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Abstract:

We extend the precedent group to a four-components orthochron set. This operation gives a geometrical interpretation of
antimatter after Dirac.

1- Introduction

In a former paper [1] we have presented a description of elementary particles ins a ten-dimensional space, i.e. space-time (X,y,z,t)
plus six additional dimensions:
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We presented a 16-dimensions group, an extension of the Poincaré orthochron subgroup, acting on:
- its 16-dimensions momentum space
- its 10-dimensional movement space.
The six additional components of the momentum have been identified to the charges of the particles:
)
{q,CB,CL,Cu,CT,’m’}

so that the momentum becomes:
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Jpe:{q,CB,CL,Cu,CT,’w,Jp}

where Jp represent the classical moment, from the orthochron Poincaré sub-group:
“)

Jpo={E.p.f,1}
after J.M.Souriau [1].

We have figured the link between the species of moments and the species of movement, suggesting that:
- The movement of matter corresponds to { T >0 } sector.
- The movement of antimatter corresponds to { € i<o } sector.

- The movement of photons corresponds to { T =0 } plane.

All that must be now justified.

2- Introducing a four components group. Geometrization of Dirac's antimatter

The precedent 16-dimensional group had two components, correspondong to the two orthochron components of the Lorentz
group, L, (neutral component) and L , with:
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L, (orthochron sub-group) = L, U Lg

Our group was an extension of the orthochron Poincaré sub-group:
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and we wrote it:
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The corresponding coadjoint action was:
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with:
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{Xi}:{q,CB,CL,Cu,CT,W}

In such a group no element transforms the movement of a matter mass-point into the movement of an antimatter mass-point, and
vice versa. According to the chosen definition of antimatter, through a:
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€ - Symmetry: {T '} ----> {- T 1}

some element should reverse the additional dimensions. With:
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we can write the precedent group into a more compact form:
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It contains the neutral element:
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The matrix that reverses the additional dimensions is be the following orthochron commuter:
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We can duplicate the precedent group through the operation:
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It is equivalent to write the new four component group, whose element is:
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The corresponding coadjoint action is:
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We see that ( A = - 1) reverses the charges. In that case the inversion of the additional dimensions:
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€ - Symmetry: {C '} ----> {- T 1}



goes with a:
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C-symmetry (or charge conjugation):
{qaCB:CL’C}L’C‘E’m}'"> {-d.,-cp 5'CL"C}L>'C‘55'W}

which corresponds to Dirac's description of antimatter [4], so that the present paper represents a geometrization of antimatter after
Dirac.

3- Coadjoint action on momentum space

In order to make the things clearer we can graphically figure it.
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Fig.1: The four component orthochron extended group. The (A=1) components form a a sub-group.
Below, the momentum space with its three sub-sets, figuring particles', antiparticles' and photons' worlds.
Associated two-sectors movement space.

If we choose an element picked from the ( A = 1) sub-group we refind the schemas presented in the precedent paper [1].

Examine the impact of the orthochron commuter g,. on the moment and associated movement.
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Fig.2: Coadjoint action of the orthochron commuter g,
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Fig.3: Coadjoint action of the orthochron commuter g,. on the photon: none, for it is its own antiparticle.



Now, introduce two coupled orthochron matrixes:
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Fig.4 : Coadjoint action of the orthochron commuter g,. and conjugated orthochron matrixes g, and g,. X g,
Conclusion

We start from the precedent paper [1], where we introduced a 16-dimensional group acting on its 16-dimensions momentum
space and 10-dimensional movement space. As in [1] we follow the basic idea: antimatter corresponds to a -Symmetry, to the
inversion of the additional variables. We define a matrix, called orthochron commuter, which achieves C-Symmetry. Then we
build a group which contains such element. We get a four components group, composed by the elements g, of the (A = 1) sub-
group, and by conjugated matrixes g,. X g, , formed through the action of the orthochron commuter g, on this sub-group. The
antimatter becomes another movement of matter, driven by coadjoint action of the group.
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