= 1 − 2a

r
.

a is related to the mass m via the equation a = κm; we call a gravitational
radius of the mass m.

In order to illustrate the geometry characterized by the line element dσ2,
we confine ourselves to the plane x3 = 0 passing through the origin. If we
introduce polar coördinates in it

x1 = r cos ϑ, x2 = r sin ϑ,

then we get
dσ2 = h dr2 + r2 dϑ2.

This line element characterizes the geometry that is valid on the paraboloid
of rotation

z =
√

8a(r − 2a)

in a Euclidean space with the orthogonal coördinates x1, x2, z if the paraboloid
is projected orthogonally onto the z = 0 plane with the polar coördinates
r, ϑ. The projection covers the exterior of the circle r ≥ 2a twice, but does
not cover the interior at all. Via natural analytic continuation, the true space
will cover the domain r ≥ 2a doubly in the coördinate space of the xi used to
represent it. The two coverings are separated by the sphere r = 2a on which
the mass lies and at which the metric becomes singular and one has to refer
to the two halves as the “outside” and “inside” of the point mass.

This may become clearer upon introducing another coördinate system
into which I need to transform S c h w a r z s c h i l d’s equations at any rate in
order to proceed further. The transformation equations read

x1
′ =

r′

r
x1, x2

′ =
r′

r
x2 x3

′ =
r′

r
x3; r =

(
r′ +

a

2

)2

· 1

r′ .
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If I remove the primes after carrying out the transformation, then

(12) dσ2 =
(
1 +

a

2r

)4

(dx1
2 + dx2

2 + dx3
2), f =

(
r − a/2

r + a/2

)2

results. In the new coördinates, the line element of the gravitational space
is thus conformal to Euclidean space; the linear enlargement factor is

(
1 +

a

2r

)2

.

dσ2 is regular for all values r > 0, f is always positive and becomes zero only
for

r =
a

2
.

The circumference of the circle x1
2 + x2

2 = r2 is

2πr
(
1 +

a

2r

)2

;

if we allow r to run over its range of values beginning with +∞, then this
function decreases monotonically until it reaches the value 4πa for

r =
a

2
,

after which it begins to increase again as r is decreased further toward zero,
and grows finally without bound. According to the above interpretation, the
domain

r >
a

2

would correspond to the outside and

r <
a

2

to the inside of the point mass. When continued analytically,

√
f =

r − a/2

r + a/2

becomes negative in the inside region, meaning that for a point at rest, the
cosmic time (x4) and proper time run in opposite directions. (In Nature, it
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is of course only possible to realize a portion of the solution, which does not
extend up to the singular sphere.)

If the point mass carries an electric charge and if Φ is the electrostatic
potential, then, if we choose C.G.S. units, the action principle is

δ

∫ (
vw′ +

κ

c2

Φ′2r2

w

)
dr = 0.

As above, the variation of v gives

w′ = 0, w = constant = 1,

and variation of Φ

d

dr

(
r2Φ′

w

)
= 0, leading to Φ =

e

r
.

Thus the same formula results for the electrostatic potential as without taking
gravity into account. The constant e is the electric charge (in the usual
electrostatic units). If one varies w however, then one finds

v′ +
κ

c2

Φ′2r2

w2
= 0,

which leads to

v = −2a +
κ

c2

e2

r
,

1

h
= f = 1 − 2a

r
+

κ

c2

e2

r2
.

As one can see, f contains not only the mass dependent term −2a/r, but
also an additional electric term. a = κm is again the gravitational radius of
the mass m. In complete analogy, the length

a′ =
e
√

κ

c

must be termed the gravitational radius of the electric charge. For distances
r comparable with a, the mass term is ∼1, whereas for r ∼ a′, this is true for
the electric term. f remains positive for all values of r if |a′| > a holds; for
an electron, the fraction a′/a is of the order of magnitude 1020. For distances
comparable to

a′′ =
e2

mc2
,
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the mass term and electric term in the gravitational potential f are of the
same order of magnitude; not until r is much larger than a′′ does the principle
of superposition hold, meaning that the electric potential is determined by
the electric charge and the gravitational potential by the mass according to
the usual formulæ. It then follows that the quantity a′′, which arises in other
contexts as the “electron radius”, can at least be treated as the radius of its
sphere of impact. The relation a′ =

√
a · a′′ holds.

Having derived the field of an electrically charged point mass, it is easy to
use the last paragraph of § 3 to calculate the motion of a test body subject to
this field, where its mass and charge are weak relative to those generating the
field; as in the charge-free case (planetary motion13), this problem is solved
exactly using elliptic functions .

§ 5. The field of a rotationally symmetric distribution of masses

The acquisition of exact solutions to the equations of gravity seems important
to me with regard to the question of processes at work within the atom. After
all, it is possible that at such scales it is essential to take the non-linearity
of the exact laws of nature into account. It has long been well-known to
mathematicians that in comparison to linear equations, the properties of
non-linear differential equations, in particular regarding their singularities,
are extremely complicated, unexpected and, at present, completely uncon-
trollable. It is well-known to physicists that peculiar processes must be at
work inside the atom that have no analogue in the visible world, where the
sum of forces is determined by the principle of superposition. I believe that
these two things could be closely related and, indeed, that we could expect
the definitive interpretation of quantum theory to stem from this relation-
ship. To this end, granted, one that still lies in the distant future, it seems
to me of interest to determine exactly the gravitational field of an axially
symmetric distribution of masses and charges according to E i n s t e i n’s the-
ory. This will be done here for the static case; the study leads to surprisingly
simple results.

The coördinates that play a rôle are: 1. the time x4 = t; 2. a spatial
coördinate singled out from the others, the angle x3 = ϑ about the axis of
rotation with the period 2π; ϑ = constant is a meridional half-plane ending
at the axis of rotation. To label the points in this half-plane, we have 3.
two coördinates x1, x2 that we are now going to normalize. The line element

13K. S c h w a r z s c h i l d, ibid.
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must have the form
ds2 = f dx4

2 − dσ2,

where
dσ2 = (h11dx1

2 + 2h12dx1 dx2 + h22dx2
2) + ldx3

2;

the coefficients f , l; h11, h12, h22 are functions of x1 and x2 alone. According
to a general theorem on positive, quadratic differential forms of two variables,
it is possible to choose the coördinates x1, x2 such that the term in brackets
with the coefficients h takes on the “isothermic” form

h(dx1
2 + dx2

2);

the pair of variables x1, x2 is then determined up to a conformal mapping.
After making this choice of variables, we define for two arbitrary functions
α, β of x1, x2

[α, β] =
∂α

∂x1

∂β

∂x1

+
∂α

∂x2

∂β

∂x2

.

If I introduce r =
√

lf , then the square root of the determinant is

√
g = w = hr.

For the action density H, the formula

2H = 2H
√

g =

{
ik
r

}
∂(gik√g)

∂xr

−
{

ir
r

}
∂(gik√g)

∂xk

holds in general. In our case, the first term is

4∑
i=1

2∑
r=1

{
ii
r

}
∂(gii√g)

∂xr

=
4∑

i=3

2∑
r=1

,

for which one immediately finds

H′ =
1

2h

([w

l
, l

]
+

[
w

f
, f

])
.

However, the second term is

H′′ = − 1√
g

2∑
i=1

∂
√

g

∂xi

· ∂(gii√g)

∂xi

=
[w, r]

w
.
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Now [
w

f
, f

]
= − w

[f, f ]

f 2
+

[w, f ]

f

= − w[lg f, lg f ] + r[h, lg f ] + h[r, lg f ]

holds, so for lg h = μ we get

1

h

[
w

f
, f

]
= −r[lg f, lg f ] + r[μ, lg f ] + [r, lg f ].

If one does the same for the other term in H′ and observes

2 lg r = lg l + lg f,

then

H′ = r[μ, lg r] + [r, lg r] − 1

2
r([lg f, lg f ] + [lg l, lg l])

results. If we introduce
λ = lg

√
l/f ,

then we get

1

2
([lg f, lg f ] + [lg l, lg l]) = [lg r, lg r] + [λ, λ].

Thus we get
H′ = [μ, r] − r[λ, λ].

Finally we have

H′′ =
[w, r]

w
=

[r, r]

r
+

[h, r]

r
= 4[

√
r,

√
r] + [μ, r].

Altogether, we have

H =
1

2
(H′ + H′′) = [μ, r] − 1

2
r[λ, λ] + 2[

√
r,

√
r].

To formulate the action principle, we have to calculate

δ

∫
H dx1 dx2
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for variations δμ, δλ, δr that vanish on the boundary of the (arbitrary)
domain of integration. If we define in general

Δ2 α =
∂2α

∂x1
2

+
∂2α

∂x2
2

and Δ α =
1

r

{
∂

∂x1

(
r

∂α

∂x1

)
+

∂

∂x2

(
r

∂α

∂x2

)}

then through integration by parts

δ

∫
H dx1 dx2 becomes δ

∫
H∗ dx1 dx2,

where

δH∗ = − δμ · Δ2 r + δλ · rΔ λ

− δr

(
Δ2 μ +

1

2
[λ, λ] +

2√
r
Δ2

√
r

)
.

For (uncharged) matter at rest with negligible stresses, the energy-momentum
tensor is comprised of the single component

T44 =
�

g44
(� = absolute mass density),

and

δM ≡ −√
gTikδg

ik = −�
√

g · δg44

g44 = �hrδ lg f = �∗(δr − rδλ)

(�∗ = h�).

holds. According to the action principle, each coefficient of the differential
δM must agree with that of δH∗. That yields (coefficient of δμ):

Δ2 r = 0.

Thus r is a potential function in the x1–x2 plane. If we denote the conjugate
potential function by z so that z + ir is an analytic function of x1 + ix2,
then the transition from x1, x2 to z, r is a conformal mapping. We can thus
assume right from the outset that

z = x1, r = x2

holds. In the definition of the operator symbols [ ], Δ, Δ2 one therefore has to
replace x1, x2 by z, r. The coördinate system is now completely determined
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except for an arbitrary additive constant in z. In order for the line element
to remain regular along the axis of rotation, r must vanish there. I call z, r,
θ canonical cylindrical coördinates; the corresponding canonical form of the
line element reads

f dt2 −
{

h(dz2 + dr2) +
r2 dϑ2

f

}
.

Here the “Euclidean” case is contained for f = 1, h = 1. In order to be able
to express ourselves in geometric terms, we portray the gravitational space by
using a Euclidean image space with the cylindrical coördinates z, r, ϑ. The
mapping of the two spaces onto one another via the canonical coördinates is
uniquely determined up to an arbitrary translation of the Euclidean image
space in the direction of the z-axis. In the image space

Δ =
1

r

{
∂

∂z

(
r

∂

∂z

)
+

∂

∂r

(
r

∂

∂r

)}

is the standard potential operator for axially symmetric functions.
Equating the coefficients of δλ in

δH∗ = δM

yields

(13) Δλ = −�∗,

equating the coefficients of δr:

(14) Δ2 μ +
1

2
[λ, λ] − 1

2r2
= −�∗.

We first consider (13) and introduce ψ = lg
√

f ; then

λ = lg r − 2ψ

holds and thus

(15) Δψ =
1

2
�∗,

or, when we add the factor 8πκ, measured again in the C.G.S. system, to the
right hand side

Δ ψ = 4πκ�∗;
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those solutions of ψ are namely permissible that are regular along the axis of
rotation. Thus using the canonical coördinate system, we have arrived at the
ordinary P o i s s o n equation; since it is linear, the principle of superposition
is valid for ψ = lg

√
f .

For the infinitely thin ring described by rotating the surface element dr dz
in the canonical r-z plane about the z-axis, the solution that one finds to the
P o i s s o n equation upon setting

2π�∗r dr dz = m

is
ψ = −κm

R
as is well known. R, the “distance” from the ring to the point P under
consideration [Aufpunkt], is the arithmetic-geometric mean of the distances
r1 and r2 of the point P to the two intersection points of the ring with the
meridional plane containing P :

1

R
=

1

2π

+π∫
−π

dω√
r1 cos2 ω + r2 sin2 ω

;
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all of the equations to be understood as in the Euclidean case, but referring
to the canonical coördinates! If only this ring is endowed with mass, then
one gets √

f = e− κm
R ,

which for large R is equal to

1 − κm

R
.

m proves to be the gravitational mass contained in the ring and �∗ is thus
the mass density in the canonical coördinate system. — We have arrived at
the following simple result:

If the (axially symmetric) distribution of mass is known in the canonical
coördinate system and if c2ψ is its N e w t o nian potential, then according to
E i n s t e i n’s theory we have

√
f = eψ.

We introduce ψ in place of λ in equation (14) as well; we have

[λ, λ] =
1

r2
− 4

r

∂ψ

∂r
+ 4[ψ, ψ].

If we then multiply (14) by 1

2
, add (15) or equivalently

Δ2 ψ +
1

r

∂ψ

∂r
=

1

2
�∗

and take the unknown to be

γ = lg
√

hf =
μ

2
+ ψ,

then we find

(16) Δ2 γ = −[ψ, ψ],

i.e. a P o i s s o n equation in the r-z plane. In order for the line element to
remain regular on the axis of rotation, γ must vanish there; thus the unique
solution of the P o i s s o n equation for γ in the meridional half-plane is to be
taken that vanishes at infinity and along the axis of rotation. Incidentally,
if we content ourselves with the approximation that results by neglecting
quadratic terms, then we must set γ = 0, h = 1/f .—
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It is very instructive to trace how the point mass fits in to the general
theory of rotationally symmetric mass distributions that has just been de-
rived. We begin by taking the form (12) and introduce cylindrical coördinates
instead of the “orthogonal” coördinates xi:

x1 = r cos ϑ, x2 = r sin ϑ, x3 = z;

the r appearing in (12) must of course be replaced by
√

r2 + z2. We then
carry out the following conformal transformation in the meridional half-plane

(r + iz) − (a/2)2

r + iz
= r∗ + iz∗ (ϑ = ϑ∗);

then our line element indeed assumes the canonical form and the calculation
yields:

f =
r1+r2

2
− a

r1+r2

2
+ a

, hf =

(
r1+r2

2
− a

) (
r1+r2

2
+ a

)
r1r2

,

where the meaning of r1, r2 can be taken from Fig. 2. In the canonical space
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with the cylindrical coördinates z∗, r∗, ϑ∗, ψ = lg
√

f is the N e w t o nian
potential of uniformly distributed mass along the line segment

r∗ = 0, −a ≤ z∗ ≤ +a :

in canonical coördinates, the “point mass” thus appears not as a sphere, but
as a line segment, the meridional half-plane as the entire plane with a cut
along the two solid half-lines, and the axis of rotation as the cut (connected
at infinity), which must be traversed as indicated in the figure by the arrows
and numbers. The right half of the entire plane corresponds to the outside,
the left half to the inside of the point mass. Our interpretation as asserted in
§ 4. is confirmed anew: if we were not to take into account the “inside”, then
we would not arrive at the correct solution. One can convince oneself that
lg

√
hf is indeed that solution to equation (16) in the entire plane r∗, z∗ with

a cut that vanishes along the edges of the cut. —One would have been led
naturally to this exact solution of the equations of gravity by studying the
field of a line segment of length 2κm covered by the mass m. Having found
the field, then measuring out the “line segment” with the invariant spatial
line element dσ2 would then have shown however, that in reality it is not a
line segment at all, but rather the surface of a sphere: in the exact theory
of gravity, one can only determine a posteriori to which mass distribution a
solution that one arrived at by some ansatz corresponds.

§ 6. The field of a rotationally symmetric distribution of charges

If the masses at rest carry static electric charges, then, in addition to the
gravitational field, an electrostatic field arises that can be derived from the
potential Φ = Φ(x1, x2). As in the beginning of § 5., x1 and x2 are isothermic
coördinates in the meridional half-plane. The action density for electricity is
determined from

L = − [ΦΦ]

hf
, L

√
g = −[ΦΦ]eλ = −[ΦΦ]

r

f
.

The integral of δ(L
√

g) over some region in the x1-x2-plane, provided the
variations of δΦ, δλ vanish on the boundary of that region, is equal to the
integral of

δL∗ = − [ΦΦ]
r

f
δλ + 2rΔf Φ · δΦ,
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Δf =
1

r

{
∂

∂x1

(
r

f

∂

∂x1

)
+

∂

∂x2

(
r

f

∂

∂x2

)}
.

If we take into account not only the field-action, but also the substance-action
as in § 1., then, to begin with, the general action principle yields through
variation of Φ:

(17) Δf Φ = −ε∗ = −hε (ε = absolute charge density).

In order to determine the gravitational field, by setting δΦ = 0 as of now,
we obtain the equation

(18) δH∗ = δM + δL∗.

It tells us again that Δ2 r = 0; thus the introduction of the canonical
coördinates is possible and we again set x1 = z, x2 = r. Eq. (17) now
reads:

(19) Δf Φ =
1

r

{
∂

∂z

(
r

f

∂Φ

∂z

)
+

∂

∂r

(
r

f

∂Φ

∂r

)}
= −ε∗.

The arbitrary additive constant that appears in Φ will be chosen, as usual,
so that Φ vanishes at infinity.

Equating the coefficients of δλ in (18) results in Eq. (13) of the last section,
with the modification that on the right hand side, in addition to the mass
term �∗, the additional term 1/f [ΦΦ] arising from the likewise gravitating
electric energy appears; thus:

(20) Δf f =
1

r

{
∂

∂z

(
r

f

∂f

∂z

)
+

∂

∂r

(
r

f

∂f

∂r

)}
= �∗ +

1

f
[ΦΦ].

Eq. (14), § 5. can be adopted as is. We consider the expression for 1

2
Δf (Φ2);

as a result of the equations

1

2

∂Φ2

∂z
= Φ

∂Φ

∂z
,

1

2

∂Φ2

∂r
= Φ

∂Φ

∂r

and of the fundamental electrostatic law (19), it is equal to

−ε∗Φ +
1

f
[Φ, Φ].
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If we then introduce

f − 1

2
Φ2 = F, �∗ + ε∗Φ = σ∗,

then we can replace equation (20) by

(21)
1

r

{
∂

∂z

(
r

f

∂F

∂z

)
+

∂

∂r

(
r

f

∂F

∂r

)}
= σ∗.

If the mass and charge are located only on an elementary ring with radius
r and cross-section dr dz in canonical coördinates, and if we set

2πσ∗r dr dz = m, 2πε∗r dr dz = e,

then it follows from equations (19) and (21) that

F = constant − m

e
Φ

necessarily holds. Choosing the units of time appropriately leads to constant =
1 and we have

f = 1 − m

e
Φ +

1

2
Φ2,

or, by introducing the C.G.S. system

f = 1 − 2mκ

e
Φ +

κ

c2
Φ2.

If one substitutes this value into (19), then one finds the linear potential law
of standard electrostatics for the quantity

(22)

∫
dΦ

1 − 2mκ
e

Φ + κ
c2

Φ2
.

If one makes use of this to determine the above integral as a function of
location in the meridional half-plane and from that Φ and f — we shall
carry out the calculation in a moment — then one can see that m is the
gravitational mass contained in the ring and e its charge. Consequently, σ∗

and ε∗ are the mass and charge density in the canonical coördinate system;
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it is particularly noteworthy, that not �∗, but σ∗ = �∗ + ε∗Φ turns out to be
the mass density.14

The problem can be solved more explicitly if we assume that mass and
charge are distributed arbitrarily, but in the same fashion, i.e. that the ratio
σ∗ : ε∗ is a constant independent of position. We denote the Euclidean
volume integral over σ∗ in the space of canonical coördinates, i.e. the total
mass, by m and the analogous integral of ε∗, the total charge, by e. The
aforementioned constant ratio will then be m : e. (22) is still the standard
electric potential of the charge distribution ε∗ in the canonical space found
without taking gravity into account. We introduce (cf. § 4.) the gravitational
radii a, a′ of the mass m and charge e (concentrated to a point) and, favouring
the case a′ > a, set

a

a′ = sin ϕ0.

Calculating integral (22), we arrive at the following result:
If the charge distribution (which is proportional to the mass distribution by

assumption) is known in the canonical coördinate system and its “elemen-
tary” potential, i.e. the potential found according to the elementary theory
without taking gravity into account, when multiplied by the constant factor

√
κ

c
cos ϕ0,

is ϕ, then

(23) Φ =
e

a′
sin ϕ

cos(ϕ − ϕ0)
,

√
f =

cos ϕ0

cos(ϕ − ϕ0)

holds exactly. In particular, the case of the ring yields

ϕ =
a′ cos ϕ0

R
,

14If one takes �∗ = 0, then the standard radius a′′ results for the region over which
the charge of the electron is distributed. However, it cannot be ruled out that the term
ε∗Φ can be almost completely compensated by a negative �∗; I therefore refer the reader
to M i e’s theory. The whole point is to explain why the electron has such a small mass,
i.e. where the pure number a/a′ of the order of magnitude 10−20 comes from! Hence, the
true charge of the electron may be concentrated in a much smaller region, and a′′ merely
represents the “radius of impact”.
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where R is the “distance” between the point under consideration P and the
ring. For large R this means that

√
f is given by the asymptotic formula

1 − a

R
,

which implies that m is indeed the gravitational mass, as claimed above.
With the current assumptions, we still need to calculate the second co-

efficient h from the canonical line element. To that end, we have Eq. (14),
§ 5. at our disposal. If we treat it in the same way we did there, then for
γ = lg

√
hf we first arrive at

Δ2 γ +
[
√

f,
√

f ]

f
=

1

2

[Φ, Φ]

f
.

If we then switch to the C.G.S. system — the factor 1

2
on the right hand side

is then to be replaced by κ/c2 — and use expressions (23), then the equation
for γ takes on the simple form

(24) Δ2 γ = [ϕ, ϕ].

If we do not assume the proportionality of charge and mass, then the
solution cannot be obtained by such simple means. Now the numbers for
the electron and the atomic nucleus are such that a/a′ is very small, of the
order 10−20 and 10−17 respectively. Given this situation, the effect of gravity
can be neglected entirely with respect to that of charge. If we specialize our
equations accordingly, i.e. by choosing a = 0, ϕ0 = 0 then we arrive at the
statement:

If the (axially symmetric) distribution of charge at rest, the effect of which
is so strong as to render the effect of gravity negligible in comparison, is
known in the canonical coördinate system and its elementary potential mul-
tiplied by

√
κ/c is ϕ then, taking gravity into consideration, we have

Φ =
c

κ
tgϕ

√
f =

1

cos ϕ
.

The appearance of trigonometric functions, which are so closely related
to integers through their periodicity, is rather surprising; the principle of
superposition no longer holds in realms in which the value of ϕ is close to
1. In fact, the potentials of the effective forces are trigonometric functions
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810 H. Weyl

of quantities that obey this principle. For sufficiently concentrated charge, it
may happen that this charge is enclosed in surface S upon which ϕ reaches
the value π/2 and hence Φ and

√
f become infinite. Since according to (24),

hf remains finite on this “border to the outer world”, the spatial line element
becomes dσ2 = 0; thus S turns out to be without extent as measured by the
invariant line element. — Our result can hardly be used to understand the
processes in the atom; after all, discrepancies between the field of the electron
charge e and the field as determined by the classical theory without gravity,
are only noticeable for distances of the order a ∼ 10−33cm!

In the canonical coördinate system, the spherically symmetric point mass
appears as a circular disc of radius a′ on which the electricity is distributed
as it is for a charged metal plate in standard electrostatics.

(Received 8. August 1917)
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