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THE present paper investigates the relatio iship between the universes
of relativistic cosmology and the universes that can be constructed
using only Newtonian dynamics, Newtonian gravitation, and New-
tonian relativity. I t is shown that the governing differential equa-
tions are identical in form in the two cases, and that the localty
observable phenomena predicted on the two theories are indistin-
guishable. It is further shown that a space of positive curvature
corresponds to a Newtonian universe in which every particle has a
velocity less than the parabolic velocity of escape from the observer,
a space of negative curvature to one in which every particle has a
velocity greater than the parabolic velocity. Thus universes of
positive, zero, and negative curvatures correspond to elliptic, para-
bolic, and hyperbolic Newtonian universes respectively. These results
are applied to obtain a number of new results concerning Doppler
effects and accelerations in relativistic universes. Finally an investi-
gation due to Lemaitre is briefly discussed.

1. The results obtained in the foregoing paper can be extended as
follows to the case in which, on Newtonian mechanics, the velocity
v is not necessarily equal to the parabolic velocity of escape. Let v,
the velocity of a particle at distance r from the observer at time t, be
radial in direction, and a function of r and t. The equation of motion,

Dv_ GM(r)

may be written — -\-v—=—t.TtGpr, (2)
at or

where p is a function of t only. The equation of continuity may be
written in the form

(3)

Hence, here, -5 — (r2v)
r or
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is a function of t only, independent of r. Put

1-% = -3F(t); (4)
P at

then • ~ -~{rH) = ^F{t),
r* or

which integrates in the form
rh) = t*F(t)+G{t),

i.e. v = rF(t) + G^. (5)

Insert this in (2). Then, since p is a function of t only,

must be a function of t only. This requires G(t) = 0. Hence by

<5)' v = r F(t). (6)

Inserting this in (2) as before, we have
F'(t)+[F(t)f = -*nOp. (7)

Writing (6) in the form

and integrating it following the motion, we have
r=fR(t), (8)

where/ defines the particle considered and R(t) is a universal function
of (satisfying ^ ^ = _J_± m

R dt K 3P dt' K '
Hence p = b/R3, (10)
where B is a constant. Introducing (9) and (10) in (7), we find

( 'R dt2 R3

of which the integral is

where K is a constant. Hence, by (9),

(13)
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where K = AB*. (14)

Accordingly by (6), v = r\^TrGp-\-Ap^. (15)

This is simply the Newtonian integral of motion, for since
M{r) =

it may be written

and of course M(r) is constant following the motion.
It follows that the particle, and so every particle, possesses the

elliptic, parabolic, or hyperbolic velocity according as A § 0. The
constant A is the same for all particles. By (6) or (15), v obeys a
velocity-distance proportionality at any one epoch; and (15) gives
explicitly the connexion between the mean density p and the coeffi-
cient in the velocity-distance proportionality.

Differentiating (16) following the motion, we see that v obeys (1),
so that (16) is an actual solution. Moreover, it is clear that the solu-
tion satisfies Einstein's cosmological principle. The density p is
obtained as a function of t by integrating (12) in the form

~ J (§TTGB+KR)* - j (InG+Ad)*' ( )

o o
where p = 1/83.

2. Comparison with the equations of relativistic cosmology.
By (10), equation (11) may be written

2

where K = 8nG/c2.

Similarly, (12) may be written

any k

where k = - ^ = - ^ - . (20)

Adding (18) and (19) we. have

l ^ 2
 + A = 0. (19')

cdt) ^R*
Equations (19) and (19') are formally identical with the equations
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of relativistic cosmology* for an expanding universe of 'radius' R,
curvature k/R2, with A = 0, p = 0. Thus the Newtonian distance
r is the same function of the Newtonian time t as the 'distance' r is
of 'cosmic time' t in the relativistic solutions. Further, we see that an
expanding space of positive curvature (k > 0) corresponds to a
Newtonian universe with elliptic velocities (.4 < 0), an expanding
space of negative curvature (k < 0) to a Newtonian universe with
hyperbolic velocities (A > 0).f By choice of a multiplying factor
for R, which is equivalent to choice of B, k may be reduced to ± 1.
The constant B has no physical significance; it disappears from all
formulae relating observable quantities. The constant A alone is of,
physical significance.!

It follows that the local properties of the universes in expanding
spaces of positive, zero or negative curvatures are observationally the
same as in Newtonian universes with velocities respectively less than,
equal to, or greater than the parabolic velocity of escape. This gives
great insight into the physical significance of expanding curved space.

3. The 'cosmological' terms involving the cosmical constant A are
at once obtained, if we superimpose on Newtonian gravitation a
repulsive force proportional to distance. By a simple application of
the triangle of forces the equation of motion (1) becomes modified to

and the equation of continuity is unaffected. The integrations can
now be carried out as before,§ and we are led to equations for R of
the relativistic form with the usual A-terms. Einstein's cosmological
principle is still satisfied. But from this point of view the introduction
of A-terms is somewhat artificial. Their introduction is permissible
simply because they are the only new type of action at a distance
(in addition to Newton's law) compatible with the satisfaction of the
cosmological principle. This last point may be worthy of remark as
throwing light on the nature of a 'law of gravitation'.

• e.g. H. P. Robertson, Reviews of Modern Physics, 5 (1933), 62-90, equa-
tions (3.2). I t is clear that (18) and (19) are formally identical with the
Newtonian equation of motion and its first integral, and that they imply the
equation of continuity.

t Of. de Sitter, Univ. California Pub. Math. 2 (1933), 171.
{. e.g. the curvature k/R- is simply —Ap*[c2.
§ The velocity-distance proportionality becomes v = r[|7rG'/3+j4p!+ic2A]'.
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4. Omitting further consideration of the A-terms, we may put, in

(17), 9 = \TTG<J>/\A\, when it becomes

[i + Ĵ (22)
If A > 0 (hyperbolic case), as t increases, (f> or 9 steadily increases,
and p steadily decreases to zero. If A < 0 (elliptic case) 9 can never
exceed \nGj\A\, and the density p has a lower limit, after which it
increases again. We then have an oscillating universe. It should be
noted that in all cases Dv/Dt is always negative, so that in the
Newtonian case each particle is steadily decelerated.

In the hyperbolic case v/r -*• 0 following any particle, and v -»• const.,
though to a different constant for each particle corresponding to a
different value of the parameter / . Also, since p -*• 0, the asymptotic
form corresponds to the 'hydrodynamic' solution previously obtained*
by one of us from kinematic principles only. This has been previously
shown by the methods of general relativity,f but owing to the formal
identity of the various relations with the corresponding Newtonian
ones it holds in the Newtonian case as well. In particular, in this
asymptotic case we have v = r/t for every particle. We can easily
show, still of course omitting cosmical repulsion, that in all other

c a S e S v < r/t. (23)

For the integral (12) may be written

-

where C = \irGB = \KC2B > 0 since the density is positive. Hence

for small R we have t~%C-lR* (2"\

where we choose t = 0 for R = 0. Also from (6) and (9),

v = rR'/R.

Therefore we shall have v < r/t, provided

t < R/R'. (26)

* E. A. Milne, Zeits.fiir Astrophya. 6 (1933), 1-95, 71 et seq.
t W. O. Kermack and W. H. McCrea, M.N.R.A.S. 93 (1933), 519-29;

also H. P. Robertson, Zeits.fiir Aalrophya. 7 (1933), Heft 3. In the present
paper we leave aside the question of the wider significance of the kinematic
solution.
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But from (24),

d(R\_d( R \ ICR-i+K _
dt\R'j dtXiCR-t+K)*) (CR-i+K)*

(27)

and this exceeds unity for K > 0. Thus in the hyperbolic case R/R'
increases faster than t, and, from (25), R/R' = 0 when t = 0, so that
the inequality (26) holds for all t > 0. Thus (23) is established in
the hyperbolic case. In the elliptic case a similar proof holds so long
as R' > 0, and after that the inequality is true a fortiori. This
shows in a simple manner the retarding effect of gravitation on the
scattering of the particles.

It is of some interest to integrate (17), or equivalently (24); (17) is
more significant, since the meaningless multiplier B is absent. We
find, putting %TTO = a.

Ki (A = -A' <0,k> 0),

(A>0,

where it may be recalled that p = I/O3.

5. Doppler effect in curved universes. The general features
of the motions studied in this paper suggest that in a relativistic
universe the Doppler effect for any given particle will decrease as
the epoch of observation advances, and for negative curvatures tend
to a constant limit, different for different particles. We shall now
show that this actually is the case.

We take the metric for the 'expanding-space' universe in the form*

so that the particles have fixed coordinates in the space represented
by du2. Hence if t is the 'cosmic time' of departure of a light-signal,
t2 its time of arrival at the observer, we have

u

* H. P. Robertson, loc. cit.
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where J du is the coordinate distance along the light -track, for which,
of course, ds = 0. Hence

i-m = 0- (29)

If then A is the emitted wave-length, Ag the observed wave-length,

A2 dt2 R(t2)

since R(t) is an increasing function of t, and t2 > t. This gives the
red-shift. Consequently, this shift will decrease as the time of obser-
vation t2 advances, if ,

that is, if

that is, using (29), if R'(t2) < R'(t), (31)

that is, if S'(t) is a decreasing function of t. But we have proved, (cf.
equation (8)), that R{t) is the same function of t, apart from a con-
stant multiplier, as the Newtonian distance r is of Newtonian time t,
in the corresponding Newtonian universe. Now in this universe every
particle is decelerated. Hence d2r/dt2 < 0, or d2E/dt2 < 0. Hence
dB/dt is a decreasing function of t. Therefore the Doppler effect de-
creaseswith advancing epoch of observation. Also, in the asymptotic
form of the hyperbolic case, R(t) = tx const., and so

AJJ/A = tjt = const.,
from (28).*

These results are worthy of note, since it is sometimes supposed
that particles necessarily undergo acceleration and not deceleration.
As a matter of fact acceleration away from the observer is possible
only when cosmical repulsion predominates over gravitational
attraction.

6. Lemaltre's theory of condensations. A further instance
of the applicability of the same physical interpretation of the equa-
tions of general relativity as is given in this paper is provided by
Lemaitre's theory of the formation of condensations.t

* Kermack and McCrea, loc. cit. equation (21).
t G. Lemaitre, Gomptes Rendua, 196 (1933),. 903-4, 1085-7.
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He studies the motion of a distribution of matter having spherical

symmetry about the origin, and obtains for any particle an 'equation
of motion' /„ , 2 - .»

(I) = -c 2 s in 2
x +2(?^p + JAc^ (32)

where r is its 'distance' from the origin, (x, 0, <f>) are the coordinates of
the particle in the space in which it is fixed, and

r(Xt)
m(x, t) = <krrpr2 dr

o
gives a measure of the mass inside radius r. With the addition of the
cosmical constant A, (32) is the analogy for Lemaitre's case of our
equation (16).

He proceeds to treat the case where m(x, t) is such a function of
X alone that there exists a real value Xo such that the positive values
of r for which dr/dt = 0 are imaginary, coincident, or real, according
as x > Xo< X = Xo> X < Xo- I* follows that, if r is small when t is
small, then, if x > Xo> r varies from zero to infinity; if x — Xo> r tends
asymptotically to a value r0 > 0; if x < Xo> r increases up to the first
positive root of drjdt = 0, and then decreases again to zero. That is
to say, the matter outside x = Xo continues to spread away from
the centre, while the matter inside x — Xo ultimately falls back upon
itself. This, then, is the mode of formation of condensations, for
example, the extra-galactic nebulae, contemplated by Lemaitre. He
points out that it is necessary for the form of this theory that A ^ 0.

Without going further into the implications of Lemaitre's assump-
tions, it is now clear that his work would be interpreted in Newtonian
language by saying that he is dealing with such a distribution of
matter and motion that all the particles outside a certain shell are
endowed with a 'hyperbolic' radial velocity of escape from the matter

' between themselves and the centre, while all the particles inside this shell
have an 'elliptic' radial velocity, and so must fall back on the centre*

* Added in proof: In a very recent paper (Proc. Nat. Acad. Sci. 20 (Jan.
1934), 12-17), seen after the above was written, Lemaitre has himself alluded
to the classical analogy to his work, without however following it out in
detail or showing the connexion with the equation of continuity.


