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extension, or whether the free parts of those fields
which play such a role need, in addition, to be nonlinear
in some specific way, or whether only general rela-
tivistic coupling will work. Equation (1) would still
hold for such extended theories, being a purely kine-
matical property of homogeneous space-time, but the
usual local commutativity properties would be lost;
that is, the commutator of a field component with its
time-derivative would, even at equal times, depend on
other fields. Alternately, the conjugate momentum
would be a function of such other fields as well as of
the time derivative of the corresponding component.
The assumption that this is not the case appears to be
implicitly required in the proofs of the pessimistic
theorems. The commutation relations are closely
related to the creation and annihilation of particles;
if they now depend on the other fields present, it might
happen that the contributions, as the thresholds of
higher and higher creation processes are passed with
increasing energies, are damped thereby. These contri-
butions from new creation processes seem to be the

cause (or another expression) of the divergences in
field theory, in which cases the new couplings might
yield convergence. Such couplings arise, for example,
in quantum hydrodynamics. " Saturation might be
expected to occur with some of these couplings; that is,
the presence of many quanta, or high energies, may
damp further creation. "
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"A. Thellung, Helv. Phys. Acta 29, 103 (1956).In this case the
kinetic energy has the form pv'/2, both p and v being 6elds. This
form may be very different, however, from one in which several
variables p;; multiply v;v;,

"Landau" has also remarked that at high energies 6eld theory
might go over into a quantum hydrodynamical scheme.
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A ITHOUGH some of the arguments relating to
negative mass are fairly elementary and well

known, it will nevertheless be of advantage to rediscuss
the meaning of this term. In the first instance, without
fully specifying a theory, we can distinguish between
three kinds of mass according to the measurement by
which it is defined: inertial, passive gravitational, and
active gravitational mass. Inertial mass is the quantity
that enters (and is defined by) Newton's second law*;
passive gravitational mass is the mass on which the
gravitational fields acts, that is it is defined by I'= —m
grad V; active gravitational mass is the mass that
is the source of gravitational fields and is hence the
mass that enters Poisson's equation and Gauss' law.

In Newtonian physics the law of action and reaction
implies the equality of active and passive gravitational
masses, but the equality of inertial mass with these
other two is a separate empirical fact. The sign of both
these masses can take either value and it is an additional
empirical result that it is always positive. Four cases
accordingly arise, if this empirical fact is left out of
account.

*A mass-independent force (say, of electromagnetic nature)
has to be used here, for obvious reasons.

(i) All mass is positive; this is familiar.
(ii) Inertial mass negative, gravitational mass is

positive. A body consisting of matter of this k,ind will
respond perversely to all forces whether gravitational
or of other kinds, but will produce gravitational forces
just as a usual body does.

(iii) Inertial mass positive, gravitational masses
negative. In this case we would have normal behavior
relating to all nongravitational forces, but gravitational
behavior involving masses of this type and of type (i)
would be governed by a negative Coulomb law; i.e.,
like masses would attract and unlike masses would
repel.

(iv) All mass is negative. This would be a combina-
tion of (ii) and (iii). Matter of this kind responds
perversely to nongravitational forces, responds like
ordinary matter to gravitational forces, but produces
repulsive gravitational fields.

In general relativity the situation is quite di6erent.
The principle of equivalence is not a separate fact but
is basic to the theory. Accordingly the ratio of inertial
and passive gravitational masses is the same for all
bodies. The relation between active and passive
gravitational masses is not fixed by anything like
Newton's third law as this would require integrals over
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extended regions of space-time which do not possess
the required tensorial character. A good deal of work
has been done' ' and tends to indicate that the relation
is rather complicated.

As long as relativity is considered purely as a theory
of gravitation, the inertial and passive gravitational
masses do not in fact appear. Active gravitational mass
occurs for the first time as a constant of integration in
Schwarzschild's solution. If this constant is tak.en to
be positive, then test particles will, in the first approx-
imation, describe the Newtonian orbits corresponding
to an attractive body. If, however, the constant is
taken to be negative then, in the 6rst approximation,
test particles will describe the orbits corresponding to
the Newtonian case with repulsion. Note that in the
first case all bodies will be attracted, in the second all
bodies will be repelled.

If we now leave the one-body problem and consider
the two-body case, then a remarkable situation arises.
Imagine a body of positive mass and a body of negative
mass separated by empty space. Then, to use the
language of the Newtonian approximation, the positive
body will attract the negative one (since all bodies
are attracted by it), while the negative body will repel
the positive body (since all bodies are repelled by it).
If the motion is confined to the line of centers, then one
would expect the pair to move off with uniform accelera-
tion. This rather surprising result clearly requires
confirmation by the complete construction of the model
in general relativity.

the other particle would have different accelerations.
The usual Minkowski metric may be transformed to
the uniformly accelerated frame by the transformation
r=s sinht, f=s cosht, $=x, g=y, resulting in the
metric ds'=s'dt' —dx' —dy' —ds'. It is clear that this
metric does not cover the whole of space, but is bordered
by portions of the asymptotes which act as horizons
and accordingly the metric only covers one-quarter
of space-time (Fig. 1).

We now return to the task of constructing a model in
general relativity of two bodies whose masses have
opposite sign. Accordingly we use a uniformly ac-
celerated frame, and then immerse in it two 6nite
bodies with opposite sign of mass. In the uniformly
accelerated frame the system will be axially symmetric
and so we can use4 the metric of Weyl and I.evi-Civita.
In this metric we have, in empty space,

ds'= e'"dt' e'"Pe"(—dr'+dP)+r'd8q

where p= p(r, 5), o=e (r,e). satisfy

[The operator occurring in (2) will be denoted by V".j
Bo(By l '( cd)i-I
ar (Br) (clz)

(4)

Uniformly accelerated systems in general relativity
(and in special relativity) are well known, ' but it may
be worth while repeating here briefly the main properties
of such systems. The Newtonian concept of uniform
acceleration may be generalized to special relativity
in a number of ways, but one of these is of outstanding
importance in retaining the stationary property. The
system in this case is described by the equation g' —v'

=const. The orbits of all particles in the r f plane—
form a system of rectangular hyperbolas with 6xed
asymptotes. These particles all have an acceleration
which is uniform in the sense that the motion of each
particle viewed from that particle is constant in time.
However, although the acceleration of every point
is uniform, the acceleration of different points is not
the same. Roughly speaking, the nearer the trajectory
of the particle passes to the origin the larger its accelera-
tion. The remarkable feature of this system is its
stationary character. If any particle carried an observer
measuring the distance of any other particle partaking
of the motion, then he would 6nd this distance to be
constant in time, although to a fixed observer he arid

' J. L. Synge, Proc. Edinburgh Math. Soc. (2) 7, 93 (1937).' E. T. Whittaker, Proc. Roy. Soc. (London) AI49, 384 (1935).' I.. Marder, Proc. Cambridge Phil. Soc. 53, 194 (1957).

It is well known that there is a consistency condition
for this metric. 4 For our purposes this condition will
be given in a slightly different form from the usual one.

I'zo. 1. The shaded portion on the right is mapped on the
half-space s&~0 and also on the entire (t,r,s,8) space.

4 P. G. Bergmann, Introduction to the Theory of Relativity
(Prentice Hall, Inc. , New York, 1946), p. 208.
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For any closed circuit C situated entirely in empty
space (though possibly enclosing a nonempty region)
we have from (3) and (4)

aa ao
I

(ap) (aie ~0=
c ar az c Ear) &as) J

By By (' By
+2r dS = 2 V2q rdrdz (5)

Br Bz ~ Bz

by the divergence theorem, the integral being taken
through the part of the meridian plane enclosed by C.
It has been assumed here that through the whole of
this region the metric has the form (1) though it need
not satisfy Eqs. (2), (3), and (4).

The metric (1) is not in fact the most general metric
for a nonempty static axially symmetric region but it
is suSciently general for the model we wish to construct.
It is easy to show that

1 Bo'

Kp KT00 t!2(p—o) —2V'y+ V20.———
r Br

+Isa I+Ii I
(6)

(az&' (as''

1 Bo-

Kpii= gT 1 —gT 2 —
gp22 e2(y—s)

r Br

The significance of the consistency condition (5) is
now clear: it is that the gravitational force on any
body surrounded by empty space must have a vanishing
z component. Since the other components vanish by
symmetry, (5) is simply the Newtonian equilibrium
condition. We can now regard y as the exact Newtonian
potential of a Newtonian analog system though the
density of the Newtonian system will not be exactly
the same as the density of the relativistic system.

Since Laplace's equation is linear, we can of course
superpose solutions. In particular if there are two
bodies Li.e., two separate regions in which (2) does not
hold), then the two corresponding solutions may be
superposed, subject to condition (5) holding for each
body separately. A few theorems of Newtonian gravita-
tion may now usefully be quoted.

(i) If p—4 at ~ and V'z=0 except in a single
finite closed region, then condition (5) is satisfied.

(ii) If p~0 at ~ and V'p=0 except in a finite
closed region which lies entirely in the region z&a
and in which V'y&&0, thenap/as&&0 for all z&~a.

(iii) If p~0 at ~ and V2p=0 except in two finite
regions one of which lies entirely in z&a and the other
in z) u, and in each of which V' y is of one sign, then
condition (5) cannot be satisfied. This important result
follows from (i) and (ii). If z is split into two parts, pi
satisfying Laplace's equation except in body 1 and
q» except in body 2, then condition (5) for body 1

requires that

(a~I '
I +Ii.ar- i & as)

(7) V'pi+ V2pi rdrdz=0.» as az

By By 1 Bo'

KTyg= 2
Bz r Bz

+I I+I I (8)
(a~~'

(ar ) &as)

(9)

1 Bo—ep33 —— zTP=e'&~'i —V'o.———
r Br

The first term vanishes by (i); the second cannot
vanish by virtue of (ii). The theorem shows that there
is no static solution in general relativity for two bodies,
each containing matter of one sign, situated on opposite
sides of a surface z= const, with the metric tending to
the Minkowski metric at infinity. It will now be shown
that if the last condition is dropped such a solution is
no longer impossible.

The type of specialization involved in the retention
of metric (1) is clearly shown in (7). The condition that
T~2 is finite on the axis implies that o-= const on r=0.
Without loss of generality we may take 0 =0 on r=0.
If we suppose that there is no matter on r =0, then this
condition also follows from (5).

We can now construct a Newtonian analog of our
system in which r, z, 0 are cylindrical polar coordinates
and in which p is the gravitational potential (in
gravitational units). In empty space y satisfies Laplace's
equation (2). Also, as long as p is small, (3) and (4)
imply that o is small of the second order. Equation (6)
is then, to the 6rst order, identical with Poisson's
equation, while Eqs. (7), (8), and (9) imply that the
stresses are small compared with the density.

where

(x'+y')1= re
tan —'y/x=8

q'= 2 log([r'+ (z—u)'j + (z—a) }
c=-' log(l+ l(s-c)9'+ (S-c)'j '}

(12)

(13)

and u is an arbitrary constant.

The uniformly accelerated metric

dS =z dt —ds —dp —dz (10)

may be transformed to the Weyl-Levi-Civita form (1)
by the transformation
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This p, which will be called pp, satisfies Laplace's
equation in the whole relevant portion of space, i.e.,
except on r=0, z &~a. As was discussed earlier, the
uniformly accelerated metric only represents part of
space-time and so the singularity at r=0, z ~&a need
not cause surprise or alarm.

Note that, for z) a, 8 g o/Bz) 0
Consider now the problem of two bodies, as in (iii)

above, but add the potential pp. This implies that we
drop the boundary condition that space is Minkowskian
at infinity and replace it by that appropriate to a
uniformly accelerated frame of reference in a space-
time which is Rat at inanity. If each of the bodies is
entirely in z&a, and if in the body (body 1) in the
lower z region V'p»~&0, whereas in the other one
(body 2) 7'p2&~0, then condition (5) can be satisfied
in suitable circumstances. For then, inside body 1,
8/2/cia(0 and, in body 2, el+i/cia(0. As Bpo/cjz&0 in
both regions, there is now no argument from signs to
show that the arrangement is impossible.

To establish the possibility we proceed as follows.
Let B», B2 be two finite regions of space with B»
entirely in z» &z &z»' and B2 in z2 ~& z &z2' where z»'(z2.
Let p» satisfy Laplace's equation everwhere outside
B», with p»—+0 at in6nity and with V p»~&0 in B».
Similarly let p2 satisfy Laplace s equation outside B2,
let it tend to zero at infinity, but V'q2~&0 in B2. Then
consider

As an example we may take a=0 and

C
r'+ (z—hi)'7'

P»=-
ss» 38$»

[r'+ (z—hi)']-
.2a»3 2Q»

(r'+ (z—h„)' ~& a,')

(18)

jr'+ (z h)']l— (r'+ (z—hp)' ~& aP)

3m2
(r'+ (z—h2)' ~& aP)

m2
Lr'+ (Z—hg)']—

.202 282

BPp BP» '

0=)f)f,-d,-d.- +—.
Bz Bz . (20)

If a2((h2 —h» then this becomes eRectively

BPp BP»
+

Bz Bz a =h2, r =p
(21)

Here, for simplicity, h» and h2 are disposable rather
than k and 1.

Condition (16) becomes, since V'p2 ——const in 8~,

P = go+kg»+tP2 (14) and so

f'df'dzV p»J Bz

p 8Pg
+l—=0

Bz
(15)t

and

where the a entering qp is a constant and k, l are
constants to be determined later, with /, k&0 and
a(zi. If condition (5) is to be satisfied for both Bi
and B2 then

(hg —hi)'

Hence m» is negative.
Similarly we must have, if a»((h2 —h» and a»((h»,

(cI yo

I

—+—1( Bz clz ) z=hi, r=o
(23)

~Vp
f)f)f;d;d;~ „+h =O.

R BZz
(16)t 2hi (h2 —hi)'

(24)

B2

~qp &0&-—
8z Bz

(17)

I will be positive. Similarly (16) determines a positive h.
All the conditions of the problem, therefore, are

satis6ed, and so we have succeeded in constructing a
uniformly accelerated pair of bodies whose densities
have opposite sign.

Since the factor h can be canceled in (15), this
equation can be considered as an equation determining
/. Moreover, since in B»

Hence

e
—2(v o—~o)—

2 (r'+z') l 2h
(25)

It follows that in both bodies the derivatives of
yp are of the same order of magnitude as the derivatives
of the potentials produced by themselves. If, then,
the Newtonian potentials of both bodies are small,
the derivatives of 0 will be small of the second order,
in spite of the additional terms due to pp. Accordingly
the densities are an order of magnitude larger than the
stresses, and are themselves, to the first order, given by
gp = 2e2(«—0» V2p

By (12) and (13)

t The Newtonian "self-force" term V'q, Bq,/BX has been
omitted in (15) and ('16), since its integral vanishes by theorem (i).

rg
op= 12h—.

C
(26)
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It may be advantageous to view the system from
the Galilean frame of reference r, f', n, 8 at r= t=0.f.
Then the bodies appear to be spheres with centers at
f=(2h)l and of radii a(2h) '. The densities are still
given by (26) and so the masses are 3f=m(2h) '*,

while the accelerations are (2h):. In the Newtonian
limit, the accelerations should be given by

power series in r' for small r. Also

8(s,r) =o (z,r) —op(z, r)

is of the same nature.
Defining now

r=set'sinht, f'=set'cosht, +=re t'

we arrive at the metric

(32)

(33)

2

(2h2) l [(2h2) i—(2hi) l]'

(27)
(2hi) l[(2hg) -* —(2hi) -*]'

By (22) this equals

(hs —hi)'

2h, (2h,) *[(2h,) i —(2h,) '*]'

{2D2hi) "+(2h2) '])'
(2g)

(2h~) l (2hi) l(2hg) i

This will be approximately the case provided h2 —h~((hi,
i.e., provided the product of acceleration and distance
apart is small. This is an appropriate limitation for
the Newtonian case. It is interesting to note that the
masses are not quite equal and opposite, but this is not
surprising since their accelerations must be unequal in
the uniformly accelerated model.

4.
The metric constructed in the preceding section

contains a singularity at r =0, z &~ 0. This is not surpris-
ing, since the uniformly accelerated metric p= po also
contains such a singularity which is, however, purely
artificial and is transformed away by returning to the
(r,f,n, 8) metric. Is a similar elimination of the singular-
ity possible if p = q 0+ &pi+ z 2?

We note first of all that if p= pp the entire (t,z, r,8)
space corresponds to s~&0 in (t,s,r,8) and to a quarter
of space-time; vis , f &~~r.

~
in (r,f',o.,8). Keeping to

the same transformation equations

r=rs z=-,'(s' —r') t=t (29)

we have now the metric

ds'= s'e'&dt' e"' t'i (dr'+dr') r—'e 't'd8' (30)—
where the singular part of the metric appears explicitly
and we are only dealing with z ~& 0. It is easily seen that

y (s,r) = q (z,r) —s o(z,r) (3I)

$ Where $=n cos8, g=n sin8.

is a regular function of z and r. Moreover it is readily
established that, for small s, P can be expanded as a
power series in z' with coefficients depending on r,
the coefficients themselves being representable by

ds2= dr2 df'2 —ti(rd—r f'dt)—~ 2vdn—(rdr f'df)—
—Mn' —n'd8' (34)

where the coefficients p, v, X are functions only of n
and f' r' —Not. e that this metric is invariant under
any (t, r) Lorentz transformation, showing that we
are still dealing with a case of uniform acceleration
though we are no longer in Qat space-time.

By virtue of Eqs. (33), metric (34) is established only
for t ~&~ r ~. What happens on and beyond this bound-
ary? It is clear from the structure of (34) that the
boundary consists of parts of two null geodesics.
Furthermore, a somewhat laborious comparison of
coefficients yields expressions for p, v, X in terms of
P, BP/Bs, 8$/Br, and 8. An examination of these expres-
sions establishes that, as a consequence of the behavior
of P and 8 for small s referred to above, the three new
coefficients can be expanded in series of powers of
f'2 r' near —the boundary, the coefficients of the terms
in these series being functions of n that themselves
can be expanded in powers of n' near n=0. Metric
(34) is therefore perfectly regular at the boundary.

As the boundary is a null geodesic the continuation
of the metric beyond it is not uniquely defined. It
would be most attractive to find a continuation of (34)
that was free of singularities and of matter, and
comprised all space-time. The mathematical difficulties
of finding such a continuation appear to be formidable
and have so far proved unsurmountable. It is also an
interesting and significant problem to establish the
existence of such a continuation, but this too has so
far defied solution.

A solution of a di8erent character has however been
obtained. If (34) is supposed to retain its form for all
r and f then a metric is obtained that is symmetrical
about r=0 and about /=0 In the re.gion
the coefficients depend only on n and on the time like
variable v' —f'2 (and similarly in

~ f ~

& r) while in-
l ~&

~
r

~

t—he mirror image of the conditions in f' &~
~

r
~

will apply; i.e., there will again be two uniformly
accelerated bodies of opposite sign of mass. The sole
question to be decided in order to establish the validity
of this type of solution is whether there is an empty
space metric of this kind in r &~ ~f~ fitting with the
required degree of smoothness on to our previously
obtained metric at r=t &~0.

We first notice that the transformation

r= Te' coshZ, g= Te' sinhZ, n=Re '
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with
e= «(T,R) (35)

Bfj (Beg t Be)
(R-T-) =RT

I

BR &BR) KBT) .

with

g =g(T,R)

provided the p, v, X of (34) are suitably connected with
the e, g of (36). In fact it turns out that the expres-
sions for p, v, )I in terms of e and g are identical with
those in terms of f and 6 provided P, 5, r, s', sB/Bs
are replaced respectively by e, g, R, T', TB/—BT
Accordingly, we have found a metric 6tting smoothly
to our original metric by continuing the intermediate
metric (34) across the boundary.

The behavior of (36) away from the boundary is
governed in empty space by the equations

B2~ ] B~ B26 1 Bf
+— = +-

BR' R BR BT' T BT
(37)

(R-T) =RT
I

I+I-
BT (BR) EBT)

B6 B6 B6 B6
2RT' +—2R' 2RT (38)—

BR BT BT BE.

yields the metric

ds'= e'&~'(dT' dR')—T'e"—dZ' R'e—"d8' (36)
B6 B6 B6 B6

2R—'T +2RT —2R' (39)
BR BT BT BR

Since (3/) is a hyperbolic equation it will have no
singularities for T)0, R~&0 provided e and Be/BT
are given on T=O in a nonsingular manner as even
functions of R. This is the case in view of the properties
of P and since e is connected with P as mentioned above.
In fact, near T=0, e can be expanded in a power series
in T' with coefFicients that themselves can be expanded.
in powers of R', as a consequence of the corresponding
property of P. Accordingly e will be nonsingular. As for

g, the only doubt about its nonsingular character arises
from the factor E.'—T'. It is, however, easily seen that
this factor does not lead to a singularity provided
Be/BR=Be/BT on R=T, and this in turn is a con-
sequence of (37) and of the fact that Be/BR=Be/BT=O
at R= T=O.

%e have succeeded, therefore, in constructing a
world-wide nonsingular solution of Einstein s equations
containing two oppositely accelerated pairs of bodies, $
each pair consisting of two bodies of opposite sign of
mass. Since To' and m are for any one body of the
same sign the negative mass occurring is of type (iv).

$ This solution is closely analogous to Born's solution for the
electromagnetic case )H. Bondi and T. Gold, Proc. Roy. Soc.
(I,ondon) A229, 416 (1955)j.


