
ar
X

iv
:1

60
3.

07
07

5v
2 

 [g
r-

qc
]  

30
 S

ep
 2

01
6

Static Scalar Field Solutions in Symmetric Gravity
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Abstract

We study an extension of general relativity with a second metric and an ex-
change symmetry between the two metrics. Such an extension might help to address
some of the outstanding problems with general relativity, for example the smallness
of the cosmological constant. We here derive a family of exact solutions for this
theory. In this two-parameter family of solutions the gravitational field is sourced
by a time-independent massless scalar field. We find that the only limit in which
the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution
is left with a scalar field hidden in the second metric’s sector.

1 Introduction

General relativity, now more than a century old, still holdsnumerous mysteries: The cos-
mological concordance model,ΛCDM – whereΛ stands for the cosmological constant
and CDM for cold dark matter – requires the introduction of dark matter and dark energy
whose microscopic origin is unknown. Worse, it is still unclear how information can be
recovered from black holes, signaling a severe shortcomingin our understanding of the
theory’s semi-classical limit. And worst, we still do not know the right way to combine
general relativity with quantum field theory.

The cosmological constant in particular is hard to make sense of as vacuum energy,
and even the most popular approaches to quantum gravity failto explain not only its
value, but how a value as small as measured can be stabilized without undue finetuning.
Indeed, it has recently been argued that even if we would manage to explain the value of
the cosmological constant itself, the expected fluctuations around the mean value would
still be problematic [1].

In the hope to address some of these shortcomings, many attempts have been made to
extend general relativity by additional fields. The maybe most obvious modification is to
add a second metric, because such an extension can be expected to make itself noticable
primarily in the gravitational sector where its effects would be desirable. These so-called
‘bi-metric’ theories [2, 3, 4, 5, 6, 7] were long thought to beunstable, but it has recently
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been shown that in a fully covariant treatment, bi-metric theories can be free of ghosts
and consistently stable [6, 7]. In these extensions of general relativity, gravitons can be
massive.

Bi-metric theories however leave one with a lot more freedomthan general relativity
because there are four different terms through which the twometrics can be coupled,
and each of these terms introduces a new parameter. This additional freedom opens the
possibility to fit cosmological data better thanΛCDM [8], but the price to pay is that the
additional parameter make the theory arbitrary and unappealing.

This raises the question if not there are symmetry requirements which can be used to
single out particularly natural bi-metric models, and indeed there are. The simplest bi-
metric model is one in which an exchange of the two metrics does not alter the physics,
gravitons remain massless, and direct coupling terms between the two metrics are absent
[9]. For the sake of brevity, this particular bi-metric extension with exchange symmetry
will hereafter be referred to as ‘symmetric gravity.’ If thesymmetry is unbroken, sym-
metric gravity has the same number of free parameters as general relativity, ie two: the
gravitational coupling constant (Newton’s constant) and the cosmological constant.

Bi-metric theories generically violate the equivalence principle because particles now
have two different ways of coupling to gravity. As previously demonstrated in [9], sym-
metric gravity in particular allows gravitational chargesto become negative. Inertial
masses always remain positive, but the ratio of inertial to gravitational mass can now be
either plus or minus one. In the generalization from masses to the stress-energy-tensors,
the introduction of negative gravitational charges becomes possible without inducing vac-
uum instability because the source to the gravitational field is no longer identical to the
Noether current; instead, both are only identical up to a sign. Similar symmetries had
previously been studied [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], but the issue of
covariance was only fully resolved in the bi-metric formulation of [9].

Symmetric gravity provides a solution to the problem of technical naturalness of the
cosmological constant. This is because the symmetry between positively and negatively
gravitating fields cancels gravitational contributions tothe vacuum energy to exactly zero.
According to current measurements, the cosmological constant is, of course, not zero.
But if the symmetry between the two matter sectors was weaklybroken, the smallness of
the cosmological constant would still be technically natural. So far we have not derived
a specific mechanism for how to break the symmetry. However, symmetric gravity is to
date the only known symmetry which can protect the cosmological constant and which
is not already know to be strongly broken.

However, little is known about symmetric gravity and its compatibility with obser-
vation. The theory contains general relativity as a specialcase when the sectors of the
two metrics decouple, and so we know that the solutions of general relativity can be re-
covered. But recovering what we already know wasn’t why we added the second metric.
Instead, we are interested to find out what happens if both sectors interact with each other
and whether that can explain some of our observations betterthan general relativity.

2



S. Hossenfelder Symmetric Gravity

Unfortunately, even situations with homogeneous and spherically symmetric matter
distributions display unintuitive properties and the equations become difficult to solve.
The purpose of this paper is to investigate one of the simplest cases: static, spherically
symmetric scalar fields coupled to the two metrics. This investigation will turn out to be
instructive and also prepares future work on collapse scenarios.

Throughout this paper we use the conventionc = ~ = 1. The signature of both
metrics is(−1, 1, 1, 1). Small Greek indices are space-time indices and run from 0 to3.

2 Symmetric Gravity

We will here briefly summarize how one obtains the field equations of symmetric gravity.
The full treatment can be found in [9].

The starting point is that we use two different metrics,g andh, each with its own
coordinate system. The two sets of coordinates will be denoted with small Greek indices,
one with and one without underlines. Once the equations are derived, one may chose
the coordinate systems to be identical. However, the relation between the two systems
contains gauge degrees of freedom which are necessary in theformulation of the action,
otherwise the exchange symmetry cannot be made explicit. The relevance of this will
become clear in the next section, when we construct a concrete solution.

For each of the metrics we can define a Levi-Cevita connectionthat is torsion-free
and metric-compatible. This gives rise to two different connections that will be marked
with a preceding index to tell them apart, ie(g)∇ is the connection compatible withg
and(h)∇ is the connection compatible withh. To each of the metrics we can then derive
a curvature tensor, Ricci tensor, and curvature scalar, which will be denoted(g)Rα

νκǫ,
(h)R

α
νκǫ, and so on.

Next, we define the pull-over,τ , as the map between the two sectors that converts the
derivatives into each other, ie

τ ν
ν

(h)∇ντ
α

α τ
β

β τ
γ

γ ...Aαβγ... =
(g)∇νAαβγ... , (1)

and similarly for contravariant indices. We use the first index of τ for contraction with
g and the second index for contraction withh. The mapτ must be invertible, and so we
define the inverse as

τκντ
ν

ν = δκν , τ ν
ν τνκ = δνκ . (2)

We will denote the determinant ofgκν with g and the determinant ofhκν with h.
Since (1) has to hold in particular for the metrics themselves, this implies

gνκ = N 2τ ν
ν τ κ

κ hνκ . (3)

We have here introduced a normalization factorN , since it is not generally possible to
setN = 1 if one fixes the asymptotic values of bothg andh.
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In addition to using the pull-overs, we can also just convertthe indices from one
basis into another, from which one obtains the coordinate expressionshνκ andgνκ. We
therefore extend the definition of the pull-over in the obvious way to

gνκ = N 2τ α
ν τ ǫ

κ hαǫ , gνκ = N 2τ α
ν τ ǫ

κ hαǫ . (4)

In the following we assume that the pull-over is not a dynamical field and that the
variation

δτνκ = 0 . (5)

This does not mean that the field is constant – this would breakgeneral covariance. It
just means that we do not add extra terms to the action that generate dynamical equations
for the pull-over. In principle we could add both kinetic terms and a potential, but such
a complication is not necessary for the following. For the purposes of this paper, one
can think of the constraint (5) as being the condition in which the field sits in a potential
minimum.

Finally, we assume that we have matter which consists of two sectors, identical except
for their respective coupling to gravity. We will in the following focus on massless scalar
fields, which we will denoteφ andφ. The fieldφ is a normally gravitating field and the
field φ is the field whose behavior is determined by the second metric. Of course this
nomenclature is somewhat arbitrary since the two sectors obey the same equations. We
simply refer to the one we have observed so far as ‘normal’ andchose to assign it the
metricg. Let us emphasize here thatφ is not conjugated toφ, and the second sector does
not describe anti-matter.

The action then takes the form

S =

∫

d4x

(√−g (g)R/(8πG) −
√−g

2
gκν∂νφ∂κφ−

√
−h

2
hκν∂νφ∂κφ

)

+

∫

d4x

(

√

−h (h)R/(8πG) −
√−h

2
hκν∂νφ∂κφ−

√−g

2
gκν∂νφ∂κφ

)

, (6)

whereG is Newton’s constant.
Two properties of this action are worth drawing attention to. First, the two metrics do

not couple directly, they interact merely via the matter fields. Second, the kinetic terms
of all fields are positive. Variation of this metric leads to the equations

(g)Rκν −
1

2
gκν

(g)R = 8πG

(

Tκν −
√

h

g
τ ν
ν τ κ

κ T νκ

)

(7)

(h)Rνκ −
1

2
hνκ

(h)R = 8πG

(

T νκ −
√

g

h
τκκτ

ν
νTκν

)

, (8)
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where

Tµν = − 1√−g

δL
δgµν

+
1

2
gµνL (9)

T νκ = − 1√−h

δL
δhνκ

+
1

2
hνκL . (10)

With the sign convention adopted here the stress-energy-tensors (9) and (10) correspond
to the generalization of the inertial masses, so that−T 0

0 = ρ ≥ 0 and−T 0
0 = ρ ≥ 0

as usual. The change of sign in the coupling between the two types of fields comes in
through the requirement (5); for details please refer to [9].

In addition to the field equations, we have the Bianchi-identities, which enforce the
compatibility of the pull-over with the covariant derivatives:

(g)∇ν

(
√

h

g
τνντ

κ
κT

νκ

)

= 0 , (h)∇ν

(√

h

g
τ ν
ν τ κ

κ T νκ

)

= 0 . (11)

Since the determinants ofg andh transform identically, it isg/h = g/h. We have only
added the underlines in Eqs (8,11) to make the symmetry more apparent.

Inspecting the field equations (7,8) shows quickly that vacuum solutions bring in an
ambiguity because then the two metrics entirely decouple and the constraints (11) do
not constrain anything. For this reason it is a priori entirely unclear what would be the
correct symmetric extension of, for example, the Schwarzschild metric. To find out, one
should look at a collapse scenario because the presence of matter during collapse would
tie together the two metrics, and one could then compare the endstates. Exact collapse
solutions however are difficult to find. The next best thing wecan do is to look at a family
of static solutions that reduces to the vacuum case with someparameter, which we will
do in the next section.

3 Solving the Field Equations

We here want to derive solutions for symmetric gravity sourced by a negatively gravitat-
ing fieldφ, and so we setφ = 0. This means we have to solve the equations

(g)Rκν −
1

2
gκν

(g)R = −8πG
√

h/gτ ν
ν τ κ

κ T νκ (12)

(h)Rνκ −
1

2
hνκ

(h)R = 8πGT νκ , (13)

where

T νκ = ∂νφ∂κφ− 1

2
hνκh

αǫ∂αφ∂ǫφ , (14)
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and the scalar field fulfills the wave-equation in theh-background:

∂ν
√

−hhνκ∂κφ = 0 . (15)

The most general case would be a combination of non-vanishing φ andφ, but this
generalization will turn out to be trivial once we know the case with a purely negative
source. We will come back to this in the discussion.

We start with the ansatz for spherical symmetry

ds2g = −α(r)2dt2 + a(r)2dr2 +Ω2
g(r)r

2dΩ2 , (16)

ds2h = −β(r)2dt2 + b(r)2dr2 +Ω2
h(r)r

2dΩ2 , (17)

with the angular element

dΩ2 = dθ2 + sin(θ)2dϕ2 , (18)

where we have assumed that the angular coordinates are identical in both metrics. We
have also assumed that the time-coordinates are identical.Since the metric is static, this
can always be achieved by a rescaling without affecting the equations.

The main difficulty in solving the coupled set of field equations is that the second
coordinate system means that we have differential equations with respect to both sets
of coordinates. One would clearly prefer to use the same coordinates for both metrics.
But then it is no longer possible to gauge both metrics independently from each other,
which increases the number of functions we have to solve for.Either way, thus, we face
complications.

Just to give a concrete example. We could choose an isotropicgauge for bothg andh,
then hope that the coordinates are identical and start with this ansatz (we would find that
the equations cannot all be fulfilled). Or we could chose a gauge in whichΩ2

g = Ω2
h = 1

and then hope that the coordinates are identical (this doesn’t work either). These choices
are both different (and both wrong) because the transformations between gauges are not
generally the same for both metrics: If we take the isotropicsystem forg and transform
it to the coordinates withΩ2

g = 1, this will not also bringh into the coordinates with
Ω2
h = 1.

Consequently, if we want to use the same coordinate system for both metrics, we have
to make a very educated guess which coordinates allow the same gauge for both sectors.
Fortunately, for the static scalar case it is not so difficultto guess the right coordinate
system because the wave-equation for the field takes on the particularly simple form

∂r

(

√

−hhrr∂rφ
)

= 0 . (19)

Now we note that if this field also fulfills the wave-equation in theg-background, this
will solve the constraint from the Bianchi-identities identically, which means that the
match between the coordinate systems must be correct.
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From this we infer that a good gauge is

√−ggrr =
√
−hhrr = r2 sin(θ) , (20)

so that

∂r
(√−ggrr∂rφ

)

= 0 ⇔ ∂r

(√
−hhrr∂rφ

)

= 0 . (21)

Note that we have dropped here the underlines on the second coordinate system because
we have now assumed that this gauge is possible for both metrics in the same coordinate
system.

This gauge leads to the requirements

Ωg = a(r)/α(r) , Ωh = b(r)/β(r) , (22)

and the solution for scalar field is

φ(r) =
c1

2
√
πG

1

r
, (23)

wherec1 is a constant to be determined later. (We have discarded a second constant
additive factor because it will not enter any dynamical equations.)

With this ansatz one can then derive the field equations and despair over them for
some while. Alternatively, one uses the static scalar field solution originally derived by
Janis, Newman and Winicour [21] and later rediscovered [22]by Wyman [23]. Hereafter
referred to as JNWW, this solution has the line-element

ds2 = −γ(ρ)ndt2 + γ(ρ)−ndρ2 + γ(ρ)1−nρ2dΩ2 , (24)

with

γ(ρ) = 1− 2M

ρ
. (25)

It solves the field equation with the scalar field source

φ(ρ) =
1

2

√
1− n2

√
4πG

ln (γ(ρ)) . (26)

We know that the JNWW solution must be a solution to the field equations for the
h-metric (for whichφ gravitates positively), and so we bring the line-element (24) into

our coordinates with the gauge requirement that
√
hhrr = r2 sin θ. This gives rise to the

differential equation

dr

r2
=

dρ

ρ2
1

γ(ρ)
, (27)
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which can be solved to

r =
2M

ln (γ(ρ))
, ρ =

2M

1− exp(2M/r)
. (28)

From this we can infer that

b(r) = e−Mn/r , β(r) = Ωh(r) =
M2eMn/r

r2 sinh (M/r)2
, (29)

and

c1 = 2M
√

2(1− n2) . (30)

This solves the equations (13) and (15), and it remains to solve equation (12). One
can do this either by working through the field equations, or by giving the solution (29) a
hard look, which reveals that the substitutionn → in,M → iM gives back a real valued
metric with the signature of the metric flipped. By absorbingthis sign into the source,
we make the ansatz

a(r) = eMn/r , α(r) = Ωg(r) =
M2e−Mn/r

r2 sin (M/r)2
, (31)

which indeed solves the equations identically, after fixing

N =
1− n2

1 + n2
. (32)

4 Results

Taken together, we have found a family of solutions depending on the two parametersn
andM that has the form

ds2g = −e2Mn/rdt2 +
M4

r4
e−2nM/r

sin (M/r)4
dr2 +

M2e−nM/r

r2 sin (M/r)2
dΩ2 (33)

ds2h = −e−2Mn/rdt2 +
M4

r4
e2Mn/r

sinh(M/r)4
dr2 +

M2enM/r

r2 sinh (M/r)2
dΩ2 . (34)

The source field is

φ(r) =
1

2

√
1− n2

√
4πG

1

r
, (35)

and the pull-over is diagonal with the nonvanishing components

τ tt =

√

1− n2

1 + n2
e−2Mn/r , (36)

τ rr = τ θθ = τϕϕ =

√

1− n2

1 + n2
e2Mn/r sin(M/r)2

sinh(M/r)2
. (37)
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Now, while the(t, r) coordinate system has been convenient for deriving the metric,
it is arguably awkward sincegrr has an infinite number of poles. Inspection of the Weyl-
tensor square however shows no pathologies, indicating that we are merely looking at
coordinate singularities. Indeed, we can remove the singularities for example by the
transformation

R =
M

tan(M/r)
, r =

M

arctan(M/R)
, (38)

which brings the line-element (33) into the form

ds2g = −µ(R)2dt2 + µ(R)−2dR2 + µ(R)−2(M2 +R2)dΩ2 (39)

with

µ(R) = exp (−n arctan(M/R)) . (40)

The square of the Weyl-tensor, expressed in these coordinates, is

WακνǫWακνǫ =
16

3
M2 exp (−4n arctan(M/R))

(2Mn2 − 3Rn−M)2

(M2 +R2)4
, (41)

which is regular and goes to a finite value forR → 0.
The gtt andgRR components are plotted in Fig 1 and Fig 2, and the density of the

scalar field (in(t, R) coordinates) is shown in Fig 3. As one sees, all these quantities are
regular and well-behaved.

5 Discussion

The first thing one notes about the solution (39) is that it hasno horizon. This is not
surprising since the ‘normally’ gravitating matter, whosebehavior is determined by this
metric, should be repelled by the negatively gravitating scalar field. Hence, there is no
way for it to become trapped. Such behavior is a consequence merely of gravity being
mediated by a spin-2 field, which has the effect that like charge attract and unlike charges
repel (exactly reversed to the case of a spin-1 field).

Next we note that in the limitn → 1, theh-metric reduces to the Schwarzschild-
solution. But, interestingly, theg-metric does not also reduce to a vacuum-solution in the
same limit. The reason is that the normalization-factorN in the pull-over goes to zero at
the same rate as the pulled-over source to theg-metric.

Now, since our analysis is entirely symmetric between the two sectors, we can draw
from this a conclusion about normal black holes (ie sourced by positive mass). For this,
we swap the negatively gravitating field for a positively gravitating one, and theg-metric
with theh-metric. We then notice that, while the Schwarzschild blackhole is a unique
solution for what theg-metric is concerned, it can remain accompanied by a scalar field

9
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n = 1/4
n = 1/2

n = 1
n = 2

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5
g t

t

0 2 4 6 8 10 12 14 16 18 20

R/M

Figure 1: Thett-component of theg-metric with the negatively gravitating scalar field
source, in Planck units, for various values ofn.

in theh-sector. This difference is not noticeable for any ‘normal’fields that couple only
to theg-metric and hence makes no difference for existing observations.

Clearly the fact that this is a scalar field and not some other field comes from the
starting point of our analysis, so one is lead to speculate that a similar thing might hap-
pen with other fields. This would mean that while the endstateof black hole collapse of
normal matter is unique and ‘hair-less’ for theg-metric, it is not unique for the corre-
spondingh-metric. (And vice versa, a collapse of negative matter would not result in a
unique endstate for theg-metric.)

In the chosen coordinate system by assumption both theφ andφ-fields have the same
coordinate-expression, and so, combining sources with contributions from both does not
give rise to a new pair of metrics. One just has to make sure that the parameterM that
appears in the solutions is suitably composed of the contributions from both fields, rather
than from one alone.

6 Conclusion

We have derived here a pair of metrics that is self-consistently sourced by massless scalar
field, coupled positively to the one metric, and negatively to the other one. The solution
shows that in a bi-metric framework the Schwarzschild-solution is not the unique endstate
of collapsing matter.

10



S. Hossenfelder Symmetric Gravity

n = 1/4
n = 1/2

n = 1
n = 2

1.0

1.2

1.4

1.6

1.8

2.0
g R

R

0 2 4 6 8 10 12 14 16 18 20

R/M

Figure 2: TheRR-component of theg-metric with the negatively gravitating scalar field
source in Planck units, for various values ofn.

Note

A Maple worksheet with the calculation presented here is available for download at
sabinehossenfelder.com/Physics/symmegra.mw
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