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Abstract

We study an extension of general relativity with a secondrimaind an ex-
change symmetry between the two metrics. Such an extensigm help to address
some of the outstanding problems with general relativitiygikample the smallness
of the cosmological constant. We here derive a family of egatutions for this
theory. In this two-parameter family of solutions the gtational field is sourced
by a time-independent massless scalar field. We find thatrihelimnit in which
the scalar field entirely vanishes is flat space. The reguaw&rzschild-solution
is left with a scalar field hidden in the second metric’s secto

1 Introduction

General relativity, now more than a century old, still hatdsnerous mysteries: The cos-
mological concordance model,CDM — whereA stands for the cosmological constant
and CDM for cold dark matter — requires the introduction akdaatter and dark energy
whose microscopic origin is unknown. Worse, it is still ieenl how information can be
recovered from black holes, signaling a severe shortcomimogir understanding of the
theory’s semi-classical limit. And worst, we still do notdm the right way to combine
general relativity with quantum field theory.

The cosmological constant in particular is hard to makeesehss vacuum energy,
and even the most popular approaches to quantum gravityofakplain not only its
value, but how a value as small as measured can be stabilieouivundue finetuning.
Indeed, it has recently been argued that even if we would getmexplain the value of
the cosmological constant itself, the expected fluctuatemound the mean value would
still be problematic[[1].

In the hope to address some of these shortcomings, manypdsteawve been made to
extend general relativity by additional fields. The maybestwdvious modification is to
add a second metric, because such an extension can be exjmectake itself noticable
primarily in the gravitational sector where its effects Pblie desirable. These so-called
‘bi-metric’ theories[[2| 8, 4, 5,16,17] were long thought to tnestable, but it has recently
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been shown that in a fully covariant treatment, bi-metrieotties can be free of ghosts
and consistently stablel[6] 7]. In these extensions of geémelativity, gravitons can be
massive.

Bi-metric theories however leave one with a lot more freedoam general relativity
because there are four different terms through which thermetrics can be coupled,
and each of these terms introduces a new parameter. Thisoadtlfreedom opens the
possibility to fit cosmological data better thACDM [8], but the price to pay is that the
additional parameter make the theory arbitrary and undiogea

This raises the question if not there are symmetry requingsnghich can be used to
single out particularly natural bi-metric models, and iedéhere are. The simplest bi-
metric model is one in which an exchange of the two metrics dm alter the physics,
gravitons remain massless, and direct coupling terms legthiee two metrics are absent
[9]. For the sake of brevity, this particular bi-metric ext@éon with exchange symmetry
will hereafter be referred to as ‘symmetric gravity.' If tegmmetry is unbroken, sym-
metric gravity has the same number of free parameters asajepkativity, ie two: the
gravitational coupling constant (Newton’s constant) dreldosmological constant.

Bi-metric theories generically violate the equivalencdagiple because particles now
have two different ways of coupling to gravity. As previoudemonstrated in [9], sym-
metric gravity in particular allows gravitational chargesbecome negative. Inertial
masses always remain positive, but the ratio of inertialr&wigational mass can now be
either plus or minus one. In the generalization from mass#se stress-energy-tensors,
the introduction of negative gravitational charges bepussible without inducing vac-
uum instability because the source to the gravitationad feho longer identical to the
Noether current; instead, both are only identical up to a.si§imilar symmetries had
previously been studied [10, 171,]12,113] 14} 15,[16,17] 18209 but the issue of
covariance was only fully resolved in the bi-metric forntida of [9].

Symmetric gravity provides a solution to the problem of téchl naturalness of the
cosmological constant. This is because the symmetry betpesitively and negatively
gravitating fields cancels gravitational contributionghie vacuum energy to exactly zero.
According to current measurements, the cosmological aah$s$, of course, not zero.
But if the symmetry between the two matter sectors was weakigen, the smallness of
the cosmological constant would still be technically natuGo far we have not derived
a specific mechanism for how to break the symmetry. Howeyemnpsetric gravity is to
date the only known symmetry which can protect the cosmotdgionstant and which
is not already know to be strongly broken.

However, little is known about symmetric gravity and its quatibility with obser-
vation. The theory contains general relativity as a spazagke when the sectors of the
two metrics decouple, and so we know that the solutions oéiggmelativity can be re-
covered. But recovering what we already know wasn’t why weaeadhe second metric.
Instead, we are interested to find out what happens if botbrseiateract with each other
and whether that can explain some of our observations lhbtargeneral relativity.
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Unfortunately, even situations with homogeneous and smibr symmetric matter
distributions display unintuitive properties and the dmres become difficult to solve.
The purpose of this paper is to investigate one of the simhpkeses: static, spherically
symmetric scalar fields coupled to the two metrics. Thisstigation will turn out to be
instructive and also prepares future work on collapse stEna

Throughout this paper we use the conventios= # = 1. The signature of both
metrics is(—1, 1,1, 1). Small Greek indices are space-time indices and run fron30 to

2 Symmetric Gravity

We will here briefly summarize how one obtains the field equnatiof symmetric gravity.
The full treatment can be found in/[9].

The starting point is that we use two different metrigsandh, each with its own
coordinate system. The two sets of coordinates will be aghaith small Greek indices,
one with and one without underlines. Once the equations engedl, one may chose
the coordinate systems to be identical. However, the osldietween the two systems
contains gauge degrees of freedom which are necessary forthelation of the action,
otherwise the exchange symmetry cannot be made explici rélevance of this will
become clear in the next section, when we construct a censoddtion.

For each of the metrics we can define a Levi-Cevita connetliahis torsion-free
and metric-compatible. This gives rise to two different mections that will be marked
with a preceding index to tell them apart, {8V is the connection compatible wit
andMV is the connection compatible with To each of the metrics we can then derive
a curvature tensor, Ricci tensor, and curvature scalachwhill be denoted?) R*,__,
(M R, ., and so on.

Next, we define the pull-over, as the map between the two sectors that converts the
derivatives into each other, ie

TVZ(h)vZTaQTBETyl---A% = (g)vyAaB'y... ’ (1)

and similarly for contravariant indices. We use the firsteiaf 7 for contraction with
g and the second index for contraction whh The mapr must be invertible, and so we
define the inverse as

T,% ="

K
T vy v o

— &% . )

We will denote the determinant gf., with g and the determinant af,,, with h.
Since [1) has to hold in particular for the metrics themsgItais implies

Gow = N7, 275 by ()

We have here introduced a normalization fackéy since it is not generally possible to
set\ = 1 if one fixes the asymptotic values of batrandh.
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In addition to using the pull-overs, we can also just contleet indices from one
basis into another, from which one obtains the coordinapgessions:,,. andg,,.. We
therefore extend the definition of the pull-over in the ologavay to

Juk = /\/27'1,0‘7',_6E hae s Guw = ./\f27'zg7'ﬁE hae - 4

In the following we assume that the pull-over is not a dynainfield and that the
variation

STV =0 . (5)

This does not mean that the field is constant — this would bgesleral covariance. It
just means that we do not add extra terms to the action thargendynamical equations
for the pull-over. In principle we could add both kineticrtes and a potential, but such
a complication is not necessary for the following. For theppses of this paper, one
can think of the constraint{5) as being the condition in \uttee field sits in a potential
minimum.

Finally, we assume that we have matter which consists of éstoss, identical except
for their respective coupling to gravity. We will in the folling focus on massless scalar
fields, which we will denote and¢. The field¢ is a normally gravitating field and the
field ¢ is the field whose behavior is determined by the second meBfccourse this
nomenclature is somewhat arbitrary since the two sectceg tite same equations. We
simply refer to the one we have observed so far as ‘normal dmude to assign it the
metricg. Let us emphasize here thats not conjugated t@, and the second sector does
not describe anti-matter. B

The action then takes the form

/ d*z ( WR/(87G) — Vz__gg“”amaﬁqb— \/_h“”ayqb@HQS)

+ /d4x <\/_ JR/(87@G) — £h“”8V<z> O — \/_ g V¢8H¢>> (6)

whereG is Newton’s constant.

Two properties of this action are worth drawing attentionRiost, the two metrics do
not couple directly, they interact merely via the matterdselSecond, the kinetic terms
of all fields are positive. Variation of this metric leads be tequations

(Q)Rm/ _ ; (Q)R = 87@G (Tm/ — \/ET VTHHI]//{) (7)
(h) L 9
Ry — 3R = 87G (L, T ) 8)
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where
1 6 1
Tw = —ﬁW‘F}%zxﬁ 9
1 6L 1
T = ——————— 4 —hy. . 10

With the sign convention adopted here the stress-enerpgts [[9) and (10) correspond
to the generalization of the inertial masses, so tk[ﬁ(go = p > 0and —IOO =p>0
as usual. The change of sign in the coupling between the tpestpf fields comes in
through the requiremerit](5); for details please refer to [9]

In addition to the field equations, we have the Bianchi-idiesst which enforce the
compatibility of the pull-over with the covariant derivads:

@y, (ﬁT”ﬂHzWi> =0, My, ( QT/THHTV“> =0. (11)
g =" “\V ¢

Since the determinants gfandh transform identically, it is;/h = g/h. We have only
added the underlines in E4S[(8,11) to make the symmetry npparent.

Inspecting the field equationsl[(V,8) shows quickly that uacsolutions bring in an
ambiguity because then the two metrics entirely decouptethe constraintd (11) do
not constrain anything. For this reason it is a priori eltitenclear what would be the
correct symmetric extension of, for example, the Schwéiiltbenetric. To find out, one
should look at a collapse scenario because the presencettef haring collapse would
tie together the two metrics, and one could then comparerttistates. Exact collapse
solutions however are difficult to find. The next best thingoaa do is to look at a family
of static solutions that reduces to the vacuum case with smaremeter, which we will
do in the next section.

3 Solving the Field Equations

We here want to derive solutions for symmetric gravity sedrby a negatively gravitat-
ing field ¢, and so we seb = 0. This means we have to solve the equations

D Re, — SR = —87G\/h]gr, P T, (12
MR, — % hyR = 87GT,. . (13)

where
Ty = 0y90x0 - %hmhgﬁ%@g_ : (14)
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and the scalar field fulfills the wave-equation in tidackground:

By\/—hhEd,h = 0 . (15)

The most general case would be a combination of non-vamjshiand ¢, but this
generalization will turn out to be trivial once we know theseawith a purely negative
source. We will come back to this in the discussion.

We start with the ansatz for spherical symmetry

2 _ 21,2 2712 2012102
ds; = —a(r)*dt” + a(r)“dr + Qg (r)r°dQ-, (16)

dsi = —B(r)*dt* + b(r)?dr? + Qi (r)r?dQ?, (17)
with the angular element
d0? = d6? + sin(6)%dy? , (18)

where we have assumed that the angular coordinates arécaléntboth metrics. We
have also assumed that the time-coordinates are idenfizade the metric is static, this
can always be achieved by a rescaling without affecting tluaiéons.

The main difficulty in solving the coupled set of field equads that the second
coordinate system means that we have differential equatidgth respect to both sets
of coordinates. One would clearly prefer to use the samedauates for both metrics.
But then it is no longer possible to gauge both metrics inddpetly from each other,
which increases the number of functions we have to solveHibtner way, thus, we face
complications.

Just to give a concrete example. We could choose an isofapige for botlg andh,
then hope that the coordinates are identical and start highansatz (we would find that
the equations cannot all be fulfilled). Or we could chose aygam whichQ? = Q7 =1
and then hope that the coordinates are identical (this dogsrk either). These choices
are both different (and both wrong) because the transfoomabetween gauges are not
generally the same for both metrics: If we take the isotrgg&tem forg and transform
it to the coordinates Witmf] = 1, this will not also bringh into the coordinates with
07 =1.

Consequently, if we want to use the same coordinate systelofio metrics, we have
to make a very educated guess which coordinates allow the gange for both sectors.
Fortunately, for the static scalar case it is not so diffitolguess the right coordinate
system because the wave-equation for the field takes on ttieytarly simple form

o, (\/—ﬁhﬁc‘)ﬁ@ —0 . (19)
Now we note that if this field also fulfills the wave-equationthe g-background, this

will solve the constraint from the Bianchi-identities idieally, which means that the
match between the coordinate systems must be correct.
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From this we infer that a good gauge is
V—=99" = V—=hh"" = r%sin(h) , (20)

so that
0 (V=99 0:) =0 & 0, (\/—_hh”a,g):o . 1)

Note that we have dropped here the underlines on the secondirtate system because
we have now assumed that this gauge is possible for bothanétrthe same coordinate
system.

This gauge leads to the requirements

Qg =a(r)/alr), Q, =0b(r)/B(r), (22)

and the solution for scalar field is

C1 1
?(T) 2\/@70 I
wherec; is a constant to be determined later. (We have discarded mmdamnstant
additive factor because it will not enter any dynamical diqus.)

With this ansatz one can then derive the field equations aspaiteover them for
some while. Alternatively, one uses the static scalar fieldten originally derived by
Janis, Newman and Winicour [21] and later rediscovered fg2Myman [23]. Hereafter
referred to as INWW, this solution has the line-element

(23)

ds® = —y(p)"dt* +7(p)"dp® +(p)' T"p?dQ? (24)
with
2M
V(P):l—T- (25)

It solves the field equation with the scalar field source

8(0) = 3L I (4(p). (26)

We know that the INWW solution must be a solution to the fieldagigns for the
h-metric (for which¢ gravitates positively), and so we bring the line-elemgd (to
our coordinates with the gauge requirement #ak’™ = 2 sin 6. This gives rise to the
differential equation

dr dp L

ﬁ__Q() (27)
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which can be solved to
2M 2M

r=—- p=— 28
() ” = T exp(@M/r) (29)
From this we can infer that
MZGMn/r
b(r) = e M/ =)=, 29
(r)=e plr) n(r) r2 sinh (M/r)2 (29)

and

g =2M+/2(1 —n?). (30)

This solves the equations {13) andl(15), and it remains tesaduation[(12). One
can do this either by working through the field equations,yogiling the solution[(Z0) a
hard look, which reveals that the substitutien— in, M — iM gives back a real valued
metric with the signature of the metric flipped. By absorbihi sign into the source,
we make the ansatz

M2€—Mn/r

_ Mn/r -Q —_ 31
a(r e , a(r T ,
(r) () =Ryl = o (31)
which indeed solves the equations identically, after fixing

1 —n?

N=—.
1+n2

(32)

4 Results

Taken together, we have found a family of solutions dependmthe two parameters
and M that has the form

M4 6—2n1\/[/r ) M2e—n1\/[/r

ds? = Mm@ 4 — — 4?4 —— 40?2 33

g 4 sin (M /r)* 2 sin (M /1) (33)
WE 2Mn/r M2enM/r

dsp = —e 2Mr/rgg? . 2 ° 0. (34)

T ik (v
The source field is

1vV1-n21
B(r) = 5@; )

and the pull-over is diagonal with the nonvanishing comptsie

/1 —n?
t — —2Mn/r 36
T 1+ TL2€ ) ( )
[1—n? sin(M /r)?
T 0 _ _p _ 2Mn/r ) 37
T Te= T 1+n2° sinh(M /r)? 37)
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Now, while the(t, r) coordinate system has been convenient for deriving theienetr
it is arguably awkward sincg.,. has an infinite number of poles. Inspection of the Weyl-
tensor square however shows no pathologies, indicatingwtbaare merely looking at
coordinate singularities. Indeed, we can remove the samigigls for example by the
transformation

M M
- =" 38
R tan(M/r)’ " arctan(M/R) "’ (38)
which brings the line-elemerit (33) into the form
ds? = —p(R)*dt* + p(R)*dR* + p(R)*(M? + R*)dQ? (39)
with
u(R) = exp (—narctan(M/R)) . (40)
The square of the Weyl-tensor, expressed in these cooedinat
e 16 (2Mn? —3Rn — M)?
WYYW e = ?M exp (—4n arctan(M/R)) DL ,  (41)

which is regular and goes to a finite value f@r— 0.

The g;; andgrr components are plotted in Fig 1 and Eig 2, and the densityeof th
scalar field (in(¢, R) coordinates) is shown in Fig 3. As one sees, all these qiemnéte
regular and well-behaved.

5 Discussion

The first thing one notes about the solutibn](39) is that it ma$orizon. This is not
surprising since the ‘normally’ gravitating matter, whdsshavior is determined by this
metric, should be repelled by the negatively gravitatinglacfield. Hence, there is no
way for it to become trapped. Such behavior is a consequemcelyrof gravity being
mediated by a spin-2 field, which has the effect that like ghattract and unlike charges
repel (exactly reversed to the case of a spin-1 field).

Next we note that in the limit — 1, the h-metric reduces to the Schwarzschild-
solution. But, interestingly, thg-metric does not also reduce to a vacuum-solution in the
same limit. The reason is that the normalization-fagtoin the pull-over goes to zero at
the same rate as the pulled-over source tgtineetric.

Now, since our analysis is entirely symmetric between thegectors, we can draw
from this a conclusion about normal black holes (ie sourgegddsitive mass). For this,
we swap the negatively gravitating field for a positively\gtating one, and thg-metric
with the h-metric. We then notice that, while the Schwarzschild blaole is a unique
solution for what thez-metric is concerned, it can remain accompanied by a scaldr fi
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gtt

0 2 4 6 8 10 12 14 16 18 20
R/M

Figure 1: Thett-component of thg-metric with the negatively gravitating scalar field
source, in Planck units, for various valuesof

in the h-sector. This difference is not noticeable for any ‘nornfiglds that couple only
to theg-metric and hence makes no difference for existing obsensit

Clearly the fact that this is a scalar field and not some otledd iomes from the
starting point of our analysis, so one is lead to speculaeatsimilar thing might hap-
pen with other fields. This would mean that while the endstétadack hole collapse of
normal matter is unique and ‘hair-less’ for themetric, it is not unique for the corre-
spondingh-metric. (And vice versa, a collapse of negative matter wawdt result in a
unique endstate for the-metric.)

In the chosen coordinate system by assumption both tred¢-fields have the same
coordinate-expression, and so, combining sources wittribations from both does not
give rise to a new pair of metrics. One just has to make sutehigparameten/ that
appears in the solutions is suitably composed of the caitoibs from both fields, rather
than from one alone.

6 Conclusion

We have derived here a pair of metrics that is self-condigtenurced by massless scalar
field, coupled positively to the one metric, and negativelyhe other one. The solution

shows that in a bi-metric framework the Schwarzschildsatuis not the unique endstate
of collapsing matter.
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9dRR

0 2 4 6 8 10 12 14 16 18 20
R/M

Figure 2: TheR R-component of thg-metric with the negatively gravitating scalar field
source in Planck units, for various valuesrof

Note

A Maple worksheet with the calculation presented here islave for download at
sabinehossenfelder.com/Physics/symmegra.mw
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