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BLACK HOLES: THE LEGACY OF HILBERT’S ERROR

LEONARD S. ABRAMS

Abstract. The historical postulates for the point mass are shown to
be satisfied by an infinity of space-times, differing as to the limiting
acceleration of a radially approaching test particle. Taking this limit
to be infinite gives Schwarzschild’s result, which for a point mass at
x = y = z = 0 has C(0+) = α2, where α = 2m and C(r) denotes the co-
efficient of the angular terms in the polar form of the metric. Hilbert’s
derivation used the variable r∗ = [C(r)]1/2, which transforms the co-

ordinate location of the point mass to r∗0 = [C(0+)]1/2. For Hilbert,
however, C was unknown, and thus could not be used to determine r∗0 .
Instead he asserted, in effect, that r∗ = (x2 + y2 + z2)1/2, which places
the point mass at r∗ = 0. Unfortunately, this differs from the value (α)
obtained by substituting Schwarzschild’s C into the expression for r∗0 ,
and since C(0+) is a scalar invariant, it follows that Hilbert’s assertion
is invalid. Owing to this error, in each spatial section of Hilbert’s space-
time, the boundary (r∗ = α) corresponding to r = 0 is no longer a point,
but a two-sphere. This renders his space-time analytically extendible,
and as shown by Kruskal and Fronsdal, its maximal extension contains
a black hole. Thus the Kruskal-Fronsdal black hole is merely an artifact
of Hilbert’s error.

Il existe un nombre infini d’espace-temps non équivalents pour la
masse punctuelle; ils diffèrent les unes des autres quant à l’accélération
limite d’ une particule d’essai s’approchant radialement. En faisant cette
limite infinie, on a l’espace-temps inextensible de Schwarzschild, qui a,
pour une masse punctuelle à x = y = z = 0, C(0+) = α2, ou α = 2m et
C(r) désigne le coefficient des termes angulaires lorsque la métrique est
écrite en polaires sphériques. Hilbert utilisait dans sa dérivation la vari-
able r∗ = [C(r)]1/2, qui transforme la position de la masse punctuelle de

r∗0 = 0 à r∗0 = [C(0+)]1/2. Pour Hilbert cependant, C était une inconnue,
et il ne pouvait par conséquent l’utiliser pour determiner r∗0 . Au lieu de
cela, il affirmait en effet que r∗ = (x2 +y2 +z2)1/2, ce qui place la masse
punctuelle à r∗ = 0. Malhereusement, cette valeur diffère de la valeur
(α) obtenue en substituant le C de Schwarzschild dans l’expression de
r∗0 ; comme C(0+) est une scalaire invariant, il s’ensuit que l’affirmation
de Hilbert est invalide. Comme résultat, dans chaque section spatiale
de l’espace-temps de Hilbert, la limite (r∗ = α) correspondant à r = 0
n’est plus un point mais une sphère bidimensionnelle et par conséquent
pas une singularité quasi régulière. Cela rend son espace-temps analy-
tiquement extensible, et, comme l’ont montré Kruskal et Fronsdal, son
extension maximale contient un trou noir. Le trou noir Kruskal-Fronsdal
n’est donc rien de plus qu’un produit de l’ erreur de Hilbert.
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1. Introduction

Ever since Schwarzschild’s 1916 derivation [1], it has been accepted that
the historical postulates used by him to characterize the point-mass space-
time do, in fact, lead to a unique gravitational field. However, Schwarz-
schild’s result was obtained years before the concept of a ‘quasiregular’ sin-
gularity [2] had surfaced. As shown here, when the general polar form of a
static, spherically symmetric metric

gU (r) = A(r)dt2 −B(r)dr2 − C(r)dΩ2(1)

is substituted into Einstein’s vacuum field equations and the remaining his-
torical postulates are imposed on the solution, there results a one-parameter
family of inequivalent, maximal space-times, each of which has a quasireg-
ular singularity at the location of the point mass. Since each of these
space-times assigns a different number to the limiting value of a radially
approaching test particle’s locally measured acceleration, it is necessary to
supplement the historical postulates by one that fixes this limit. Taking it
to be infinite gives Schwarzschild’s result

gS(r) = (1 − α/R)dt2 − (1 − α/R)−1dR2 −R2dΩ2

where α = 2m and R = (r3 + α3)1/3.
Several months after Schwarzschild’s paper was published, another deriva-

tion of the point-mass space-time was given by Hilbert [3]. At the start he

introduced the radial coordinate r∗ = [C(r)]1/2, and then solved the vacuum
field equations for the two remaining unknowns, obtaining:

gH(r∗) = (1 − α/r∗)dt2 − (1 − α/r∗)−1dr∗2 − r∗2dΩ2

Of course, the use of r∗ = [C(r)]1/2 transforms the coordinate location

of the point mass from r = 0 to r∗ = [C(0+)]1/2. As can be seen from
Schwarzschild’s result, this is simply α. Hilbert, however, claimed that
r∗ = (x2 + y2 + z2)1/2, so that the point mass represented by gH(r∗) was
at r∗ = 0, and this claim went unchallenged by his contemporaries. As
a result of this mistake, in each spatial section the locus r∗ = α is not
a point but a two-sphere, and thus no longer constitutes a quasiregular
singularity of Hilbert’s space-time SH . As shown by Kruskal [4] and Fronsdal
[5], with r∗ = α having the character of a two-sphere in the t = constant
hypersurfaces, SH is analytically extendible to r∗ > 0, and the so-extended
space-time contains a black hole. It follows that the theoretical foundation
of spherical black holes is based on the 1916 error of Hilbert.

It is the principal objective of this paper to show how Hilbert came to
make this mistake. It will also be shown that SH cannot be used to represent
the ‘exterior’ of a collapsing star, and thus that spherical black holes cannot
be produced by gravitational collapse.
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2. The space-time of a point mass

Consider any static, time-symmetric and spherically symmetric configura-
tion (U) of matter and (or) energy. In his paper [1] Schwarzschild regarded
it as self evident that the metric of such a configuration, when expressed in
terms of quasi-Cartesian coordinates (t, x, y, and z), was necessarily of the
form

gU (x, y, z | 0, 0, 0) = F (r)dt2 −G(r)(dx2 + dy2 + dz2)(2)

−H(r)(xdx+ ydy + zdz)2

where

r = (x2 + y2 + z2)1/2(3)

and

F,G,H > 0(4)

and where, without loss of generality, the center 1 2 of the spherical sym-
metry has been taken at x = y = z = 0 for all t; this is signified by the
notation ‘| 0, 0, 0’ in the argument of gU . (The generality of (2) for such
configurations was subsequently established by Eiesland [7].)

In polar coordinates (r, θ, and φ), where x = r sin θ cosφ, etc., the above
expression of gU becomes

gU (r | 0) = A(r)dt2 −B(r)dr2 − C(r)dΩ2(5)

where

dΩ2 = dθ2 + dφ2 sin2 θ(6)

and from (4) and the tensor transformation law, it follows that

A,B,C > 0(7)

(Analogously, the ‘| 0’ in the argument of gU in (5) signifies that the center
of symmetry of (5) is at r = 0 for all t.)

For later purposes, we note that apart from spatial rotations about the
origin, which are of no relevance to what follows, the only transformations
T that leave the structure of (5) unchanged are of the form

t = kt̄+ b, k 6= 0, b constants(8)

r = h(r̄), h ∈ C1(9)

Since C(r) in (5) is readily seen to be a scalar under T , it follows that:

1Since a point mass is the only configuration under consideration, it will be assumed
here that only a single center of symmetry is present.

2The center is that three-dimensional point having the property that rotations about it
leave the Newtonian description of U unchanged. Note that the very concept of spherical
symmetry presupposes that the center of symmetry is a three-dimensional point in each
spatial section [6].
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THEOREM:The value of C at a specified event P (this will be denoted by
‘C[P ]’) is an invariant of the space-time associated with a given U .

Consequently, two space-times S1 and S2 having metrics of the form (5) for
which C1[P ] 6= C2[P ] are necessarily inequivalent. A fortiori,

COROLLARY:If two space-times S1 and S2 have metrics of the form (5),
and if limC1[P ] 6= limC2[P ] as P approaches the center of symmetry, then
S1 and S2 are inequivalent.

Consider now the particular U consisting of a single uncharged, nonro-
tating, nonradiating point mass (whose Newtonian gravitational mass will
henceforth be denoted by ‘m’). Historically, the conditions regarded as dis-
tinguishing the space-time (MU , gU ) of this U from those of all others where
originally formulated by Einstein [8], and together with those implicit in
that formulation were enumerated by Finkelstein [9]. The expression on
the right-hand side of (5), together with (6) and (7), already satisfies the
static- and spherical-symmetry requirements of Finkelstein’s list, as well as
those requiring a Lorentz signature and a global-time coordinate. As shown
in Appendix A, the further requirements that (5) be analytic, satisfy the
vacuum field equations, and be asymptotically flat reduce (5) to

gPM (r | 0) = (1 − α/C1/2)dt2 −
C ′2

4C(1 − α/C1/2)
dr2 − CdΩ2(10)

where C(r) is any analytic function of the r in (3) having the following three
properties:

C(0+) ≡ β2 ≥ α2(11)

C ′(r) > 0, r > 0(12)

C(r)/r2 → 1 as r → ∞(13)

(the prime denotes differentiation with respect to r). As shown there, all
such metrics comply with the final requirement of being analytically inex-
tendible to r = 0.

Since the center of symmetry of (5) is located at r = 0, the same is true
of the center of symmetry of (10), whence it follows from the corollary that
two space-times defined on M0 : r > 0 and having gPM as their metric
are inequivalent if C1(0+) 6= C2(0+). This, together with (11), shows that
there is a one-parameter family of inequivalent space-times (distinguished
by their value of C(0+)), which satisfy all the historical postulates for the
point mass. That is:
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The historical postulates for the point mass do not result in a
unique space-time. To obtain such a space-time, it is necessary
to supplement those postulates by one which fixes the value of
C(0+).3

To determine this supplementary postulate, it is necessary to relate C(0+) to
some physical property of the point mass. To this end, consider the motion
of an uncharged, nonspinning, nonradiating test particle as it approaches
the point mass along a radial geodesic. As shown by Doughty [13], the
particle “locally measured” acceleration (i.e., its acceleration measured by a
nearby observer whose position is fixed with respect to the point mass (see
Appendix B) is given by:

a =
(−grr)

1/2(−grr)|g00,r|

2g00
=

α

2C(1 − α/C1/2)1/2
(14)

which approaches

a0 =
α

2β3/2(β − α)1/2
(15)

as r → 0. Consequently, for a given value of m, the value of C(0+) is deter-
mined by the limiting value of a test-particle’s locally measured acceleration
as it approaches the point mass along a radial path.

Since there are no experimental data concerning a0, it is necessary to
choose its value on the basis of theoretical arguments. One such argument
is that in the corresponding Newtonian situation a0 is infinite. Although
one would not expect strict quantitative agreement (in the sense of equal
values of a at equal values of proper distance), the fact that the curvature
invariant f = RijkmR

ijkm remains finite as r → 0 indicates that the rel-
ativistic case differs from the Newtonian one only in degree, not in kind.
Accordingly, since there are no “degrees” associated with an infinite limit,
the supplementary postulate is taken to be:

(i) the limiting value of a neutral nonspinning nonradiating test
particle’s locally measured acceleration as it approaches the point
mass along a radial geodesic is infinite.

Examination of (15) shows that the only values of β that make a0 infinite
are 0 and α, and of these only the latter satisfies (11). Hence, the result of
postulate (i) is

C(0+) = α2(16)

The simplest choice of analytic C satisfying (12), (13), and (16) is

CB(r) = (r + α)2(17)

3The fact that a boundary condition for r → 0 is just as necessary as the one for r → ∞

was first realized by Brillouin [10]. Although Abrams’ work (see ref. [11]) contained a
derivation of the general point-mass metric similar to that given here in Appendix A, it
made use of an invalid argument (see ref. [12]) to prove that C(0+) = α2, and thus did
not turn up the fact that an additional postulate was required.
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which when substituted into (10) results in the following form, first used by
Brillouin [14], for the metric of a point mass at r = 0:

gB(r | 0) =
r

r + α
dt2 −

r + α

r
dr2 − (r + α)2dΩ2(18)

The metric obtained by Schwarzschild corresponds to the choice

CS(r) = (r3 + α3)2/3(19)

which satisfies (12), (13), and (16) by inspection.
It should be noted that all space-times [M0, gPM (r | 0)] arising from (10)

via an analytic C satisfying (12), (13), and (16) are equivalent, being related
via Cω global diffeomorphisms of the form

Ci(r) = Cj(r̄)(20)

and being globally homeomorphic and maximal, as well as having the same
singularity at r = r̄ = 0. Consequently, the space-time SS = [M0, gB(r | 0)]
will henceforth be termed “Schwarzschild’s”, since it is equivalent to the
[M0, gS(r | 0)] actually obtained by him, and its use simplifies the subse-
quent discussion.

3. Transformation to Flamm’s form

Let us relabel the events of M0 by adding α to their r values, and denote
the new “radial” coordinate by r̄; then

r̄ = r + α, r > 0(21)

This transforms M0 to M̄α, where

M̄α : r̄ > α(22)

tranforms the location of the point mass at r = 0 to r̄ = α, and transforms
gB(r | 0) to

gF (r̄ | α) =
r̄ − α

r̄
dt2 −

r̄

r̄ − α
dr̄2 − r̄2dΩ2(23)

termed the Flamm metric since Flamm [15] was the first to use this form to
represent a point mass at r = α.

(To avoid misunderstanding, note that the statement: “The point mass
is at r = 0,” in connection with (18), and “The point mass is at r̄ = α”,
in connection with (23), do not mean that these r or r̄ values are well-
defined quantities, let alone that events having such values are part of the
associated space-times. What they do mean is that, in the case of (18), the
proper distance from the point mass to an event in M0 with coordinate r
tends to 0 as r → 0; and in the case of (23), that the proper distance from
the point mass to an event in M̄α with coordinate r̄ tends to 0 as r̄ ↓ α.)

Since physics is not changed by such a relabelling, it follows that the
Flamm space-time:

SF = [M̄α, gF (r̄ | α)](24)
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represents the identical physical situation as SS , namely, a single uncharged,
nonrotating, nonradiating point mass. Thus, both SS and SF have the same
singularity structure, i.e., a quasiregular singularity at the location of the
point mass, and thus SF is likewise analytically inextendible to that location,
now denoted by r̄ = α.

In passing, note that the fact that the coefficient of dΩ2 in (23) tends to
0 as r̄ ↓ 0 does not contradict (11), since the r̄ in (23) is not the r in (3).

4. Hilbert’s derivation of the point-mass metric

About 10 months after the publication of ref. [1], Hilbert [3] presented
another derivation of the point-mass metric. Although Hilbert’s starting
point was the same expression (5) used by Schwarzschild, he immediately
reduced the number of unknowns to two by introducing a new “radial”
coordinate r∗, defined by

r∗ = [C(r)]1/2(25)

This transforms (5) to

g∗U (r∗ | 0∗) = A∗(r∗)dt2 −B∗(r∗)dr∗2 − r∗2dΩ2(26)

where from (7)

A∗, B∗ > 0(27)

and 0∗ denotes the value of r∗ at the location of the point mass, which from
(25) is given by

0∗ = [C(0+)]1/2(28)

Solving the resulting vacuum field equations by means of a variational prin-
ciple, Hilbert arrived at the following expression for the point-mass metric:

gF (r∗ | 0∗) =
r∗ − α

r∗
dt2 −

r∗

r∗ − α
dr∗2 − r∗2dΩ2(29)

which by inspection is well defined on M∗

α : r∗ > α.
However, there are two problems connected with the use of (25), which

Hilbert evidently overlooked. The first of these is that (25) involves a loss
of generality [16]; for example, if U is such that the C in (5) is constant
[17], then the use of (25) will make it impossible to determine the metric for
U . Unfortunately (from the stand-point of subsequent developments), this
flaw had no impact on Hilbert’s derivation, since as seen in Sect. 2, for the
point-mass metric all C(r) permissible in (5) are strictly monotonic, so that
(25) is in fact a diffeomorphism for such a U .

The second is that the use of (25) destroys information; once it is applied,
it becomes impossible to determine the relationship between r∗ and r (and
thus to find the value of 0∗), since at this point in the derivation the function
C(r) in (25) is unknown, and there is no way to determine what it is (or
even its value as r → 0) from the resulting A∗ and B∗.
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This being the case, how did Hilbert arrive at the value of 0∗? The
answer is as follows: by assuming that for all U , the triplet (r∗, θ, and φ)
can be regarded as polar coordinates just as validly as (r, θ, and φ), so that

r∗ = (x2 + y2 + z2)1/2. From this assumption, together with the fact that
the location of the point mass described by (5) is given by x = y = z = 0, it
follows at once that even without knowing C(r), the r∗ position of the point
mass described by (26) is given by r∗ = 0, and so Hilbert proclaimed.

While it is true that there are a number of U for which Hilbert’s assump-
tion is valid, the point mass is not one of them, as shown in Sect. 2. For
such a U all C in (5), and thus in (25), have the property that C(0+) = α2,
whence (28) shows that 0∗ = α > 0. Thus, as the notation on the left-hand
side of (29) indicates, the right-hand side is simply Flamm’s metric for a
point mass at r∗ = α.

Henceforth, to avoid circumlocution the right-hand side of (29) together
with the assumption that the r∗ appearing therein is related to the x, y, and
z in (2) via (3), and thus that the point mass described by (29) is at r∗ = 0,
will be termed “Hilbert’s” metric 4, and denoted by gH :

gH(r∗ | 0) =
r∗ − α

r∗
dt2 −

r∗

r∗ − α
dr∗2 − r∗2dΩ2(30)

while Hilbert’s space-time will be denoted by SH

SH = [M∗

α, gH(r∗ | 0)](31)

5. Extendibility of Hilbert’s space-time

Consider the circle γ(ǫ) mentioned at the end of Appendix A. In SS,
its description is given by t = t0, θ = π/2, and r = ǫ, where t0 is an
arbitrary constant, independent of ǫ. Since SS is diffeomorphic to SH via
Tα : M0 →M∗

α by r∗ = r+α, the description of γ(ǫ) in SH can be obtained
by applying Tα to its description in SS . This gives t = t0, θ = π/2, and
r∗ = ǫ + α. As seen from (30), its proper circumference is still 2π(ǫ + α),
which as in Appendix A tends to 2πα as ǫ ↓ 0. Now, however, in contrast
to the situation in Appendix A, this no longer gives rise to a violation of
elementary flatness at Tα(0) = α in SH because, thanks to the assumption
that gave birth to (30), γ(ǫ) no longer shrinks down to a point as ǫ ↓ 0, but
instead simply approaches the circle r∗ = α. Thus, Hilbert’s erroneous (for
a point mass) assumption results in the disappearance of the quasiregular
singularity that is present in Flamm’s space-time at r̄ = α. Since it is
well known that there are no curvature-type singularities of gH at r∗ = α,

4In ref. [11], this metric was designated “Droste-Weyl”. The reason was that both
Droste [18] in 1916 and Weyl [19] in 1917 had derived metrics having the form of gH ,
whereas my copy of Hilbert’s paper was dated 1924, so that it appeared that Droste and
Weyl had been the first to obtain gH . However, I subsequently discovered that Hilbert’s
paper had originally been published in 1916, and that neither Droste nor Weyl had claimed
that the r coordinate appearing in their metrics was (x2 +y2+z2)1/2. Thus, Hilbert alone
was responsible for the error.



9

it follows that there are no singularities of any kind there, so that SH is
analytically extendible to r∗ = α, and as Kruskal and Fronsdal have shown,
all the way to r∗ > 0.

6. Inequivalence of Schwarzschild and Hilbert space-times

If two space-times are to be equivalent, it is certainly necessary that they
be isometric i.e., that there exists a diffeomorphism from one to the other
that carries the metric of one into the metric of the other. And since the
presence of singularities of the manifold geometry is unaffected by diffeo-
morphisms, it is also necessary that equivalent space-times have the same
“singularity structure”, i.e., the same singularities as one approaches corre-
sponding boundary points. Now, SS and SH are isometric under Tα, but
as shown in the preceding section, SH has no singularity corresponding to
the quasiregular singularity at r = 0 in SS . Consequently, SS and SH are
inequivalent. Since it was shown in Sect. 2 that SS is the space-time of a
point mass, it follows that SH and its analytic extension (SK−F ) are not.

7. The Kruskal-Fronsdal black hole is unnecessary

Consider any phenomenon supposedly involving a single Kruskal-Fronsdal
(K-F) black hole (e.g., x-ray spectra from accreting gas). Because of the in-
finite red shift at the surface (r∗ = α) of the hole, all that we can ever
know of this phenomenon must arise from information originating outside
the hole. But the space-time “exterior” to the hole is SH , which in turn
is diffeomorphic to SS. That is to say, everything that takes place outside
the hole would occur in the identical fashion if the entire space-time (SK−F )
were replaced by SS; it is impossible to determine which space-time is “re-
ally” present. Thus, any observations that are explicable by postulating
the presence of a K-F black hole are equally well explained by postulating
the presence of a Schwarzschild point mass at the geometrical center of the
black-hole’s surface. Consequently, there is no need to involve a K-F black
hole to explain any set of observations, Schwarzschild’s “black point” will
do an equally effective job.

Whether this observational equivalence extends to the case of two or more
black holes (vis-a-vis two or more point masses) is unclear, but in view of
the remarks of the next two sections it does not seem worthwhile to pursue
the matter.

8. The K-F black hole is unproducible

The valid proofs of Birkhoff’s theorem (e.g. refs. [7] and [20]) show only
that any spherically symmetric solution of the vacuum-field equations can
be given the form of gH , but say nothing as to the relationship of the radial
coordinate of the transformed metric and the underlying quasi-Cartesian x,
y, and z. As emphasized by Brans [21], until this relationship is known the
metric is undefined. Thus, Birkhoff’s theorem cannot be used to justify the
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claim that the metric exterior to a spherically symmetric star is identical to
that of a point mass.

However, the characteristics of the space-time exterior to a spherically
symmetric, uncharged, nonrotating, nonradiating star are nearly the same
as those of a point mass, the only difference being that for the star the
postulates relating to the behavior of the space-time at r = 0 are no longer
applicable. Consequently, to determine the exterior metric for such a star all
that is necessary is to impose the remaining postulates for the point mass on
(5). As can be seen by inspection of Appendix A, doing so changes nothing
up through (A.16), while (A.17) must be replaced by

C(rb) ≥ α2(32)

where rb denotes the r coordinate of the star’s boundary. (The precise value
of C(rb) consistent with (32) is determined by the junction conditions.)
Consequently, the exterior metric of such a star is given by gPM (r | 0) in
(10), but with C now satisfying (12) for r > rb, (13), and (32). That is
to say, the exterior metric has the same functional form as the metric of
a point mass located at the star’s center, but the values of the parameters
appearing therein are different. An example of such a situation can be found
in ref. [22].

In the case of collapse to a point, this distinction ultimately vanishes,
so that the appropriate space-time for the exterior of a star undergoing
catastrophic collapse tends to the (SS) of a point mass. While the precise
details of the approach to SS will vary from case to case, it is already clear
from the form of gPM , together with (13) and (32), that A(r) > 0 for all
r > rb, and thus, that no black hole ever forms in the exterior of the star,
no matter how far the collapse proceeds.

Thus, the correction of Hilbert’s error not only eliminates the point mass
as a possible source of K-F black holes, but simultaneously deprives them
of the only mechanism for their production.

9. The K-F black hole is unreal

Although it was shown in Sect. 6 that SK−F does not represent the space-
time of a point mass, it might still be hoped that it represents some other
configuration of matter and (or) energy, and is thus of physical significance
in its own right.

However, this is not the case. Since the energy-momentum tensor vanishes
everywhere in SK−F , the only possible locations of its sources are at its
singularities. These are at r∗ = 0, or in terms of Kruskal’s u and v, at
v2 − u2 = 1. As is easily seen, these loci are spacelike, whereas those of real
matter or radiation are timelike or null, respectively. Consequently, it is
impossible for SK−F to represent any real configuration of matter and (or)
energy, i.e., SK−F is physically unreal, and thus so is the K-F black hole.

While this disposes of the reality of SK−F , SK−F possesses another prop-
erty worth mentioning in connection with other types of black holes, namely,
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the presence at r∗ = α of an interior “surface of infinite acceleration” (at
which the locally measured acceleration of test particles becomes infinite:
see ref. [23]), despite the fact that there are neither matter singularities nor
geometrical singularities at that surface. This existence of such a surface in-
terior to the space-time is a direct result of Hilbert’s assumption regarding
r∗, since it was this that transferred the “Cheshire cat” (the point mass)
to a distant point, while leaving the “grin” (the infinite acceleration of test
particles) intact at r∗ = α.

10. Conclusions

We summarize the result of the preceding sections as follows. The K-F
black hole is the result of a mathematically invalid assumption, explains
nothing that is not equally well explained by SS , cannot be generated by
any known process, and is physically unreal. Clearly, it is time to relegate it
to the same museum that holds the phlogiston theory of heat, the flat earth,
and other will-o’-the-wisps of physics.

Consider next the family (S) of black holes obtained by analytic extension
of metrics, which, for certain values (β0), of their parameters (β), reduce
to gH (e.g., Reissner-Nordström, Kerr, Kerr-Newman, etc.). Some, like
Reissner-Nordström’s solution for the point charge, were likewise derived
from a set of postulates characterizing the specified matter and (or) energy
configuration, and thus their derivations must be analyzed to determine
whether an error such as that made by Hilbert was committed.5 Others were
simply “discovered”, and their sources sought afterwards, so it is impossible
to determine whether they are based on an invalid assumption. However,
the fact that all such metrics are regarded as reducing to gH when β = β0

(see ref. [24], [25], and [26]) shows that it is tacitly assumed that the radial

coordinate appearing in these metrics is equal to (x2 + y2 + z2)1/2, and
Sect. 4 shows that this assumption is invalid when β = β0. Moreover, each
of the associated black-hole spacetimes bears the telltale stigma (an interior
surface of infinite acceleration, see ref. [27]) associated with the transfer of
boundary behavior to interior events that was shown in the previous section
to be a consequence of precisely that assumption for the case of K-F black
holes. Accordingly, members of S are highly suspect.

Finally, there remain those black holes that have likewise simply been
discovered, but whose exterior metrics do not reduce to gH for any values
of their parameters (e.g., the “toroidal” black holes described in ref [28]).
Their status awaits an investigation of the reasonableness of their sources.

5A paper proving that this is indeed the case for the point-charge metric is shortly to
be submitted by the author.
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Erratum [33]

Section 6 should be replaced by the following paragraph:

6. Inequivalence of Schwarzschild and Hilbert universes

By inspection, SS and SH are isometric via Tα and thus equivalent. How-
ever, it was shown above that due to the difference in the topology of their
boundaries, they are associated with different singularity structures. Thus,
the universes (US and UH) corresponding to SS and SH (with their indi-
cated boundaries) are inequivalent (cf. Abrams, L.S., Physica A, 227 (1996)
131). Since it follows from Sect. 2 that US is the universe of a point-mass,
then a fortiori UH is not. For the same reason, this last is also true of UKF ,
the universe corresponding to the maximal analytic extension (SKF ) of SH

found by Kruskal and Fronsdal.

Section 7, line 12 should read: black hole’s “surface”.
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Appendix A. Derivation of point-mass metric

Substituting (5) into Dingle’s expressions (see ref. [29]) for T i
j gives

− 8πT 1
1 ≡ −

1

C
+

C ′2

4BC2
+

A′B′

2ABC
= 0(A.1)

−8πT 2
2 ≡

C ′′

2BC
+

A′′

2AB
−

C ′2

4BC2
−

B′C ′

4B2C
−

A′2

4A2B

−
A′B′

4AB2
+

A′C ′

4ABC
= 0(A.2)

T 3
3 = T 2

2 = 0(A.3)

− 8πT 4
4 ≡

C ′′

BC
−

1

C
−

B′C ′

2B2C
−

C ′2

4BC2
= 0(A.4)

with all other T i
j identically zero. (Here and afterwards a superscript prime

denotes differentiation with respect to r.)
Subtracting (A.1) from (A.4) and multiplying the result by BC (nonzero

because of (7)) gives

C ′′ −
C ′

2
[ln(ABC)]′ = 0(A.5)

Since C ′ = 0 would (in view of (7)) reduce (A.1) to −1 = 0, it follows that
C ′ 6= 0, hence dividing (A.5) by C ′ gives

−2C ′′

C ′
− [ln(ABC)]′ = 0(A.6)

which integrates at once to

C ′2 = JABC(A.7)

with J a constant. Since A, B, and C > 0 and C ′ 6= 0, it follows that J > 0,
and thus C ′ never vanishes for r > 0.
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Solving (A.7) for B and substituting the result into (A.1) gives, after
cancelling some nonzero factors,

−1

C
+
JA

4C
+
JA′

2C ′
= 0(A.8)

whence either

C ′

C
=

2JA′

4 − JA
or A =

4

J
(A.9)

The second alternative results in no gravitational force whatever on a distant
test particle (as seen from ref. [30], the gravitational acceleration of such a
particle in the field of (5) is −ψ′/2, where ψ = A − 1; thus, A = constant
would result in zero acceleration), and is therefore ruled out. The first
integrates to

C(JA/4 − 1)2 = K0 ≡ α2 > 0(A.10)

the positivity of the constant K0 being a consequence of that of C and of
the non-negativity of (JA/4 − 1)2. Solving (A.10) for A (and without loss
of generality, choosing α > 0) gives

A =
4

J

(

1 ±
α

C1/2

)

(A.11)

which upon substitution into (A.7) yields

B =
C ′2

4C(1 ± α/C1/2)
(A.12)

Substituting A and B from (A.11) and (A.12) into (A.2) shows that the
latter is satisfied identically for arbitrary C.

Now, the requirement that (5) be spatially asymptotically flat necessitates
that

C

r2
→ 1 as r → ∞(A.13)

From this and from the fact that C ′ cannot be zero it follows that

C ′ > 0 for r > 0(A.14)

Moreover, from (A.13) and (A.11) we see that

A→ 4/J as r → ∞(A.15)

whence asymptotic flatness requires that J = 4. This reduces (A.11) to

A = 1 −
α

C1/2
(A.16)

the choice of the minus sign being compelled by the fact that the gravita-
tional force on a distant test particle must be attractive (as noted above,
the gravitational acceleration of a distant test particle is −ψ′/2, where

ψ = A− 1 = ±α/C1/2; this acceleration will only be attractive if the lower



15

sign is chosen, since both C and C ′ are positive). From (7), (A.14), and
(A.16) it follows at once that

C(0+) ≥ α2 > 0(A.17)

Hence we conclude that the most general triplet satisfying the historical
postulates for the point mass is of the form

A = 1 − α/C1/2, α > 0(A.18)

B =
C ′2

4C(1 − α/C1/2)
(A.19)

where C is an analytic function of r = (x2 +y2 + z2)1/2 having the following
properties:

C(0+) ≡ β2 ≥ α2 > 0(A.20)

C ′(r) > 0, for r > 0(A.21)

C(r)/r2 → 1 as r → ∞(A.22)

Finally, consider the circle γ(ǫ) : t = t0 (a constant), θ = π/2, and r = ǫ.

Inspection of (10) shows that the proper circumference of γ(ǫ) is 2π[C(ǫ)]1/2,
which by (A.20) tends to 2πβ ≥ 2πα > 0 as ǫ ↓ 0. Moreover, inspection of
(10) and (A.19) shows that the proper radius 6 of γ(ǫ) is

RP (ǫ) =

∫ ǫ

0−
[B(r)]1/2dr(A.23)

=

∫ ǫ

0−

C ′dr

2C1/2(1 − α/C1/2)1/2

=

∫ [C(ǫ)]1/2

β

[

u

u− α

]1/2

du(A.24)

Since C(0+) is finite, and C(r) monotonic and analytic for r > 0, these last

two properties are also true of [C(ǫ)]1/2, whence

[C(ǫ)]1/2 = β +O(ǫ)(A.25)

and thus

RP (ǫ) =

∫ β+O(ǫ)

β

(

u

u− α

)1/2

du(A.26)

≈

∫ β+O(ǫ)

β

(

β

u− α

)1/2

du

which for all β satisfying (A.20) clearly tends to zero as ǫ ↓ 0. Consequently,
the ratio of the proper circumference to the proper radius of γ(ǫ) does not
tend to 2π as ǫ ↓ 0, so that there is a violation of elementary flatness [31] at
r = 0 and t = t0, and since t0 was arbitrary, at r = 0 for all t. This violation

6If the boundary r = 0 in the spatial section is a point, which is the case by virtue of
the point mass being located there.
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constitutes a “quasiregular singularity” [2] of the space-time associated to
gPM , and thus we can say that the space-time (M0, gPM ) is analitically
inextendible7 to r = 0 for all β ≥ α. Moreover, since it is well known
[32] that those geodesics of the Hilbert metric gH that do not run into the
boundary at r∗ = α are complete, the diffeomorphism between gH and gPM

for any admissible C shows that the same is true of those geodesics of gPM

that do not run into the boundary at r = 0. It follows that the space-times
(M0, gPM ) are maximal.

Appendix B. Acceleration scalar

As shown by Doughty [13], the acceleration of a neutral test particle
approaching the point mass along a radial path, as measured by an observer
at rest with respect to the point mass, is given by

a =
(−grr)

1/2(−grr)|g00,r|

2g00
=

A′

2AB1/2
for (5)(B.1)

=
α

2C(1 − α/C1/2)1/2
for (10)(B.2)

= O[1/2(αr)1/2] as r → 0 for (18)(B.3)

However, when RP (ǫ) in (A.23) is evaluated for (18), it is readily found that

RP (r) = O[2(αr)1/2] as r → 0(B.4)

thus

a ∼ 1/RP (r) as r → 0(B.5)

which shows that unlike the Newtonian case, a test particle’s acceleration
tends to infinity inversely as the first power of its proper distance to the
central mass.

Lockheed Corporation, 4500 Park Granada Boulevard, Calabasas, CA 91399, U.S.A.,
and 24345 Crestlawn Street, Woodland Hills, CA 91367, U.S.A. (present address).

7More precisely, there exists no analytic extension in which r = 0 corresponds to an
interior point in the larger manifold. Any extension in which r = 0 corresponds to a
nonpoint-like locus would alter the character of the point mass and is thus ruled out a

priori.


