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Abstract	 :	 In	 this	 second	 part,	 we	 describe	 the	 second	 solution	 to	 the	
Einstein	field	equations	published	by	Karl	Schwarzschild	in	February	1916,	
which	refers	to	a	geometry	within	a	sphere	of	constant	density,	a	paper	that	
has	been	translated	in	English	only	in	Late	1999,	still	ignored	by	most	black	
hole	 specialists.	 It	 is	 shown	 that	 Schwarzschild	 perfectly	 identified	 and	
described	the	outbreak	of	a	physical	criticality	occurring	in	the	center	of	a	
massive	star	a	century	ago,	before	the	geometric	criticality	comes	into	play.	
On	this	basis,	a	new	model	has	been	built,	alternative	to	the	stellar	black	hole	
model,	describing	the	behavior	of	a	subcritical	neutron	star	destabilized	by	
an	excess	of	matter	incoming	from	a	companion	star.	The	"frozen	time"	issue,	
classically	associated	with	the	phenomenon,	is	dealt	by	taking	into	account	
frame-dragging	effects	due	to	the	rotation	of	the	object	in	the	Kerr	metric.	
_______________________________________________________________________________________	

Introduction	

In	 the	 first	 part	 of	 this	 article,	 we	 have	 re-examined	 the	 solution	 to	 the	
Einstein	 field	 equations	 found	 by	 Karl	 Schwarzschild	 in	 1916	 [1]	 from	 a	
mathematical	angle,	showing	that	its	analytic	continuations	are	nothing	but	
extensions	into	a	purely	imaginary	realm.		

If	we	admit	this	idea	belongs	to	Physics,	then	we	must	take	into	account	all	
that	has	been	concocted	for	half	a	century	with	respect	to	this	"interior	of	
black	 holes",	 in	 particular	 their	 "thermodynamics"	 and	 the	 "central	
singularity".	As	for	the	alteration	of	the	metric	signature	going	from		 ( + − − − ) 	
to	 ( − + − − ) 	when	the	surface	of	the	event	horizon	is	crossed,	it	is	recalled	this	
is	conventionally	interpreted	by	saying	that	inside	the	black	hole,	t	becomes	
a	space	variable,	and	r	a	time.		
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Before	 considering	a	 real	 extension	of	 this	 solution,	we	 shall	 consider	 the	
second	paper	published	by	Schwarzschild	in	February	1916.	[2]	

	
Fig.	1	–	Karl	Schwarzschild's	second	paper,	24	February	1916:	"On	the	gravitational	

field	of	a	sphere	of	incompressible	fluid	according	to	Einstein's	theory."	

Since	this	essential	article	was	not	available	in	English	until	December	1999,	
[2]	it	is	quite	likely	that	black	hole	specialists	are	unaware	of	its	content,	and	
perhaps	even	its	existence.		

Fig	2	–Schwarzschild	takes	Einstein's	equations	over.	
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In	equation	(3)	we	recognize	the	covariant	form	of	the	energy-momentum	
tensor.	In	(4)	its	trace.	And	just	below,	Einstein's	constant,	expressed	using	a	
speed	of	light	taken	equal	to	unity.	In	(5)	the	field	equation	Einstein	has	just	
published	a	few	months	earlier.		
	

	
Fig.	3	

With	  r = x2 + y2 + z2 ,	after	renewing	Einstein's	hypothesis	about	the	choice	
of	the	determinant	of	the	metric	  g11 g22 g33 g44 = − 1 	he	takes	again	almost	in	the	
same	form	except	an	additional	coefficient	 in	(7)	his	choice	of	coordinates	
already	implemented	the	month	before	in	his	exterior	solution	(equation	(7)	
of	 the	 "Massenpunkt"	 paper	 [1]).	 In	 doing	 so,	 he	 has	 positive	 functions	
  f1 , f2 , f3 , f4 	which	 gives	 a	 metric	 signature	  ( + − − − ) 	like	 his	 exterior	
solution.	Equations	(9)	are	identical	to	the	choice	made	in	equation	(10)	of	
his	previous	paper.	He	specifies	that	α	and	ρ	are	arbitrary	constants	that	will	
have	to	be	determined	later,	using	the	mass	and	the	radius	of	the	star		

Equation	(8)	made	explicit:		

  
ds2 = f4 dt2 − 3

2
f1 dr 2 − f2 ( dϑ 2 + sin2ϑ dφ 2 ) 	

which	a	a	form	enabling	to	rejoin	easily	the	exterior	solution	to	the	surface	
of	the	star.		
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At	the	end	of	page	428,	he	writes:	
	

Fig.	4	

Translation:		

§5. The integration constants must now be determined in such a way 
that the interior of the sphere remains free from singularities and the 
continuous junction to the external values of the functions  f  and of their 
derivatives at the surface of the sphere is realised. 

in	order	to	insure	the	continuity	of	geodesics.	

Making	 the	 auxiliary	 quantity	 R	 appear	 according	 to	   r = ( R3 +α 3 )1/3 		
he	 notices	 that	 outside	 the	 sphere,	 the	metric	 represents	 the	 point	mass,		
cf.	his	January	1916	"Massenpunkt"	paper.	[1]	

	

	

Fig.	5	–	"Outside	the	sphere	the	form	of	the	line	element	remains	the	same	as	in	Mass	point".	

	
	
In	the	rest	of	his	calculation,	Schwarzschild	details	all	parameters	related	to	
the	solution.	His	study	is	very	complete.	
	



	 5	

He	writes:	

	
Fig.	6	

Translation:		

2. About the equations of motion of a point of infinitely small mass 
outside our sphere, which maintain the same form as in “Mass point” 
(there equations (15)-(17)), one makes the following remarks: 

For large distances the motion of the point occurs according to 
Newton’s law, with α/2k2 playing the rôle of the attracting mass. Therefore 
α/2k2 can be designated as “gravitational mass” of our sphere. 

If one lets a point fall from the rest at infinity down to the surface of 
the sphere, the “naturally measured” fall velocity takes the value:  

  

va =
1

1− α
R

dR
ds

= α
Ra   
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Hence, due to (40): 

  va = sin χa   

For the Sun the fall velocity is about 1/500 the velocity of light. One 
easily satisfies himself that, with the small value thus resulting for χa and 
χ (< χa), all our equations coincide with the equations of Newton’s theory 
apart from the known second order Einstein’s effects.  

The	end	of	his	paper	has	our	undivided	attention.	The	angle	χ	allows	to	locate	
oneself	inside	the	sphere.	χ	=	0	is	the	geometric	center.	He	writes:	

4. The velocity of light in our sphere is 

  
v = 2

cos χa − cos χ
 

hence it grows from the value 1/cos χa at the surface to the value 
2/(3cos χa − 1) at the center. The value of the pressure quantity ρ0 + p 
according to (10) and (30) grows in direct proportion to the velocity of 
light.  

Moreover:	

	
Fig.	7	
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i.e.:	
At the center of the sphere (χ = 0) velocity of light and pressure 

become infinite when cos χa = 1/3, and the fall velocity becomes 8/9 of the 
(naturally measured) velocity of light. Hence there is a limit to the 
concentration, above which a sphere of incompressible fluid can not exist. 
If one would apply our equations to values cosχa < 1/3, one would get 
discontinuities already outside the center of the sphere. 

Finally,	note	the	last	sentence	of	the	paper:	

	
Fig.	8	

i.e.:	
For an observer measuring from outside it follows from (40) that a sphere of 
given gravitational mass α/2k2 can not have a radius measured from outside 
smaller than:  

 Po =α  

For a sphere of incompressible fluid the limit will be 9/8 α. (For the Sun α is 
equal to 3 km, for a mass of 1 gram is equal to 1.5 · 10−28 cm.)  

A	physical	criticality	before	the	geometric	criticality	

Thus,	 as	 early	 as	 February	 1916,	 Karl	 Schwarzschild	 had	 detected	 that	 a	
peculiar	 situation	 of	physical	 criticality	 (where	 the	 pressure	 and	 speed	 of	
light	 become	 infinite	 in	 the	 center	 of	 the	 star)	manifests	 itself	 before	 the	
classical	geometric	criticality	is	reached	(when	the	radius	of	the	star	merges	
with	the	Schwarzschild	radius).	

From	his	article,	 it	 is	 then	easy	 to	 calculate	 the	value	of	 the	pressure	as	a	
function	of	the	outer	radius	of	the	star.	
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This	 corresponds	 to	 the	 famous	 equation	 established	 in	 1939,	 based	 on	
Richard	Tolman's	work	[3],	by	J.	Robert	Oppenheimer	and	George	Volkoff	[4]	
which	is	the	basis	of	the	"TOV	model"	named	after	their	initials:		

  

dp
dr

= − ( ρ + p )( m(r) + 4π k p r3 )
r ( r − m(r) )

	

This	 TOV	 model	 considers,	 like	 Schwarzschild's	 model	 from	 which	 it	 is	
derived,	a	neutron	star	as	a	sphere	of	constant	density.	

Fig.	9	is	a	line	graph	displaying	solution	curves	of	the	TOV	equation.	It	shows	
the	evolution	of	pressure	in	the	neutron	star	according	to	a	logarithmic	scale	
and	as	 a	 function	of	 the	distance	 from	 the	 center	of	 the	 star,	 for	different	
values	of	its	outer	radius	Rn	(hence	its	mass):	

	
Fig.	9	–	Pressure	inside	a	neutron	star	
as	a	function	of	its	radius	(TOV	model).	

It	can	be	seen	that	the	pressure	at	the	center	of	the	star	tends	towards	infinity	
when	 Rn	=	0.9428	Rs	 thus	 before	 the	 radius	 of	 the	 star	 reaches	 the	
Schwarzschild	radius.	
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The	solution	for	values	greater	than	this	critical	radius	is	shown	in	Figure	10.	
Although	 the	 TOV	 solution	 is	 steady-state	 and	 assumes	 a	 spherical	
symmetry,	 thus	 represents	only	 an	 approximation,	 it	 denotes	 the	 extreme	
fast	growth	rate	of	the	singularity	(p	=	∞)	that	comes	into	being	at	the	center	
of	the	star,	the	more	the	Schwarzschild	radius	is	approached:	

	
Fig.	10	–	Pressure	soaring	quickly	in	the	neutron	star	

for	values	greater	than	the	critical	value.	

Those	who	build	black	hole	theoretical	models	start	from	the	hypothesis	in	
which	the	star	would	shrink	asymptotically	down	to	the	Schwarzschild	radius.	

The	following	curve	shows	how	this	situation	is	achieved.	Along	abscissa	is	
the	 radius	 of	 the	 star	 Rn.	 The	 parabola	 represents	 the	 evolution	 of	 the	
Schwarzschild	radius	Rs	which	increases	according	to	the	mass	of	the	star,	
hence,	for	a	constant	density,	as	the	radius	of	the	star	cubed.	
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Fig.	11	–	Rapid	growth	of	the	Schwarzschild	radius	Rs	

with	respect	to	the	linear	growth	of	the	radius	of	the	star	Rn.	
!	is	the	critical	star	radius	when	Rn	=	Rs	(geometric	criticality).	

We	 observe	 a	 horizontal	 line,	 directly	 derived	 from	 the	 Schwarzschild	
solution	of	February	1916,	which	marks	the	limit	of	criticality	of	the	inner	
metric.	

Below	this	critical	situation,	the	neutron	star	is	like	this:		

	
Fig.	12	

We	see	that	its	Schwarzschild	radius	Rs	is	located	inside	the	star,	whereas	the	
radius  R̂ ,	which	marks	 the	 criticality	 of	 the	 external	 solution,	 lies	 outside.	
Thus	 the	 two	 solutions,	 connected	 outside	 this	 geometric	 criticality,	 are	
singularity-free.	

Theorists	 completely	 obscure	 the	 physical	 criticality,	 i.e.	 the	 tremendous	
rises	of	pressure	and	speed	of	light	to	infinity	in	the	center	of	the	star,	which	
take	place	before	the	situation	of	geometric	criticality	occurs.	This	should	not	
leave	the	physicist	unmoved,	as	a	pressure	is	also	an	energy	density.		
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Reconsideration	of	the	problem	according	to	the	Janus	model	

The	Schwarzschild	exterior	and	interior	solutions	are	also	solutions	of	the	
Janus	cosmological	model,	[5]	[6]	[7]	a	bimetric	description	of	the	universe	
as	 an	 M4	 manifold	 associated	 to	 two	 conjugated	 Riemannian	 metrics,	
generating	 their	 own	 set	 of	 geodesics,	 solutions	 of	 two	 coupled	 field	
equations:	

!"#$ − 12!
$ ("#$ = * 	,"#$ + ( .

( $ ,"#. 	 !

	

!"#. − 12!
. ("#. = −* 	 ( $

( . ,"#$ + ,"#. 	

Let's	start	with	the	Schwarzschild	exterior	solution,	with	no	right	hand-side.	
It	is	known	that	in	the	Schwarzschild	solution,	the	quantity	α	is	just	a	simple	
integration	constant,	which	can	be	taken	positive	or	negative.		

In	the	following,	a	local	situation	is	arbitrarily	considered,	where	  g
(+ ) = g (− ) .	

Let	us	assume	that	the	length	Rs,	the	Schwarzschild	radius,	is	strictly	positive	
and	that	α,	simple	integration	constant,	can	have	equal	and	opposite	values.	
Thus	 we	 have	 two	 coupled	 solutions	 outside	 the	 star.	 Let's	 write	 these	
metrics:		

  
gµν

(+ )ext gµν
(− )ext 	

Let's	 call	 them	 "posi-Schwarzschild	 exterior"	 and	 "nega-Schwarzschild	
exterior".	They	are	written,	choosing	Schwarzschild's	auxiliary	quantity	R	or	
"Hilbert's	variable":		

Metric	
  
gµν

(+ )ext 	

  

ds2 = ( 1−
Rs

R
) dt2 − dR2

1−
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− )ext 	

  

ds2 = ( 1+
Rs

R
) dt2 − dR2

1+
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	
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We	can	easily	 calculate	 the	geodesics	of	 the	 second	equation	and	see	 that	
they	bring	up	the	repulsion	of	a	test	mass	+m	by	a	negative	mass	-m.		

It	 is	 the	 same	 thing	 for	 "posi-Schwarzschild	 interior"	
  
gµν

(+ ) int 	and	 "nega-
Schwarzschild	 interior"	

  
gµν

(− ) int 	which	 are	 written, 1 	derived	 from	 the	
Schwarzschild	interior	solution,	February	1916:		

Metric	
  
gµν

(+ ) int 	

  

ds2 = 3
2

1−
Rn

2

R̂2 − 1
2

1− R2

R̂2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1− R2

Rs
2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− ) int 	

  

ds2 = 3
2

1+
Rn

2

R̂2 − 1
2

1+ R2

R̂2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1+ R2

Rs
2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

	
These	metrics	are	connected	in	pair	along	the	surface	of	the	star.	

What	happens,	according	to	the	Janus	model,	when	the	mass	of	a	subcritical	
neutron	star	is	gradually	increased	to	the	point	where	the	physical	criticality	
is	reached	at	its	center?	As	we	will	see	in	the	next	section,	this	kind	of	event	
should	be	quite	common	in	the	cosmos.	

It	must	be	said	that	without	a	complete	time-dependent	analytic	solution	that	
could	 be	 based	 on	 a	 previous	work,	we	will	 give	 this	 article	 a	 somewhat	
conjectural	character.		

But	 in	 this	 day	 and	 age	 of	 evaporating	 black	 holes	 fitted	 with	 firewalls	
protecting	 them	 from	 the	 information	 paradox,	 we	 think	 we	 can	 grant	
ourselves	this	right.	

Leaking	Neutron	Star		

First	 and	 foremost,	we	present	 the	 "soft"	 scenario,	where	 such	 a	 physical	
criticality	is	slowly	approached.		

As	already	mentioned	in	the	first	part	of	this	paper,	binary	systems	are	very	
abundant	in	the	universe.	For	a	number	of	them,	a	member	of	the	couple	has	
become	a	neutron	star	after	the	gravitational	collapse	of	a	supernova.		

																																																								
1	See	reference	[8]	and	more	precisely	[9],	equation	(14.47)	page	472,	chapter	14	"The	
Role	of	Relativity	in	Stellar	Structure	and	Gravitational	Collapse".	
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In	this	particular	case,	this	neutron	star	is	stable,	subcritical.	Then	its	donor	
companion	star	sends	a	continuous	flow	of	matter	in	the	form	of	stellar	wind,	
accreted	 gravitationally	 by	 the	 neutron	 star,	 whose	 mass	 is	 therefore	
gradually	increased.	

The	rise	of	the	energy	density	at	the	center	of	the	star	eventually	produces	
there	a	mass	inversion	process.	Indeed,	according	to	the	Janus	cosmological	
model,	 all	 physical	 constants	 underwent	 a	 joint	 variation	 during	 the	 high	
energy	density	state	of	the	radiation-dominated	era,	right	after	the	Big	Bang	
where	c,	 for	example,	 reached	an	 infinite	value.	 [6]	We	think	some	events	
involving	very	high	energy	densities,	as	in	the	center	of	critical	neutron	stars,	
can	 similarly	 recreate	 conditions	 allowing	 a	 "bridge"	 to	 briefly	 appear,	
joining	the	positive	and	negative	sectors	together,	though	which	mass	can	be	
exchanged	and	inverted.	[11]	

As	 this	mass	 in	excess,	which	has	become	negative	according	 to	 the	 Janus	
model,	 no	 longer	 interacts	 with	 the	 positive	 mass	 except	 through	
antigravitation,	it	is	repelled	by	the	star	and	dispersed	away	in	space	among	
the	interstellar	medium,	then	the	intergalactic	medium	where	it	ends	up.		

An	 analogy	 can	 be	made,	 comparing	 this	 process	with	 the	 "bung	&	 float"	
mechanism	keeping	the	water	level	constant	in	a	flush	tank:	

	

	
Fig.	13	
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When	an	input	of	matter	in	excess	triggers	the	beginning	of	a	criticality	in	the	
center	of	the	star,	"the	bung	is	raised"	and	the	"plughole"	opens:	

	
Fig.	14	

The	plughole,	quite	small	in	diameter,	quickly	closes	as	soon	as	the	star	has	
become	subcritical	again,	and	the	situation	becomes:	

	
Fig.	15	
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When	a	model	is	proposed,	is	must	describe	a	possible	observation	able	to	
falsify	it.	In	this	case,	it	is	a	non-observation:	we	conjecture	that	stellar	black	
holes	do	not	exist	and	that	the	observed	effects	are	only	caused	by	subcritical	
neutron	stars,	which	are	abundant.		

The	 geometry	 describing	 these	 objects	 is	 then	 represented	 by	 the	 four	
metrics	given	above,	a	borderline	situation	at	the	edge	of	criticality,	which	
corresponds,	in	Schwarzschild's	second	paper,	to:		

cos	χa		slightly	superior	to	1/3	

We	 can	 then	 give	 a	 name	 to	 such	 kind	 of	 neutron	 stars	 near	 criticality,	
smoothly	evacuating	any	input	of	matter	in	excess	by	the	inversion	of	some	
of	its	mass	at	its	center:		

Leaking	neutron	star	

A	 more	 faithful	 image	 would	 be	 to	 shape	 the	 flush	 tank	 as	 a	 bowl,	
corresponding	to	the	gravitational	potential	in	the	neutron	star.	As	long	as	
the	criticality	 is	not	 reached,	we	are	 in	 the	situation	of	Fig.	16	on	 the	 left.	
When	the	critical	mass	is	reached,	the	bung	is	raised.	The	matter	in	excess,	
whose	mass	is	reversed,	is	poured	out.	It	follows	the	relief	of	a	promontory	
which	is	the	mirror	image	of	the	bowl	(the	gravitational	potential	is	reversed	
after	its	passage	in	this	sector).	This,	until	the	level	drops	under	criticality,	
causing	the	bung	to	close.		

	
Fig.	16	
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Interior	coupled	metrics	are	then:	

Metric	
  
gµν

(+ ) int 	

  

ds2 = 3
2

1−
9Rs

2

8R̂2 − 1
2

1− R2

R̂2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1− R2

Rs
2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− ) int 	

  

ds2 = 3
2

1+
9Rs

2

8R̂2 − 1
2

1+ R2

R̂2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1+ R2

Rs
2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

	
Formulation	unchanged	for	exterior	metrics:		

Metric	
  
gµν

(+ )ext 	

  

ds2 = ( 1−
Rs

R
) dt2 − dR2

1−
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− )ext 	

  

ds2 = ( 1+
Rs

R
) dt2 − dR2

1+
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	

	

Collapse	of	neutron	binaries	

A	"hard"	scenario	corresponds	to	the	fusion	of	two	subcritical	neutron	stars	
into	 a	 single	 object.	 Let	 us	 call	M1	 and	M2	 the	masses	 of	 these	 two	 stars.		
If	 M1	+	M2	 <	 2.5	 solar	 masses,	 this	 fusion	 will	 take	 place	 without	 mass	
inversion.	But	 if	 the	 sum	exceeds	 this	 value,	 the	mass	 in	 excess	m	will	 be	
inverted	and	repelled	from	the	resulting	star,	which	will	become	subcritical	
again.	Let	us	call	this	sum:	M1	+	M2	+	m.		

The	inversion	and	expulsion	of	this	excess	of	mass	m,	brief	and	brutal,	must	
be	accompanied	by	a	powerful	emission	of	gravitational	waves.	This	is	our	
interpretation	of	the	recent	evidence	at	LIGO	[10]	and	not	as	a	fusion	of	two	
black	holes	about	thirty	solar	masses.	Values	producing	a	gravitational	signal	
with	an	energy	equivalent	to	only	3	solar	masses	allow	such	an	identification	
in	spite	of	a	tiny	signal-to-noise	ratio.	

We	will	then	seek	to	describe	this	process	building	a	steady	state	solution.	
Already,	 the	 high	 sensitivity	 of	 the	 solution	 when	 approaching	 criticality	
evokes	the	rapid	expansion	of	a	central	devouring	singularity,	reminiscent	of	
the	ancient	video	game	Pac-Man,	then	its	closing	just	as	fast.		
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An	extreme	situation	would	be	encountered	with	the	fusion	of	two	subcritical	
neutron	 stars.	 The	 total	 inverted	mass	 then	 approaches	 2.5	solar	masses.	
Once	 the	 mass	 inversion	 process	 has	 been	 completed,	 how	 could	 such	 a	
situation	be	described,	geometrically?		

This	situation	is	not	simple.	In	this	type	of	scenario,	and	in	certain	cases,	a	
configuration	can	be	considered	with	the	system	of	equations		

  
Rµν

(+ ) = 0 		

  
Rµν

(− ) = 0 	

which	would	 represent	 a	 kind	 of	 "instantaneous	 photography"	where	 the	
mass	 density	 is	 not	 zero	 locally,	 but	 the	 sum	 of	 the	 two	 mass-energy	
densities,	positive	and	negative,	is	equal	to	zero.	In	reference	[11]	this	type	
of	solution	was	studied,	through	joint	steady	state	metric	solutions.	Although	
this	is	not	perfectly	rigorous	yet,	it	can	still	give	a	general	idea.	This	is	an	open	
and	exciting	question	that	we	are	currently	working	on.	

Such	a	 solution	was	described	 in	2015.	 [11]	When	 the	 system	of	 the	 four	
metric	solutions	of	the	Janus	model	is	considered,	it	should	be	noted	that	one	
can	 opt	 for	 a	 solution	 where	 the	 transferred	 mass,	 which	 has	 become	
negative,	is	now	located	in	the	negative	sector.	

This	configuration	would	then	be:		

Metric	
  
gµν

(+ ) int 	

  

ds2 = 3
2

1+
Rs

2

R̂2 − 1
2

1+
Rs

2

R2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1+
Rs

2

R2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− ) int 	

  

ds2 = 3
2

1−
Rs

2

R̂2 − 1
2

1−
Rs

2

R2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − dR2

1−
Rs

2

R2

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(+ )ext 	

  

ds2 = ( 1+
Rs

R
) dt2 − dR2

1+
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	

Metric	
  
gµν

(− )ext 	

  

ds2 = ( 1−
Rs

R
) dt2 − dR2

1−
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	
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Compared	 to	 the	 configuration	 where	 the	 mass	 is	 positive,	 there	 is	 a	
complete	exchange	of	the	two	geodesic	systems.	By	the	way	it	can	be	noted	
that	 this	 system	 of	 four	metrics	 describes	 the	 geometry	 in	 the	 vicinity	 of	
negative	mass	conglomerates	located	at	the	center	of	the	giant	voids	of	the	
large-scale	structure	of	 the	universe,	as	 foreseen	by	 the	 Janus	model.	This	
configuration	 generates	 negative	 gravitational	 lensing	 on	 positive	 energy	
photons,	a	phenomenon	initially	described	by	the	author	in	1995.	[12]	In	this	
model,	a	gravitational	 lens	effect	reduces	the	apparent	magnitude	of	high-
redshift	galaxies	(z	>	7)	which	makes	them	appear	as	dwarfs.		

As	 suggested	 by	 a	 Japanese	 team,	 [13]	 and	 in	 the	 video	 "JANUS	 #20"	
presenting	these	concepts,	[14]	mapping	the	universe	using	negative	weak	
gravitational	lensing	could	falsify	this	model	of	lacunar	large-scale	structure	
of	 the	 universe,	 with	 galaxy	 filaments,	 clusters	 and	 superclusters	 around	
large	void	bubbles.	[15]	

But	this	neutron	star	model	remains,	as	it	is,	schematic	and	embryonic.	It	is	
known	that	such	objects	are	rotating	fast,	which	is	not	currently	taken	into	
account.	The	external	metric	should	therefore	be	that	of	Kerr,	[16]	and	not	
that	of	Schwarzschild,	and	the	corresponding	internal	metric	remains	to	be	
made.	

Moreover,	the	magnetic	field	associated	with	neutron	stars	is	very	intense:	
typically	 108	 teslas,	 to	 more	 than	 1011	 teslas	 for	 most	 extreme	 cases	
(magnetars).	 It	 results	 from	 the	 compression	 of	 magnetic	 field	 lines	 that	
preexisted	 in	 the	 massive	 star,	 before	 its	 gravitational	 collapse	 in	 the	
supernova	 phenomenon.	 This	magnetic	 field	 probably	 plays	 an	 important	
role,	likely	to	influence	the	proposed	scenario,	in	particular	on	the	structure	
of	 possible	 negative	mass	 remnants	 resulting	 from	 the	 violent	 fusion	 and	
mass	inversion	of	a	pair	of	neutron	stars.	

Nevertheless,	a	study	carried	out	on	the	basis	of	the	Schwarzschild	metric	
enables	the	identification	of	general	ideas.	

		

A	change	of	topology	

This	 approach	 modifies	 the	 idea	 commonly	 followed	 in	 the	 field	 of	
differential	 geometry	 and	manifold	 theory.	 Remember	 that	 these	 theories	
were	 born	 from	 concerns	 about	 how	 to	 map	 Earth,	 which	 is	 a	 sphere.	
However,	 in	 order	 to	 map	 it,	 only	 plane	 paper	 sheets	 are	 available.	
Cartographers	 therefore	 use	 atlases	 made	 up	 of	 flat	 maps,	 supplied	 with	
indications	allowing	to	connect	them	two	by	two.		
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Modern	geometry	has	attempted	to	generalize	this	idea.	But	imagine	a	planet	
where	planar	surfaces,	in	particular	paper	as	a	map	support,	are	unknown.	
Conversely,	 there	 is	 in	 this	 world	 a	 profusion	 of	 tree	 leaves	 shaped	 as	
spherical	caps,	stackable	one	onto	the	others.	Cartographers	of	 this	planet	
could	then	constitute	an	atlas	made	of	sets	of	maps	traced	onto	curved	sheets.		

Differential	 geometry	 has	made	widespread	 use	 of	 the	 set	 "atlas	 +	maps"	
which	 allows	 to	 shape	 those	maps	 onto	 any	 support,	 as	 long	 as	 rules	 are	
provided	to	connect	them	to	each	other.		

In	such	a	perspective,	the	approach	represents:	

- The	choice	of	a	manifold	Mn.	

- Its	arbitrary	association	to	a	topology.	

- The	addition	of	maps	constituting	an	atlas.		

When	 he	 builds	 his	 solution,	 Schwarzschild	 opts	 implicitly	 for	 a	
representation	 space	   !

3 × ! .	 He	 intends	 to	 describe	 his	 hypersurface-
solution	 in	 such	 a	 space.	 He	 then	 obtains	 a	 metric	 that	 evokes	 a	 non-
contractible	object,	that	may	be	taken	for	a	manifold	with	boundary.		

Hilbert,	giving	to	time	the	nature	of	a	pure	 imaginary	quantity,2		 implicitly	
situates	the	solution	in	a	space	  !

3 × " .		

The	analytic	extensions	developed	later,	like	that	of	Kruskal,	[17]	belong	to	
the	same	choice,	to	the	same	idea.	This	is	what	will	make	the	Argentinian-
American	physicist	Juan	Martín	Maldacena	say:3	

— Kruskal	extended	the	solution	to	cover	the	full	spacetime.	

Specifically,	he	should	have	said:	

— Kruskal	extended	the	solution	to	cover	his	views	of	the	spacetime.	

In	doing	so,	he	builds	this	extension	using	several	connected	metrics.	

																																																								
2	Please	refer	to	"	Mass	inversion	in	a	critical	neutron	star:	An	alternative	to	the	black	
hole	model	–	First	part".	
3	https://indico.fias.uni-frankfurt.de/event/4/session/17/contribution/39	
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An	important	question	arises:		

— What	is	the	information	contained	in	a	solution	to	the	field	equation,	
expressed	 in	 the	 form	 of	 a	 metric?	 Would	 such	 a	 solution	 contain		
its	own	topology?		

Said	otherwise:	

— Should	the	expression	of	this	solution,	in	the	form	of	a	hypersurface,	be	
limited	to	representations	where	the	element	of	length	remains	real?	

The	 Einstein	 field	 equations,	 whose	 metric	 is	 derived,	 involves	 only	 real	
quantities.	The	components	of	 the	Ricci	 tensor	are	real,	 its	derivatives	are	
real.	 How,	 under	 these	 conditions,	 to	 consider	 expressing	 the	 solution	 by	
implementing	pure	imaginary	quantities?		

If	we	stick	to	the	real	world,	this	means	that	when	we	explore	parts	of	the	
(numerical)	space	related	to	variables,	and	come	across	an	element	of	pure	
imaginary	 length,	 or	 when	 the	 signature	 of	 the	 metric	 becomes	 altered,	
which	is	the	same	thing,	one	is	then	simply	outside	the	hypersurface.	

This	can	be	illustrated	with	the	Schwarzschild	solution.	It	is	then	enough	to	
start	from	"Hilbert's	representation"	with	the	auxiliary	variable	R:	

  

ds2 = ( 1−
Rs

R
) dt2 − dR2

1−
Rs

R

− R2( dθ 2 + sin2θ dϕ 2 ) 	

and	use	the	change	of	space	variable	as	shown	in	ref.	[11]:		

  R = Rs ( 1+ Log chρ ) 	

The	metric	is	then	written:		

  
ds2 = Log chρ

1+ Log chρ
dt2 − Rs

2 1+ Log chρ
Log chρ

th2ρ dρ 2 + (1+ Log chρ)2(dθ 2 +sin2θ dϕ 2 )
⎡

⎣
⎢

⎤

⎦
⎥ 	

This	metric	 is	regular	 for	any	value	of	 this	new	space	variable	ρ 	including	
the	vicinity	of	 ρ = 0 	equivalent	to	 R = Rs 	with	  Log chρ = 0 .	

To	get	convinced,	just	make	series	expansion	of	functions	 Log chρ and	  th
2ρ 	in	

the	neighborhood	of	 ρ = 0 	to	find	their	ratio	tends	to	2.	
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What	is	the	topology	of	this	four-dimensional	hypersurface?	We	can	focus	on	
its	spatial	part:		

  
dσ 2 = Rs

2 1+ Log chρ
Log chρ

th2ρ dρ 2 + (1+ Log chρ)2(dθ 2 +sin2θ dϕ 2 )
⎡

⎣
⎢

⎤

⎦
⎥ 	

This	geometric	object	is	not	contractible.	If	we	fix	the	quantity	 ρ 	we	obtain	
an	object	defined	by	the	metric:		

  dΣ
2 = Rs

2(1+ Log chρ)2(dθ 2 +sin2θ dϕ 2 ) 	

By	 setting	 the	 variable	 θ ,	 for	 example	 to	 the	 value	  θ = π / 2 ,	 we	 get	 a	
maximum	value	for	the	perimeter:		

  p = 2π Rs 	

By	varying	it,	we	obtain	a	family	of	2-spheres	that	are	parallel,	one-parameter	
closed	surfaces	 Σ2(ρ) 	having	a	minimum	area	  A = 4π Rs

2 .		

The	closed	surface	of	minimal	area	 Σ2(0) 	acts	like	a	throat	surface.4		

But	the	term	 gt t 	of	the	metric	is	zero	when	 ρ = 0 ,	which	leads	to	the	nullity	of	
the	determinant	of	the	metric	at	this	point,	and	the	impossibility	of	defining	
a	system	of	Gaussian	coordinates	along	this	closed	surface	 Σ2 ,	in	other	words	
it	is	impossible	to	orientate	time	and	space.		

The	geometric	object	emerging	from	the	Schwarzschild	solution	is	therefore	
not	a	manifold	in	the	classical	sense	of	the	term,	but	an	orbifold	containing	a	
singular	region	 Σ2(0) 	where	the	object	is	locally	non-orientable.	This	is	not	a	
sphere,	but	a	projective	P2.	It	was	already	difficult	to	create	the	mental	image	
of	two	three-dimensional	spaces	connected	by	a	throat	sphere.	One	imagines	
the	mental	efforts	that	must	be	deployed	if	this	throat	surface	becomes	Boy's	
surface…	

Such	 a	 structure	 then	 fits	 with	 the	 Janus	 model.	 Indeed,	 time	 reversal	
according	 to	 the	dynamical	 group	 theory,	 [18]	 is	 actually	 the	 inversion	of	
energy,	hence	the	inversion	of	mass.5	Therefore,	the	object	represents	some	
kind	of	space	bridge	connecting	two	PT-symmetric	Minkowski	spaces.			

																																																								
4	Description	of	this	surface	as	a	throat	2-sphere	in	[11].	

5	See	ref.	[18]	Part	III.	Mechanics	–	Chapter	14:	A	mechanist	description	of	elementary	
particles	–	Section	Inversions	of	space	and	time,	pages	189–193.	



	 22	

About	the	time	of	free	fall	

Classically,	 events	 occurring	 near	 a	 black	 hole	 are	 theoretically	 seen	 as	
"frozen	in	time"	for	a	distant	observer.	Indeed,	when	the	time	of	free	fall	is	
calculated	with	the	variable	t,	which	is	supposed	to	be	the	time	experienced	
by	 the	 distant	 observer,	 and	 is	 compared	 to	 the	 proper	 time	 s	 of	 the	 test	
particle	falling	onto	the	black	hole,	which	is	the	only	one	intrinsically	related	
to	the	geometric	object,	one	finds	the	this:	[9]		

	
Fig.	17	–	Fall	toward	the	origin	of	a	Schwarzschild	geometry	

in	terms	of	coordinate	time	t	and	proper	time	on	the	test	particle	s/c.	

	

This	choice	of	time	marker	t	seems	necessary.	Yet	we	must	bear	in	mind	that	
the	choice	of	variables	with	respect	to	the	description	of	the	hypersurface-
solution,	where	the	only	intrinsic	quantity	is	s,	remains	an	arbitrary	choice	
representing	the	physical	interpretation	of	the	solution.		

We	then	refer	to	the	Kerr	metric	according	to	the	formulation	given	by	Boyer	
and	 Lindquist.	 [19]	We	will	 replace	 their	 space	 variable	 ρ 	with	 the	 same	
Greek	letter	Ρ 	in	uppercase,	to	avoid	any	confusion	with	the	other	change	of	
variable	used	above.		

Here,	  Ρ = x2 + y2 :		

  

ds2 = 1−
Rs Ρ

Ρ2 + a2 cos2θ
⎛
⎝⎜

⎞
⎠⎟

dt2 − Ρ2 + a2 cos2θ
Ρ2 + a2 − Rs Ρ

dΡ2

− ( Ρ2 + a2 cos2θ )dθ 2 − (Ρ2 + a2 )sin2θ +
Rs Ρ a2 sin4θ
Ρ2 + a2 cos2θ

⎡

⎣
⎢

⎤

⎦
⎥dϕ 2 −

2 Rs Ρ asin2θ
Ρ2 + a2 cos2θ

dt dϕ
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This	expression	can	be	particularized,	taking	 θ = π / 2 .	Therefore:		

  
ds2 = 1−

Rs

Ρ
⎛
⎝⎜

⎞
⎠⎟

dt2 − Ρ2

Ρ2 + a2 − Rs Ρ
dΡ2 − Ρ2 + a2 +

Rs a2

Ρ
⎡

⎣
⎢

⎤

⎦
⎥ dϕ 2 −

2 Rs a
Ρ

dt dϕ 	

What	differentiates	this	writing	of	the	Kerr	metric	solution	from	the	classical	
expression	of	the	Schwarzschild	metric?	The	presence	of	a	cross	term	 dϕ dt .	

Photons	 follow	null	 geodesics.	 Considering	 azimuthal	 geodesics	 at	 Ρ = Cst ,	
two	 different	 values	 of	 the	 speed	 of	 light	 are	 obtained.	 Similarly,	 if	 we	
calculate	the	period	of	rotation	of	test	particles	along	circular	geodesics,	we	
will	 get	 two	 different	 values,	 depending	 on	 whether	 we	 travel	 these	
geodesics	clockwise	or	counterclockwise.		

This	is	classically	interpreted	as	rotational	frame-dragging	or	Lense-Thirring	
effect.	In	[9]	we	read:6	

Loosely speaking, we may think of the rotating source as "dragging" 
space around with it; in a Machian sense the source "competes" with 
Lorentzian boundary conditions at the infinity in the establishment of a 
local inertial frame.  

This	 situation	 is	 inherently	 related	 to	 the	 Kerr	 solution.	We	 can	wonder,	
always	 in	 the	 sense	 of	 Ernst	 Mach,	 if	 this	 strong	 inertial	 dragging	 of	 the	
reference	 frame	 within	 the	 ergosphere	 may	 represent	 a	 phenomenon	
automatically	linked	to	such	extreme	situations,	so	this	has	to	be	necessarily	
taken	into	account.	

But	how	to	introduce	a	radial	frame-dragging?	Thanks	to	the	change	of	time	
variable	suggested	by	Sir	Arthur	Eddington	in	1924:	[20]		

  
t = t ' − Rs Log

R
Rs

− 1 	

Such	 a	 change	 of	 temporal	 variable	 can	 be	 applied	 either	 to	 the	
Schwarzschild	metric	or	to	the	Kerr	metric.	Let's	choose	here	to	make	this	
change	 in	 the	 Schwarzschild	 metric,	 written	 in	 the	 coordinate	 system	
  ( t , R ,θ ,ϕ ) .		

																																																								
6	Ref.	[9]	Chapitre	7	–	The	Kerr	Solution,	page	258.	
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Therefore:	

  
ds2 = (1−

Rs

R
)dt ' 2 − (1+

Rs

R
)dR2 − 2

Rs

R
dt 'dR − R2 ( dθ 2 + sin2θ dϕ 2 ) 	

Trajectories	of	test	particles	along	timelike	geodesics	can	be	calculated:	

	

But	the	calculation	of	the	free	fall	time	provides	a	different	result	depending	
on	whether	it	is	a	centripetal	radial	trajectory	 (ν = + 1) 	or	a	centrifugal	one	
 (ν = − 1) .	The	radial	trajectories	correspond	to	h	=	0.	Then:	

dt =
λ R + ν Rs λ 2 − 1+ Rs

R

ν ( R − Rs ) λ 2 − 1+ Rs
R

dR 	

When	the	parameter	λ	is	equal	to	unity,	this	corresponds	to	a	particle	with	
zero	velocity	at	infinity.	We	will	place	ourselves	in	a	situation	close	to	these	
conditions.	Let's	consider	a	radial	trajectory	in	a	situation	corresponding	to	
the	vicinity	of	the	surface	R	=	Rs	:		

 
dt ! ν r + ν Rs

( r − Rs )
dr 	

• In	a	plunging	trajectory	 (ν = − 1) 	the	free	fall	time	is	finite.		

• In	an	escape	trajectory	 (ν = 1) 	it	becomes	infinite.	

We	have	a	one-way	membrane.	

	 	

dϕ = ± dR

R 2 λ 2 − 1
h2

+ Rs
h2R

− 1
R 2 +

Rs
R 3
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When	the	test	particle	crosses	the	throat	surface,	 time	reverses.	 If	we	still	
consider	this	motion,	as	it	would	be	perceived	by	a	distant	observer	made	of	
positive	mass,7	the	cross	term	is	now	opposite	and	the	metric	is	written:		

  
ds2 = (1−

Rs

R
)dt ' 2 − (1+

Rs

R
)dR2 + 2

Rs

R
dt 'dR − R2 ( dθ 2 + sin2θ dϕ 2 ) 	

Opposite	situation	too	for	radial	trajectories:		

dt =
λ R − ν Rs λ 2 − 1+ Rs

R

ν ( R − Rs ) λ 2 − 1+ Rs
R

dR 	

Conversely	this	time,	escape	trajectories	take	place	over	a	finite	time,	while	
plunging	trajectories	are	associated	with	an	infinite	time.	

The	passage	still	behaves	as	a	one-way	membrane.		

It	should	be	noticed	that	 the	opposite	sign	of	 the	cross	 term	in	 the	metric	
leads	to	an	ephemeral	white	hole	model	in	the	negative	sector,	i.e.	there,	the	
throat	 surface	 still	 behaves	 like	 a	 one-way	 membrane,	 but	 in	 the	 other	
direction.	

Crossing	this	ephemeral	throat	surface	is	therefore	a	one-way	trip.	Yet,	the	
flow	direction	depends	on	the	sector	(positive	or	negative)	from	which	this	
"hyperspace	bridge"	is	generated.	

	 	

																																																								
7	In	the	Janus	model,	it	would	not	be	possible	for	the	distant	observer,	made	of	positive	
mass,	to	still	see	the	motion	of	these	particles	after	their	mass	inversion,	since	negative	
mass	emits	negative	energy	photons	 that	 follow	null	 geodesics	of	 the	metric	("#(.) .	The	
inverted	mass	thus	seems	to	disappear	from	the	observer's	reference	frame,	from	its	own	
point	of	view.	The	throat	surface	also	acts	in	the	Janus	model	as	an	event	horizon,	although	
a	very	short-lived	one.	See	references	[5]	[6]	[7].		
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Conclusion		

This	black	hole	chimera	is	a	house	of	cards	and	it	tumbled	down.	The	"freeze-
frame"	is	a	consequence	of	an	arbitrary	choice	of	the	temporal	variable	while	
at	the	same	time	neglecting	the	frame-dragging	phenomenon.	In	his	opening	
lecture,	at	 the	Karl	Schwarzschild	Meeting	 in	Frankfurt	(the	city	where	he	
was	born)	in	July	2017,8	Maldacena	said:		

— The Schwarzschild solution has confused us over a hundred years and 
it has forced us to sharpen our views on space and time. It has lead to 
sharper understanding of Einstein’s theory. Experimentally, it is 
explaining several astrophysical observations. Its quantum aspects 
have been a source of theoretical paradoxes that are forcing us to 
understand better the relation between spacetime, geometry and 
quantum mechanics. 

On	the	contrary,	 I	believe	 that	 this	alleged	deepening	of	 the	conception	of	
spacetime	has	led	cosmologists	to	depart	from	the	original	vision	of	men	like	
Einstein	and	Schwarzschild,	who	had	a	very	profound	intuition	of	geometry	
and	physical	phenomena.	By	choosing	to	extend	spacetime	to	a	phantasmal	
element,	they	built	an	object	they	called	a	black	hole,	endowed	with	a	strange	
"interior"	 in	 which,	 in	 the	 words	 of	 specialists	 "time	 and	 space	 are	
interchanged	one	another".		

Formerly,	the	late	French	cosmologist	Jean	Heidmann	used	to	say:	

Jadis	le	cosmologiste	français	feu	Jean	Heidmann	avait	coutume	de	dire	:		

— When	 talking	 about	 black	 holes,	 common	 sense	 has	 to	 be	 left	 in	 the	
cloakroom.		

Such	an	attitude	has	led	scientists	to	dissert	for	half	a	century	on	properties	
of	 a	 central	 singularity	 that	 exists	 only	 in	 their	 imagination,	 in	 the	
mathematical	definition	of	the	term.		

The	 theoretical	 phantasmagoria	 that	 preceded	 the	 elaboration	 of	 such	
theories	ensues	from	the	lack	of	in-depth	reading	of	Schwarzschild's	second	
paper	 [2]	 published	 in	 February	 1916	 (admittedly	 untranslated	 for	 83	
years!)	where	everything	was	already	put	in	place,	summed	up	in	the	Fig.	7	
that	we	reproduce	again	below.		

																																																								
8 	3rd	 Karl	 Schwarzschild	 Meeting	 on	 Gravitational	 Physics	 and	 the	 Gauge/Gravity	
Correspondence	(KSM	2017),	24–28	July	2017,	FIAS,	Frankfurt	am	Main,	Germany.	
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Fig.	7	

That	is	to	say:	

At the center of the sphere (χ = 0) velocity of light and pressure 
become infinite when cos χa = 1/3, and the fall velocity becomes 8/9 of the 
(naturally measured) velocity of light. Hence there is a limit to the 
concentration, above which a sphere of incompressible fluid can not exist. 
If one would apply our equations to values cosχa < 1/3, one would get 
discontinuities already outside the center of the sphere. 

Nature	 has	more	 common	 sense	 than	 one	 imagines,	 and	 arranges	 to	 give	
signs	to	theorists.	Provided	they	hear	them…	

The	black	hole	has	become	the	deus	ex	machina	of	modern	times.	Computer-
generated	images	are	everywhere.	We	hear,	chanted,	the	sentence:	

— Although	there	is	no	observational	confirmation,	no	scientist	any	longer	
doubts	their	existence.		

Which	is	a	complete	nonsense	from	the	point	of	view	of	the	scientific	method.		

It	is	overused	to	fit	every	occasion.	Where	does	the	energy	of	quasars	come	
from?	Black	holes,	theorists	say.	Using	which	mechanism?	Nobody	knows.		
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As for quantum gravity, it remains an unachieved discipline, insofar as 
gravitation has never been quantified. Discoursing on its ins and outs is 
tantamount to speculating on the outcome of a marriage that has never been 
consummated. 

Theoretical astrophysics must produce models that are likely to be 
confronted with observations, to be falsified in the sense of Karl Popper. The 
model we propose leads to the conclusion that the mass of neutron stars is 
automatically limited below the critical value of 2.5 solar masses, through a 
mechanism removing any excess of matter via partial mass inversion. The 
lack of any observation of X-ray emitting objects with a higher mass also 
militates in favor of this model. The fusion of two subcritical neutron stars 
could finally explain the observation of gravitational waves, the energy 
involved corresponding to the mass inversion of the matter in excess, of up 
to several solar masses.  

We predict that stellar black holes will never be observed, simply because 
they exist only in the imagination of their creators. 

We also conjecture that the energy source of quasars in active galaxy nuclei 
does not rely on black holes and that "supermassive black holes" located in 
the center of galaxies are very massive relics of such quasars. Work in 
progress on this subject, that will be presented at a later stage. 
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