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It will be noted that in addition to the ordinary
absorbed radiation of half-width C/4, thereis an
additional absorption of radiation over the entire
half-width 4. The intensity of this additional
absorption is much less than that of the normal
absorption, to which it bears the ratio of the
square of G/4my% When H equals zero, this is
the ratio of the normal half-width C/4r to the
half-width v of the incident radiation. In general
this ratio is small and therefore the usual
analysis, which assumes F(z) equal to a constant
C, may be legitimately applied. This verifies
Weisskopf’s? conclusion.

The above formulas give the order of magni-
tude of the effects involved. When v becomes
much less than T, defined as the corresponding

® V. Weisskopf, Ann. d. Physik 9, 23 (1931).
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half-width for transitions from B to A, the
consideration of the transitions 4 to B alone
becomes a poor approximation to the actual
state of affairs. The double transition 4 to B to 4
may be treated by a direct application of the
foregoing analysis, provided the ordinary ap-
proximations are made for the spontaneous
jumps B to 4. In addition to the usual substi-
tution of C/4r+T for C/4r in (27), the most
important result is that y+4T replaces v in the
square root in (22). Since I' will include a term
G/~* because of the induced transitions B to 4,
the square root will apparently be real whenever
G(2) is given by (19). Thus there will be no shift
of the absorbed line; this is again in agreement
with Weisskopf’s result? when the frequency of
his strictly monochromatic radiation coincides
with the line center, (Eg—E4)/h.
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A method is developed for treating Einstein’s field equations, applied to static spheres of
fluid, in such a manner as to provide explicit solutions in terms of known analytic functions.
A number of new solutions are thus obtained, and the properties of three of the new solutions
are examined in detail. It is hoped that the investigation may be of some help in connection
with studies of stellar structure. (See the accompanying article by Professor Oppenheimer

and Mr. Volkoff.)

§1. INTRODUCTION

T IS difficult to obtain explicit solutions of
Einstein’s gravitational field equations, in
terms of known analytic functions, on account of
their complicated and nonlinear character. Even
in the physically simple case of static gravi-
tational equilibrium for a spherical distribution
of perfect fluid, there are only two explicit
solutions which are at present well known. These
are Einstein’s original cosmological solution for a
uniform distribution of fluid with constant
density p and constant pressure p throughout the
whole of space, and Schwarzschild’s so-called
interior solution for a sphere of incompressible
fluid of constant density p and a pressure » which

drops from its central value to zero at the
boundary.! To these, by regarding empty space
as the limiting case of a fluid having zero density
and pressure, we can also add de Sitter’s cos-
mological solution for a completely empty uni-
verse, and Schwarzschild’s so-called exterior
solution for the field in the empty space sur-
rounding a spherically symmetrical body, thus
giving four solutions in all.

The present paper has a twofold purpose. In
the first place, a method will be given for treating

1In addition to these explicit solutions for a spherical
distribution of fluid, we also have Lemaitre’s interesting
explicit solution for a spherical distribution of solid, each
concentric layer of which supports its own weight by

purely transverse stresses. See Eq. (5.11), Ann. de la Soc.
Scient. de Bruxelles A53, 51 (1933).
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the nonlinear differential equations, applying to
the gravitational equilibrium of perfect fluids, in
such a manner as to make it somewhat easy to
obtain a variety of explicit solutions. In the
second place, it will then be shown that this
method of treatment leads directly not only to
the four well-known solutions mentioned above,
but also to a number of others which may have a
measure of physical interest. In particular, it is
hoped that some of these new solutions may be of
use in trying to understand the internal consti-
tution of stars.?

§2. THE GENERAL FORM OF SOLUTION FOR AN
EqQuiLiBRIUM DISTRIBUTION OF FLUID

If for simplicity units are chosen which make
the velocity of light and the constant of gravi-
tation both equal to unity, Einstein's field
equations (connecting the distribution of matter
and energy as described by the components of the
energy-momentum tensor T, with the resulting
gravitational field as described by the potentials
Zuv») can be written in the form

—81rT,‘y=Rw"‘%Rguv+Agnvr (21)

8

where the cosmological constant is denoted by A,
and where the contracted Riemann-Christoffel

2 My own present interest in solutions of Einstein's field
equations for static spheres of fluid is specially due to
conversations with Professor Zwicky of this Institute, and
with Professor Oppenheimer and Mr. Volkoff of the Uni-
versity of California, who have been more directly con-
cerned with the possibility of applying such solutions to
problems of stellar structure. Professor Zwicky in a recent
note (Astrophys. J. 88, 522 (1938); see also Phys. Rev. 54,
242 (1938)) has suggested the use of Schwarzschild’s in-
terior solution for a sphere of fluid of constant density as
providing a model for a “collapsed neutron star,” He is
making further calculations on the properties of such a
model, and it is hoped that the considerations given in this
article may be of assistance in throwing light on the ques-
tions that concern him. Professor Oppenheimer and Mr.
Volkoff have undertaken the specific problem of obtaining
numerical quadratures for Einstein’s field equations applied
to spheres of fluid obeying the equation of state for a
degenerate Fermi gas, with special reference to the particu-
lar case of neutron gas. Their results appear elsewhere in
this same issue. My own solutions of the field equations, as
given in the immediately following, can make only an
indirect contribution to the physically important case of a
Fermi gas, since it will be seen that they correspond to
equations of state which cannot be chosen arbitrarily. My
thinking on these matters has, however, been largely
influenced by discussions with Professor Oppenheimer and
Mr. Volkoff, and it is hoped that the explicit solutions ob-
tained will at least assist in the general problem of develop-
ing a sound intuition for the kind of results that are to be
expected from the application of Einstein’s field equations
to static spheres of fluid.
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tensor R,, and its trace R are known functions of
the potentials g,, and their first and second
derivatives with respect to the space-like and
time-like coordinates «'---x% Owing to the
complicated and nonlinear dependence of R,, and
R on the g,, and their derivatives, no general
precise, explicit solution for these equations is
known, and special solutions are difficult to
obtain in explicit analytic form as has already
been mentioned. The problem of solution is made
particularly difficult by the nonlinear character
of the equations which prevents the construction
of further solutions by the superposition of those
already obtained. ‘

In searching for solutions of the field equations
(2.1) that would correspond to an equilibrium
distribution of perfect fluid, considerable simplifi-
cation can be introduced at the start.

In the first place, since the condition of
gravitational equilibrium for a fluid will on
physical grounds be a static and spherically
symmetrical distribution of matter, we can begin
by choosing space-like coordinates 7, § and ¢, and
a time-like coordinate ¢ such that the solution will
be described by the simple form of line element

ds?= —eMr?—r?d0*—r? sin? 0d¢?+-e'dt?, (2.2)

with N and » functions of 7 alone, as is known to
be possible in the case of any static and spherically
symmetrical distribution of matter. With the
simple expressions for the gravitational potentials
appearing in (2.2), the application of the field
equations (2.1) then leads to the following
expressions for the only surviving components of
the energy-momentum tensor

P | 1
8rTl= —e‘*(—-—}-——) +——A,

r 7 r?
8rT3=8nT}

VONY 2 =\
=—e"(~«———+~—+ )—A,
2 4 4 2r

N1y 1
81rT2=e‘*(———-—) +——A4,

r 7 r?

(2.3)

where differentiations with respect to 7 are

indicated by accents.?

3See for example, R. C. Tolman, Relativity, Thermo-
dynamics and Cosmology (Oxford, 1934), Eq. (95.3).
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In the second place, since the matter involved
in the distribution is by hypothesis a perfect
fluid, we can obtain a direct connection with the
properties of the fluid by making use of the
general expression

T + )dx“ dx’
Wy — —— gy

(p+2 PR b,
which by definition gives the components of the
energy-momentum tensor 7 of a perfect fluid at
any point and time of interest in terms of the
proper (macroscopic) density p, the proper pres-
sure p, and the components of ‘‘velocity”
dx*/ds and dx”/ds of the fluid at that point and
time. With the simple form of line element (2.2),
this then leads to

Ti=Tj=Ti=—p,

(2.4)

Ti=», (2.5)

as expressions for the only surviving components
of the energy-momentum tensor in terms of the
pressure and density of the fluid.

Substituting (2.5) in (2.3), we now have

o1 1
87rp=e"‘(—+—~ ——+A,
r 7 72
V” )\IV, V’2 VI _)I
8rp=eM ———+—+ )-I—A, (2.6)
2 4 4 2r
4

o1 1
87rp=e“>‘(——— +——A
r 72 72

as the desired expressions which make direct
connection with the properties of the fluid in
terms of its pressure and density. In the case of
gravitational equilibrium for a distribution of
perfect fluid, we are thus provided with the
general form of solution for the gravitational
potentials g,, which is described by the line
element (2.2), and with three differential equa-
tions (2.6) which relate the unknown functions
X and » appearing in that form of solution, along
with the pressure p and density of the fluid p, to
coordinate position # within the distribution of
fluid.

§3. METHOD OF OBTAINING EXPLICIT
ANALYTIC SOLUTIONS

In accordance with the foregoing we now have
three differential equations for the four unknown
quantities N, », p and p as functions of 7. The
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problem will hence become determinate as soon
as we introduce one further independent equation
corresponding to some additional hypothesis as
to the nature of the fluid or of the distribution.

From a physical point of view, it might seem
most natural to introduce this additional hy-
pothesis in the form of an ‘‘equation of state”
describing the relation between pressure p and
density p which could be expected to hold for the
fluid under consideration. Or since the properties
of the fluid could also depend on position, as
would be the case in treating a fluid of varying
composition or in making an approximate appli-
cation to a fluid of varying temperature, it
might seem natural to test the consequences of
adding some equation connecting p and p with 7.

From a mathematical point of view, however,
the derivatives of A and » occur in our Egs. (2.6)
in such a complicated and nonlinear manner that
we cannot in general expect to obtain explicit
analytic solutions when we complete the set by
adding a further equation connecting p with p or
# and p with 7, and should usually have to resort
to a method of approximate quadrature to obtain
solutions in that way. In order to obtain explicit
analytic solutions, it proves more advantageous
to introduce the additional equation necessary to
give a determinate problem in the form of some
relation, connecting A\ or » or both with 7, so
chosen with reference to the occurrence of the
derivatives of X\ and » in expressions (2.6) as to
make the resulting set of equations readily
soluble. By adopting such a mathematically
rather than physically motivated procedure, we
of course run the risk of obtaining solutions which
may not be physically interesting or even physi-
cally possible. Nevertheless, having once obtained
an explicit solution, it then becomes relatively
easy to examine the implied physics and see if
this has a character which affords insight into the
equilibrium conditions that could be expected for
actual fluids.

To carry out the suggested method of attack,
it is desirable to re-express Egs. (2.6) in a some-
what different form which will make it easier to
ascertain what conditions on A and v can be
introduced to secure solubility. In the first place,
it is helpful to equate the two different expres-
sions for the pressure p given by (2.6) and thus
obtain a single equation for the dependence of A
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and » on 7. In the second place, it is then helpful
to rewrite this result in a form which is already
nearly integrable so that the desired kind of
condition on X and » can be more easily seen.
Introducing such a re-expression, Egs. (2.6) are
then found to be equivalent to the set

d e—-)\_
(VU D
dr 7?2 dr dr
! 1
8rp=e* —+—)———I—A, (3.2)
r? r?
PN | 1
8rp=e2 ———-—)—}—~——A, 3.3)
r r? 72

where the first of these equations (3.1) has been
obtained in the manner just described. The one
term in (3.1) which is not immediately integrable
contains N and » in a sufficiently simple manner
so that conditions on those quantities can be
readily found which will make it easy to obtain a
first integral of that equation.

§4. SPECIFIC SOLUTIONS

This method of attack can now be used to
obtain a number of specific solutions. We shall
summarize the results thus provided by first
stating the additional assumed equation expressing
the condition on X or » that was taken to secure
the integrability of (3.1), and then giving the
resulting solution for e*, e’, p and p as functions of
7 which can be obtained by combining the new
equation with (3.1), (3.2) and (3.3). New
symbols such as 4, B, R, ¢, m, n, etc. will be used
in these expressions to denote constants of
integration ; they are to be regarded as adjustable
parameters having real, not necessarily integral,
values.

Solution 1. (Einstein universe)
Assumed equation
e”=const.

Resulting solution
1

e)\—_ ev_c2’

_,,Z/Rz’
8rmp=3/R*—A, 8rp=—1/R*+A.

(4.1)
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In this case the assumed equation makes (3.1)
immediately integrable since the second two
terms drop out. The resulting solution is the
well-known one for a static Einstein universe
with uniform density and pressure throughout.
The solution could correspond to a distribution
of actual fluid, with p and p non-negative, only
with the cosmological constant satisfying the
condition 3/R?>A>1/R2,

Solution II. (Schwarzschild-de Sitter solution)
Assumed equation
e =const.

Resulting solution

2m  r2\~!
o 0Y

r R? (4.2)
2m r?
e”=c2(1~——————
r R?
8rp=3/R*—A, 8mp=—3/R>*+A.

In this case the assumed equation makes it
immediately possible to obtain a first integral of
(3.1), since it makes the third term at once
integrable. The necessary second integration then
also proves to be possible and leads to the well-
known combined Schwarzschild-de Sitter solution
for a de Sitter universe with a spherically
symmetrical body at the origin of coordinates.
With p and p both non-negative the space around
this body has to be empty with 3/R2=A and
p=p=0. With R= = the solution goes over into
the usual form for the Schwarzschild solution
surrounding an attracting particle of mass m,
and with m=0 it goes over into the usual form
for the de Sitter universe.

Solution III. (Schwarzschild interior solution)
Assumed equation
er=1—1/R2,

Resulting solution

1
er=——— e=[A—B(1—r?/R)¥]?, (4.3
e ©mASBUSRYT, @
8Tp=3/R*—

. 3B(1—r2/R?)}—4
WP_E(A —B(1—r/R%)} )
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In this case the assumed equation immediately
simplifies (3.1) by making the first term drop out,
and a first integral can at once be obtained, after
multiplying through by e”»’/2r. The second
integration then also proves to be easily possible
and leads at once to the well-known Schwarzschild
interior solution for a sphere of fluid of constant
density p and a pressure p which decreases with 7.
With the constant B=0 the solution degenerates
into the Einstein universe and with 4 =0 into
the de Sitter universe.

Itshould be noted that Schwarzschild’s interior
solution as given by (4.3) is not the most general
solution for a sphere of constant density, since a
more general assumed equation, e*=1—7¢%/R?
+C/r with C an arbitrary constant, would also
correspond to p=const.* The consequences of not
setting C=0 in this expression have been studied
by Mr. Volkoff and will be communicated
elsewhere.

Solution IV
Assumed equation
e’v'/2r = const.
Resulting solution
S 1+4+2r2/4%
(1—7*/R*)(1+71*/A4%)
=B (1+1%/4?),
1 14342/R?*+37*/R?

(4.4)

8rp=—
A? 1-4+2r2/42
2 1-—7?/R?
S S—
A% (14-2r2/A4%)2
1 1—A42%/R*—3r?/R?
8rp=—

A 14217/42

In this case, we obtain the first of the new
solutions to be considered. The assumed equation
makes (3.1) immediately integrable by elimi-

4See R. C. Tolman, Relativity, Thermodynamics and
Cosmology (Oxford, 1934), §96. In connection with the
treatment of Schwarzschild’s interior solution given in that
place, it should be mentioned that the precise upper limits
for 7,2 and 2m should really be taken only eight-ninths as
large as given in (96.14), since the solution ceases to have
physical significance when the pressure p becomes infinite
at r=0, i.e., when 4 becomes equal to B rather than when
A becomes imaginary.
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nating the third term. The solution for N\ and »
then becomes easy. With suitable values for 4
and R the solution represents a sphere of com-
pressible fluid with the pressure dropping to zero
at the boundary as will be discussed more fully
later.

Solution V
Assumed equation
e’=const, 7°",

Resulting solution

142n—n?
e)\= , ev=B272n’
1—142n—n?)(r/R)¥

2(14-2n—n?)
where N=————,

14n
1 3+5n—2n2(7)M
- _A,

(4.5)

2n—mn?

R

Srp=

Ti42—m2 2 (14m)R?

n? 1 142n/77\¥
8rp= ——— (—) “+A.
142n—n2 »? R? R
2n(1—mn)
14+n

In this case the substitution of the values of e”
and »" which are given by the assumed equation
makes (3.1) immediately integrable if we multi-
ply through by »—*/(n+41). The solution is a
natural one to use in investigating spheres of
fluid with infinite density and pressure at the
center, as will be discussed in more detail later.

Solution VI

Assumed equation

where M=

e~ =const.

Resulting solution

e)\=2_n2, e’ = (Arl—n_.Brl+n)2’ (4.6)
1—n%1
8rp= —_——
2—mn?r?
1 1 (1—n)?4d—(14n)2Brn
8rp= — +A
2—n?r? A — Br?»

In this case, it is convenient to substitute the
assumed equation in the form e = (2 —#2%)~1, and
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perform the indicated differentiations in (3.1). A
first integral of the equation can then be obtained
after multiplying through by 7#+¢’2, and the
second integral after multiplying the result by
r~1=2» The solution gives a very simple expression
for the dependence of p on 7, and is again a
natural one to use in investigating spheres of
fluid with infinite density and pressure at center,
as will be discussed in more detail later.

Solution VII
Assumed equation
7? A4rt
er=1——4—.
R 4*

Resulting solution

1
A=
1—72/R?+-4r4/A2 (4.7)
e~M24-2¢2 /42— A?/4R?\ 1?
e”=B2[sin log ( ) ] ,
c
3 207
8rp=—————A,
R* A*
1 4r2 4e2
8rp= ——+—+——(Bor—1)}+A.
R* A+ A2

In this case, the substitution of the assumed
equation into the first term of Eq. (3.1) makes
it reduce to a constant times 7, and the equa-
tion then becomes integrable after multipli-
cation by e”»’/2r. The dependence of p on 7, with
eM? and e~ explicitly expressed in terms of 7, is
so complicated that the solution is not a con-
venient one for physical considerations.

Solution VIII

Assumed equation
e~ =const. r~2b".

Resulting solution

s (a2+25— 'y (E;E) - (%) K

¢’ = B2rlbe\,
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2
" (a—b)(a+26—1)

2m a+2b—1
- (a+2b-—2)(——)
Y

8rp=1{1

+(a~b+l)(%)a_b}~:;—A, (4.8)

8rp=2be">/r—8np,
with (e+b)(@—1)—26—2=0.

In this case, it is convenient to substitute the
assumed expression for ¢~ in (3.1) and perform
the indicated differentiations. A first integral of
Eq. (3.1) can then be obtained after multiplying
through by 7* where a is connected with b by
the last of Egs. (4.8); and the second integral
can then be obtained after multiplying through
by 7245, With a=2, b=0, the solution degener-
ates into the Schwarzschild-de Sitter solution as
already treated under .(4.2).

This is the last of the new solutions which we
shall present.

§5. CONNECTION OF INTERIOR AND
EXTERIOR SOLUTIONS

With an appropriate choice of parameters,
some of the foregoing solutions would correspond
to a distribution of fluid in which the pressure p
drops from its central value at =0 to the value
zero at some particular radius r=#, where the
density p still remains finite. Such a solution
could then be taken as describing the condition
inside a limited sphere of fluid with a definite
boundary at 7=, and in the empty space
outside this boundary would be taken as re-
placed by the Schwarzschild-de Sitter solution, in
accordance with Birkhoff’s theorem as to the
most general spherically symmetrical solution in
empty space. It will now be of interest to
consider the interconnection of the two forms of
solution at the surface of discontinuity at 7=7,.

Inside the sphere of fluid, we may take the
solution as described by a line element of the
general form (2.2)—on which we have based
our considerations

ds?= —eMr?—r?d0?—r?sin? 0d¢*+edi?, (5.1)
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where M and » are functions of ». Outside the
sphere, we may take the solution as described
by a line element of the simple Schwarzschild
form

ar?

——r2df?
1—-2m/r

ds?=—

2m
—r?sin? 6d¢p2+ (1 ———)dﬁ, (5.2)
r

which arises from the full expression for the
Schwarzschild-de Sitter solution (4.2), when we
set A=3/R?=0 in agreement with the known
fact that the cosmological constant is too small
to produce appreciable effects within a moderate
spatial range, and where for convenience we set
¢2=1 in order that m shall be the mass of the
sphere—as measured by its external gravitational
field—expressed in the usual units which make
the velocity of light and the gravitational con-
stant equal to unity. At the boundary of the
sphere at =7, both forms of the solution must
then give the same results for physical measure-
ments made at that radius.

Since the pressure p of the fluid falls to zero
at the boundary, we may calculate the radius of
the boundary 7, by setting the general expression
for p given by (3.2) equal to zero. With A=0,
this then gives us

vV(ir=m) 1 1
P ) RO —

(5.3)
"y 7’b2 7y

as the equation which determines the radius of
the boundary 7. At this radius (employing for
simplicity a unified system of coordinates #, 0,
¢, t applicable both inside and outside the
sphere) we must then demand the equalities

(5.4)
(5.5)

e’ (r=rp) — e—-). (r=1b)

and e M=) =1—2m/r,

in order that the two forms of line element
shall lead to the same results for measurements
made at the boundary with stationary meter
sticks and clocks.

We shall make use of the three equations (5.3),
(5.4) and (5.5) in the following three sections
where we consider specific examples of fluid
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spheres surrounded by empty space. In using
these equations, it is convenient to regard Eq.
(5.3) as determining the radius #, of the sphere
of fluid in terms of the parameters appearing in
the expressions for e¢* and e’ in the line element
(5.1). Eq. (5.4) may then be regarded as imposing
a condition which connects the parameters
appearing in ¢’ with those in ¢* and with 7, a
condition which can always be readily satisfied
since it will be noted that e’ is originally always
arbitrary as to a multiplicative factor. Finally,

Eq. (5.5) may then be used to calculate a value

of the gravitational mass of the sphere m in
terms of 7, and the parameters mentioned. It
will be noted from the form of (5.5) that the
gravitational mass of the sphere m can in any
case not be larger than 7,/2, and hence can go to
infinity only as the size of the sphere goes to
infinity. This, however, does not necessarily
imply that the mass M of the fluid before it
has been condensed into the sphere could not
go to infinity with 7, finite.

§6. DETAILED CONSIDERATION OF SOLUTION IV

We shall take Solution IV as providing the
first of the examples of a sphere of fluid sur-
rounded by empty space, which we wish to
consider in more detail.

The line element describing this solution has
the form

14-272/42
2= dr?—r*d6?

T (1—r/R)(14/47)
—7r%sin? 0dp*+ B2(1+r2/A2)de2.

(6.1)

Inside the sphere of fluid, the density p and
pressure p (with A=0) are given by expressions
of the form

1 1+4342/R*+3r2/R?

8rp=—
A? 14-272/42
2 1—#»?/R?
—_—— (6.2)
A? (14-22/42)2
1 1-A42/R*—372/R?
and 8rp . (6.3)

T4 14240

The central density p. and central pressure p.



SOLUTIONS OF FIELD EQUATIONS

have the values

1 1
and 8rp,=———

T R (6.4)

3 3
8wpe=—+—,
A4? R?
In terms of these central values, the equaiion of
state, connecting the density and pressure of the
fluid inside the sphere, can then be written in
the convenient simple form

(Pc - f’) 2
p=pc—5(p.—p)+8——. (6.5)
P6+Pc
The boundary of the sphere occurs at
R
7'b=§;(1_A2/R2)%’ (6.6)

where the pressure has dropped to the value
zero, and the boundary density has the value

Pb=Pc'—5Pc+8pc2/(pc+pc)' (67)

From the connection with Schwarzschild's
exterior solution (5.2), holding outside the bound-
ary, we have

B=(1—-n?/R?)/(142n?/A4%?), (6.8)

as a condition on the parameier B* appearing in
¢’. And we have
12 . (1=n2/R)(14+n?/A?)

) 14272/ 42

, (6.9)

as an expression for the mass of the sphere as
measured by its external gravitational field.

It will be seen from the foregoing that all the
properties of the sphere and its surrounding field
can be regarded as determined by the choice of
the two independent parameters A and R,
although it is not necessarily most convenient
to express those properties solely in terms of
these parameters. With R?> 4?2, it will be found
that the pressure and density of the fluid would
both fall continuously from their central to their
boundary values where the density would still
be positive. And with R*<11.542, it will be
found that the ratio of pressure to density would
nowhere exceed one-third. As R? and 42 go to
infinity the central density and pressure ap-
proach zero, and the sphere becomes larger
without limit.
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The solution may be a useful one in studying
the properties of spheres of compressible fluid
since the equation of state (6.5) which connects
the density of the fluid with its pressure is
relatively simple. This equation of state, how-
ever, is of course a very special one, since the
coefficients in the terms which give the linear
and quadratic dependence of density on pressure
are not arbitrary but are of the form which has
arisen from the particular assumption that was
introduced to secure integrability. Nevertheless,
it has been shown by Professor Oppenheimer and
Mr. Volkoff, in the article mentioned, that this
equation of state leads to results in some respects
similar to those which would be obtained from
the equation of state for a Fermi gas in cases of
intermediate central densities.

§7. DETAILED CONSIDERATION OF A SPECIAL
Case oF SoLuTioN V

We shall take Solution V as providing the
second of the examples of a sphere of fluid
surrounded by empty space which we wish to
consider in more detail. In carrying this out we
shall make the specific choice n=% for the
parameter # which appears in the description of
the solution (4.5), since this will give a ratio of
central density to pressure of special physical
interest.

The line element describing the solution (with
n=1) has the form

7
= 4y —%d0?

 4—7(r/R)P3

—r%sin? 0dp?+B¥dt®.  (7.1)

Inside the sphere of fluid the density p and
pressure p (with A=0) are given by expressions
of the form

3 10 77?3
8rp=—-+—- —-—) , (7.2)
7r* 3R?\R
1 2 /7\?}
and 81rp=——-—(-—-) . (7.3)
7r* R2\R

The central density p. and central pressure p.
then become infinite with the ratio

Pﬂ/pc=%~ (74)
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The equation of state connecting the density and
pressure of the fluid inside the sphere can be
written in the form
1/6
} (7.5)

The boundary of the sphere occurs at
ry=R/14317,

7 1
pmtpt————
6rR3 147 (3p+5p)

(7.6)

where the pressure has dropped to zero and the
boundary density has the value

87 py=28/(3 X 1417R2), (7.7)

From the connection with Schwarzschild's
exterior solution (5.2), holding outside the bound-
ary, we have

B?=14%1/2R, (7.8)

as a condition on the parameter B? appearing in
e¢’. And we have

m=ry/d=R/(4X14%7) (7.9)

as an expression for the mass of the sphere, as
measured by its external gravitational field.

It will be noted in this case that the solution
corresponds to a sphere of fluid of infinite density
and pressure at the center, having at that point
the ratio which would hold for radiation, or for
particles of such high kinetic energy that their
rest mass may be neglected in comparison with
their total mass. Other ratios could, of course,
be obtained with a different choice for the
parameter # in (4.5).

With the adjustable parameter R lying any-
where in the range 0<R< 0, it will be seen
that the solution satisfies the necessary physical
conditions for a sphere of fluid, with a pressure
which drops continuously from an infinite value
at the center to zero at the boundary, with a
density which drops continuously from an infinite
value at the center to a value which is still
positive at the boundary, and with a ratio of
pressure to density which never exceeds one-
third. As R approaches infinity, the ratio of pres-
sure to density approaches one-third throughout
and the sphere becomes larger without limit.

The solution may in some cases be a useful
one in studying the properties of finite spheres of
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fluid which have infinite central pressures and
densities. In accordance with the equation of
state (7.5), however, the ratio of pressure to
density drops too fast with decreasing density to
correspond very closely with what would be
expected in the case of a Fermi gas having
infinite central pressure and density.

§8. DETAILED CONSIDERATION OF A SPECIAL
CaseE oF SoruTtioN VI

We shall now take Solution VI as providing
the last of the examples of a sphere of fluid
surrounded by empty space which we wish to
consider in more detail. In carrying this out we
shall make the specific choice n=% for the
parameter #» which appears in the description of
the solution (4.6), which will again give us the
value one-third for the ratio of central pressure
to density.

The line element describing the solution (with
n=1) has the form

ds*= — (7/4)dr*—r?d 6> —1* sin? 6d ¢*
+(Art—Bri)de. (8.1)

Inside the sphere of fluid the demsity p and
pressure p (with A=0) are given by expressions
of the form

8mp=3/7r, (8.2)
and
1 1-9
Th=—" —’—(B/A)r. (8.3)
772 1—(B/A)r

The central density p. and central pressure P,
then become infinite with the ratio

pc/Pc:‘f%. (84)

The equation of state connecting the density and
pressure of the fluid inside the sphere can be
written in the form

_p1-9(3/56m)}(B/A)p™?

= . (8.5)
3 1—(3/56m)}(B/A)p™}
The boundary of the sphere occurs at
rn=A/9B, (8.6)

where the pressure has dropped to zero and the
boundary density has the value

8mpp=35B2/TAz2 (8.7)
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From the connection with Schwarzschild's
extertor solution (5.2), holding outside the bound-
ary, we have

A?=(3%/2¢XT)(B/A) (8.8)

as a condition on the parameter A? appearing in
e’, where B/A may still be taken as arbitrary.
And we have

m=3r,/14=A/42B, (8.9)

as an expression for the mass of the sphere as
measured by its external gravitational field.

Again it will be noted as in the previous case
discussed in §7, that the solution corresponds to
a sphere of fluid of infinite density and pressure
at the center, having at that point the ratio
which would hold for radiation or for particles
of such high kinetic energy that their rest mass
may be neglected in comparison with their
total mass. Other ratios could be obtained with
a different choice for # in (4.6).

With the adjustable parameter B/A lying
anywhere in the range 0<B/A4 < «, it will be
seen that the solution satisfies the necessary
physical conditions for a sphere of fluid, with a
pressure which drops continuously from an
infinite value at the center to zero at the bound-
ary, with a density which drops continuously
from an infinite value at the center to a value
which is still positive at the boundary, and with
aratio of pressure to density which never exceeds
one-third. As B/A approaches zero, the ratio
of pressure to density approaches one-third
throughout, the sphere becomes larger without
limit, and the solution as given by (8.1) ap-
proaches the same form as is approached by the
solution given by (7.1) as R goes to infinity.
This limiting form, which agrees with that given
in the article of Professor Oppenheimer and
Mr. Volkoff by Eq. (22), might be called the
blackbody radiation solution.

The solution in its more general form proves
to be a somewhat helpful one for use in connection
with the results of Professor Oppenheimer and
Mr. Volkoff, since with p large the equation of
state (8.5) goes over into the approximate form
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p—3p=const. p* which is that for a highly
compressed Fermi gas.

§9. CoNCLUDING REMARKS

In conclusion we must call attention to two
points which are more completely considered in
the article of Professor Oppenheimer and Mr.
Volkoff. It is necessary to mention these points
also here in order to guard against misconcep-
tions as to the nature of the static solutions of
Einstein’s field equations for spheres of fluid
which have been presented in this paper.

In the first place, it should be remarked that
the static character of any such solution is in
itself only sufficient to assure us that the solution
describes a possible state of equilibrium for a
fluid, but is not sufficient to tell us whether or
not that state of equilibrium would be stable
towards disturbances. Further investigation is
necessary to settle the question of stability under
any given set of circumstances. The question is
an important one, since we cannot regard a
static solution as representing a physically per-
manent state of a fluid if the equilibrium turns
out to be unstable towards small disturbances, as
for example in the well-known case of the
Einstein static universe.

In the second place, it should ‘be emphasized
that the imposition of static character on the
solutions to be considered is from a physical
point of view a severe restriction. It is, of course,
immediately evident that solutions having a
strictly static character could in any case be
applicable only in first approximation to spheres
of fluid where slow changes are actually taking
place. In addition it is to be noted that there
might be a possibility for an important class of
quasi-static solutions with e’=g4 going to zero
at the center of the sphere, as in certain of static
solutions considered above. Such solutions could
be said to have quasi-static character, since
changes taking place at the center would exhibit
a very slow rate when measured by an external
observer. Further discussion of the possible
existence and importance of such solutions will
be found in the article by Professor Oppenheimer
and Mr. Volkoff.



