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Abstract

Following a brief review of existing bimetric models, we show that
Janus Cosmological Model brings an alternative solution to the ΛCDM
model by introducing negative masses that preserve action-reaction
principle (eliminating the runaway effect). By limiting ourselves to
Newtonian approximation solutions, an action leads to coupled field
equations satisfying Bianchi identities. This model provides an expla-
nation to the recently discovered Great Repeller effect.
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1 Introduction

Nowadays the central question in Cosmology and Astrophysics can be sum-
marized to the following:

With no evidence so far of dark matter existence and a clear
dark energy model, can we continue to be contented with the
mainstream ΛCDM, or are we ready to reconsider completely our
theoretical tools, including General Relativity?

Subsequent to the recent failures in attempts to reveal the existence of
dark matter, whether under deep layers of rock or in space from the in-
ternational space station, the second option should be seriously considered.
Pushing through the quest of dark matter detection, assuming each failure
implies weaker and weaker interaction with conventional matter, brings ex-
periments to boundaries where the detection become practically impossible,
the signal being scrambled by cosmic neutrinos flow noise.
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The MOND (Modified Newtonian Dynamics) that consist in proposing
a modification of the Newton law in order to account for some observations
like the flatness of rotation curves in galaxies. But the adaptation of the
law is ad-hoc and it is difficult to find ontological base that would serve as a
starting point of this cosmologic model revision.

For an alternative to general relativity to be able to compete with the
mainstream ΛCDM model, it has to describe the nature of those two uniden-
tified components that are dark matter and black energy. Several attempts
have been made in this direction, via cosmological modes including some neg-
ative masses. Among them some keep the geometrical vision of the General
Relativity, being variations the Einstein equation, others propose a complete
change of paradigm by introducing a biometric description of the universe.

Let us start with the first models. There is the approach of the French
researchers Gabriel Chardin et Benoit-Lévy [1] that suggest turning to the
1933 Dirac Milne model [2]. This model is based on the hypothesis of matter-
antimatter symmetric cosmology in which antimatter is supposed to present
a negative active gravitational mass. In addition the global mass is assumed
to be zero in average so that the model gives a linear evolution of the scale
factor in time, in contradiction with the acceleration of the cosmic expansion
([3],[4],[5]) while still bringing a solution to the problem of the cosmological
horizon. This model furthermore assumes the existence of a mechanism in-
suring the separation of this mix of matter/anti-matter. The interest in such
a model, although missing theoretical justifications of its assumptions, is to
bring an insight about the abundance of light elements in the hypothesis of
a dynamic close to an expansion linear in time. Antimatter classical models
confer to it a priori a positive mass. The authors of this model have high
expectations form weighting experiments of the antimatter that are ongoing
that the CERN (alpha et Gbar experiments).

We must then quote the article of the English researcher J. Farnes [6].
He proposes to unify dark matter and dark energy in a single entity of neg-
ative mass. In order to fit with the mainstream ΛCDM model, in which
the equivalent density in constant over time, and to mimic the cosmological
constant Λ, the author is led to invoke an hypothetical mechanism of nega-
tive mass continuous creation hence bringing more questions than answers.
Nevertheless, some numerical simulations are given based on the assumption
that galaxies would fit in gaps inside some negative masses distribution, this
later one confining the galaxies. The author recovers the flatness of rotation
curves by using ideas introduced earlier in [7]. For a detailed analysis of that
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publication see the references [8], [9] and [10].
In those two approaches the authors keep the geometric context of General

Relativity, meaning that their model is derived from Einstein equations.

2 The runaway effect

This effect, exhibited in 1957 by Hermann Bondi [11] comes from the fact
that the behavior of test masses, put in a gravitational field, is deduced
from a single metric solution. Therefore, put in a gravitational field created
by positive masses, the positive or negative test masses are subject to an
attraction force. Put in a gravitational field created by negative masses, the
positive or negative test masses are subject to a repulsion force. Hence the
schema of positive/negative masses interaction, according to the Einstein
model, correspond to

- Positive masses attract each other according to the Newton law

- Negative masses repel each other according to an (anti-)Newton law

- When masses of opposite signs are put in the presence of each other,
the positive mass run away, followed by the negative mass

If those masses are equal in absolute value, then while undergoing a uni-
formly accelerated motion, the distance between them stay constant. At the
extreme, this paradoxical effect (called runaway effect) is done at constant
energy as the kinetic energy of the negative mass is itself negative. Let us
note also that this effect is in contradiction with the action-reaction principle.

In [6] J.Farnes simply says that this runaway phenomenon could be at the
origin of the huge energy of the so-called cosmic rays in spite his introduction
of negative masses in the geometrical context of general relativity implies the
abandonment of the action-reaction principle. Can we envisage physics with
such a choice?

3 The choice of a bimetric geometry

If we plan to maintain the action-reaction principle, it is necessary to envision
a major paradigm shift in which the 1917 Einstein model is a step in building
a more elaborated bimetric cosmological model.
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Historically, a first proposal has been made in the 1994 article [12]. In
this first article, several aspects are covered, like the fact that galaxies could
be trapped in gaps in the negative mass field exercising a confinement. If the
model presented raises the explanation of those phenomena with the help of
coupled field equations, it lacks mathematical foundation. The year after,
the author introduces the negative gravitational lensing effect to explain the
strong lensing effect observed that always suggest introducing some missing
mass.

The first paper to introduce a bimetric model based on more solid mathe-
matical foundation is the one of T.Damour and I.Kogan, in 2002 ([13], [14]).
The authors invoke two left and right branes, that interact via some gravi-
ton having a mass spectrum. Later several interaction models including this
kind of vectors are considered. Noticing that taking into account Kaluza
type models lead to the conclusion that a gap would exist between light and
heavy gravitons, the authors decide to focus on light gravitons. The two
right and left populations behavior is described by two metrics gRµν and gLµν
from which they derive two Ricci tensor fields Rµν(g

R
µν) and Rµν(g

L
µν). Then

an action integral is proposed :

S =

∫
d4x

√
−gL(M2

LR(gL)− ΛL) +

∫
d4x

√
−gLL(ϕL, gL)

+

∫
d4x

√
−gR(M2

RR(gR)− ΛR) +

∫
d4x

√
−gRL(ϕR, gR)− µ4

∫
d4x(gRgL)

1
4V (gL, gR) (1)

in that expression we find the Lagrangian densities

√
−gL(M2

LR(gL) + L(ϕL, gL)− ΛL)

and √
−gR(M2

RR(gR) + L(ϕR, gR)− ΛR)

that reveal a generalization of the Lagrangian derivation technic whih is at
the base of the Einstein equation construction. The quantities d4x

√
−gL and

d4x
√
−gR represent two elementary hypervolumes defined in the two branes.

In order to introduce an interaction term, they suggest to use kind of an
average hypervolume d4x

√
gLgR .

Variation calculus lead them to propose the following system of two coupled
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equations :

2M2
L(Rµν(g

L)− 1

2
gLµνR(g

L)) + ΛLg
L
µν = tLµν + TLµν

2M2
R(Rµν(g

R)− 1

2
gRµνR(g

R)) + ΛRg
R
µν = tRµν + TRµν (2)

The quantities R(gL), R(gR) are two Ricci scalars. The terms TLµν , T
R
µν are

the left and right matter tensor fields. The tensors tLµν , t
R
µν are supposed

to be terms describing the interaction between the two branes. From those
two metrics we build the covariant derivation operators ∇L

ν ,∇R
ν from which

Bianchi identities are supposed to be expressed. The article does not describe
the construction of the tensor fields tLµν , t

R
µν and their theoretical progress

stops there.
A more elaborated work is the one of the researcher Hossenfelder ([15],

[16], [17]). The two populations are associated to metrics designated by the
letters g and h. Le matter tensor fields are designated by the letters ϕ and
ψ . She proposes the following action :

S =

∫
d4x

√
−g((g) R

8πG
+ L(ψ)) +

∫
d4x

√
−hPh(L(ϕ))

+

∫
d4x

√
−h((h) R

8πG
+ L(ϕ)) +

∫
d4x

√
−gPg(L(ψ)) (3)

There are four Lagrangian densities in the integral.
The terms

√
−g((g) R

8πG
+L(ψ)) and

√
−h((h) R

8πG
+L(ϕ)) are the generalization

of the General Relativity Lagrangian densities. The terms
√
−hPh(L(ϕ)) and√

−gPg(L(ψ)) characterize the interaction of the the two entities, one on
the other. Those terms are built from the quadridimensional hypervolumes
d4x

√
−h and d4x

√
−g.

From this action the author produces a system of two equations:

(g)Rκν −
1

2
g(g)κν R = Tκν − (V aνν)

√
h

g
Tνκ

(h)Rνκ −
1

2
h(h)νκR = −[(Waκκa

ν
ν)

√
g

h
Tκν − T νκ] (4)

The underline indicates that two different coordinate systems are {x0, x1, x2, x3}
and {x0, x1, x2, x3} the line elements can be written :

ds(g)2 = gκνdx
κdxν ; ds(h)2 = gκνdx

κdxν

gκν = gκν(x
κ, xν) ; hκν = hκν(x

κ, xν) (5)
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The map a , introduces a link between the two metrics that the author define
by:

gτλ = aντa
κ
λhνκ ; gτλ = aντa

κ
λhνκ (6)

depending whether the application is defined in one coordinate system or
the other. The search of a solution implies to define that application. In
the article [15] the author assumes, for sake of symmetry, that one of the
two population is a copy of the other, which hence make it physically less
sound. The author focuses on giving an interpretation to the significance
of the cosmological constant, the fact that its value is small. She mainly
considers that the interaction between the two classes of matter is of relative
importance, due to the weakness of the force of gravity.

4 Differential geometry in a dimensionless con-

text

Let us consider the Einstein equation without its cosmological constant:

Rν
µ −

1

2
Rδνµ = χT νµ (7)

In which the Einstein constant takes the form:

χ = −8πG

c2
(8)

The dimension of the the gravitation constant is G ∼ L3T−2

M
, the one of the

tensor T νµ in this form is ML−3 and the dimension of the Ricci tensor is
R ∼ L−2.
We write the metric

ds2 = gµνdx
µdxν (9)

where gaussian coordinates {x0, x1, x2, x3} are lengths.
{x1, x2, x3} are then space coordinates and x0 is a time-marker classically
identified to ct.
The s variable is also a length. Divided by the speed of light c it becomes
the proper time. Therefore gµν numbers do not have any dimension.
We usually write the FLRW in the form:

ds2 = dx0
2 − a2[

du2

1− ku2
+ u2dθ2 + u2sin2θ dϕ2] (10)
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Let us divide the terms by a characteristic length L by setting:

σ =
s

L
, ξ0 =

x0

L
, α =

a

L

the FLRW metric is then written, in a dimensionless form:

dσ2 = dξ0
2 − α2[

du2

1− ku2
+ u2dθ2 + u2sin2θ dϕ2] (11)

The choice in the dimension conferred to s and to other variables determines
the dimension of the metric coefficients. With our choice, those are numbers.
In order to indicate that our metric coefficients are in a dimensionless form,
we will use greek letters and replace gµν by ω̄µν . The metric can then be
written:

ω̄µν =


1 0 0 0

0 − α2

1−ku2 0 0

0 0 −α2u2 0
0 0 0 −α2u2sin2θ

 (12)

where all coefficients are dimensionless numbers . We can therefore build
dimensionless Ricci tensor Γνµ and Ricci scalar Γ . We will also write the
matter tensor in a dimensionless way, here in a mixed form:

Ξνµ =


ω 0 0 0
0 −π 0 0
0 0 −π 0
0 0 0 −π

 (13)

Hence the Einstein equation would write in a mixed dimensionless form:

Γνµ −
1

2
Γδνµ = 8πΞνµ (14)

5 The dimensionless bimetric approach

We shall start from a manifold M4 equipped with a dimensionless coordinate
system (simples numbers designated by Greek letters) :

{ξ0, ξ1, ξ2, ξ3} (15)
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or, in polar form
{ξ0, u, θ, ϕ} (16)

and two Riemanian metrics ω̄
(+)
µν , ω̄

(−)
µν with signature (+ - - - ).

We now have to build an action S(ω̄
(+)
µν , ω̄

(−)
µν ) , knowing that its variation

will be built from the variations of both metrics and that those variations
will be linked

δω̄(+)
µν , δω̄

(+)
µν → δS (17)

The two metrics belong to the functional space of Riemanian metrics with
signature ( + - - - ). We link those variations by the following simple relation:

δω̄(+)
µν = −δω̄(−)

µν (18)

This will be motivated later, on the ground of linearized solutions coming
from coupled field equation resulting from the lagrangian derivation under
those symmetry constraints.
Let us recall that we want to build a system of coupled field equations sat-
isfying to equation identities coming from Bianchi identities and allowing
to produce solutions that can be written in the form of a couple of metrics
(ω̄

(+)
µν , ω̄

(−)
µν ) , linearized and corresponding to the following symmetries :

- Stationary linearized solutions with spherical symmetry of the homo-
geneous system (in vacuum)

- Stationary linearized solutions with spherical symmetry of the inhomo-
geneous system (in the presences of masses)

- Stationary linearized solutions with axial symmetry

- Non-stationary linearized solutions with isotropy and homogeneity

Relation (18) will be justified a-posteriori.
We are writing the action:

Σ =

∫
D4

[(Γ(+)−2λ(+))
√

−ω̄(+)+2λ̂(−)
√
−ω̄(−)+(Γ(−)+2λ(−))

√
−ω̄(−)−2λ̂(+)

√
−ω̄(+)]d4ξ

(19)
We have

δ

∫
D4

[Γ(+)
√

−ω̄(+)]d4ξ =

∫
D4

[Γ(+)
µν − 1

2
Γ(+)ω̄(+)

µν ]
√
−ω̄(+)δω̄(+)µνd4ξ (20)
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δ

∫
D4

[Γ(−)
√

−ω̄(−)]d4ξ =

∫
D4

[Γ(−)
µν − 1

2
Γ(−)ω̄(−)

µν ]
√
−ω̄(−)δω̄(−)µνd4ξ (21)

δ

∫
D4

[λ(+)
√

−ω̄(+)]d4ξ =

∫
D4

1

2
Ξ(+)
µν

√
−ω̄(+)δω̄(+)µνd4ξ (22)

δ

∫
D4

[λ(−)
√

−ω̄(−)]d4ξ =

∫
D4

1

2
Ξ(−)
µν

√
−ω̄(−)δω̄(−)µνd4ξ (23)

Taking (18) into account we can write:

δ

∫
D4

[λ̂(+)
√

−ω̄(+)]d4ξ = −
∫
D4

1

2
Ξ̂(+)
µν

√
ω̄(+)

ω̄(−)

√
−ω̄(−)δω̄(−)µνd4ξ (24)

δ

∫
D4

[λ̂(−)
√

−ω̄(−)]d4ξ = −
∫
D4

1

2
Ξ̂(−)
µν

√
ω̄(−)

ω̄(+)

√
−ω̄(+)δω̄(+)µνd4ξ (25)

We get the coupled field equations:

Γ(+)
µν − 1

2
Γ(+)ω̄(+)

µν = −[Ξ(+)
µν +

√
ω̄(−)

ω̄(+)
Ξ̂(−)
µν ] (26)

Γ(−)
µν − 1

2
Γ(−)ω̄(−)

µν = [Ξ(−)
µν +

√
ω̄(+)

ω̄(−)
Ξ̂(+)
µν ] (27)

which are the Janus equations, written in dimensionless form. We can then
look for FLRW solutions, written in dimensionless form:

dσ(+)2 = dξ(0)
2 − α(+)2[

du2

1− k(+)u2
+ u2dθ2 + u2sin2θ dϕ2] (28)

dσ(−)2 = dξ(0)
2 − α(−)2[

du2

1− k(−)u2
+ u2dθ2 + u2sin2θ dϕ2] (29)

whose determinants are

ω̄(+) = − α(+)6u6

1− k(+)u2
, ω̄(−) =

α(−)6u6

1− k(−)u2
(30)

By limiting ourself (this will be justified in the sequel) to hyperbolic solutions:

k(+) = k(−) = −1 (31)

Hence √
ω̄(−)

ω̄(+)
= (

α(−)

α(+)
)3 (32)
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and we obtain

Γ(+)
µν − 1

2
Γ(+)ω̄(+)

µν = −[Ξ(+)
µν + (

α(−)

α(+)
)3Ξ̂(−)

µν ] (33)

Γ(−)
µν − 1

2
Γ(−)ω̄(−)

µν = [Ξ(−)
µν + (

α(−)

α(+)
)3Ξ̂(+)

µν ] (34)

those are the equations used in 2014’s article [18], written in dimensionless
form, that allowed to bring out the acceleration of the cosmic expansion. In
that article the form of the second members have been determined to ensure
the existence of the solution (in virtue of mass conservation) of the system
of differential equations determining the solutions α(+)(ξ0) and α(−)(ξ0) .

6 Induced Geometry

The geometry of the entities are described by the two metrics ω̄
(+)
µν and ω̄

(−)
µν .

In the right hand side of the two equations (33) and (34) are some terms Ξ̂
(+)
µν

and Ξ̂
(−)
µν that can be considered as the sources of induced geometries, by the

matter of one species on the geometry of the other. As show in 2019’s article
[19], it is the satisfaction of the Bianchi identities that determines their form.
By considering the (constant) Lorentz matrix

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (35)

We have
Ξ̂(+)
µν = ηµνΞ

(+)
µν ; Ξ̂(−)

µν = ηµνΞ
(−)
µν (36)

or, more explicitely

Ξνµ
(+) =


ω(+) 0 0 0
0 −π(+) 0 0
0 0 −π(+) 0
0 0 0 −π(+)

 ; Ξνµ
(−) =


ω(−) 0 0 0
0 −π(−) 0 0
0 0 −π(−) 0
0 0 0 −π(−)


(37)
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Ξ̂ν(+)
µ =


ω(+) 0 0 0
0 π(+) 0 0
0 0 π(+) 0
0 0 0 π(+)

 ; Ξ̂ν(−)
µ =


ω(−) 0 0 0
0 π(−) 0 0
0 0 π(−) 0
0 0 0 π(−)


(38)

Let us review the linearized solutions corresponding to the different symme-
tries considered earlier. In order to do that let us write the field equations
in their mixed form:

Γ(+)ν
µ − 1

2
Γ(+)δνµ = −[Ξ(+)ν

µ + (
α(−)

α(+)
)3Ξ̂(+)ν

µ ] (39)

Γ(−)ν
µ − 1

2
Γ(−)δνµ = [Ξ̂(−)ν

µ + (
α(+)

α(−)
)3Ξ(−)ν

µ ] (40)

7 Solution in the vacuum with spherical sym-

metry

The equations are

Γ(+)ν
µ − 1

2
Γ(+)δνµ = 0 (41)

Γ(−)ν
µ − 1

2
Γ(−)δνµ = 0 (42)

whose solution is the classical exterior Schwarzschild solution:

dσ(+)2 = (1− 2µ

u
)dξ0

2 − du2

1 + 2µ
u

− u2(dθ2 + sin2θ dϕ2) (43)

dσ(−)2 = (1 +
2µ

u
)dξ0

2 − du2

1− 2µ
u

− u2(dθ2 + sin2θ dϕ2) (44)

We consider them in their linearized form:

dσ(+)2 = (1− 2µ

u
)dξ0

2 − (1 +
2µ

u
)du2 − u2(dθ2 + sin2θ dϕ2) (45)

dσ(−)2 = (1 +
2µ

u
)dξ0

2 − (1− 2µ

u
)du2 − u2(dθ2 + sin2θ dϕ2) (46)

Those metrics belong to the sub space of spherically symmetric Riemanian
metrics of signature ( + - - - ), solution of the system of the two field equations
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without right hand side. Those solutions depend in a single parameter and
the satisfy relation (18) :

δω̄(+)
µν = δµ


− 2
u

0 0 0
0 − 2

u
0 0

0 0 0 0
0 0 0 0

 ; δω̄(−)
µν = δµ


2
u

0 0 0
0 2

u
0 0

0 0 0 0
0 0 0 0

 (47)

We might argue that the relation (18) is not covariant, i.e. not independent
of the choice of coordinates. Let us remind here that in 2017 this covari-
ance principle has been questioned subsequently through the presentation of
a large scale map of the universe [20] in a huge cube of 1.5 billion light years
extension with our galaxy in the center. The kinetic map has been obtained
by subtracting the Hubble field hence bringing out the proper motion of the
galaxies with respect to the space itself.
Moreover, the observers determined the dynamic parameters of an observing
system that would annihilate the anisotropy of the CMB. It turned out that
an observer moving at a speed of 651 km/s relative to our galaxy, point-
ing towards the geometric centre of the Great Repeller, would capture a
totally isotropic image of the CMB. We can therefore consider that this ob-
server would be motionless in relation to the universe itself, animated at zero
speed. The flow of time would therefore be maximal for this observer. This
corresponds to a resurgence of Mach’s principle, linking space to matter,
identifying container and content.
According to this principle, by considering a concentration of matter cen-
tered on a point, this point can then claim to play the role of the origin of a
radial coordinate u.

8 Spherically symmetrical solution in mate-

rial of constant density

We find the solution of the system of two equations with a second mem-
ber, which is associated with so-called inner Schwarzschild metrics. These
solutions depend only on one parameter, the density ω (expressed in dimen-
sionless form).

12



In a non-adimensional form, inside a sphere of radius rs :

ds(+)2 = [
3

2

√
1− r2s

R̂2
−1

2

√
1− r2

R̂2
]2c2dt2− dr2

1− r2

R̂2

−r2dθ2−r2sin2θ dϕ2 (48)

ds(−)2 = [
3

2

√
1 +

r2s

R̂2
−1

2

√
1 +

r2

R̂2
]2c2dt2− dr2

1 + r2

R̂2

−r2dθ2−r2sin2θ dϕ2 (49)

with

R̂2 =
8πG|ρ|
3c2

(50)

But in dimensionless form with a dimensionless density ω we get :

dσ(+)2 = [
3

2

√
1− ωu2s −

1

2

√
1− ωu2]2dξ(0)

2 − du2

1− ωu2
− u2dθ2 − u2sin2θ dϕ2

(51)

dσ(−)2 = [
3

2

√
1 + ωu2s −

1

2

√
1 + ωu2]2dξ(0)

2 − du2

1 + ωu2
− u2dθ2 − u2sin2θ dϕ2

(52)
These metrics depend only on the single parameter ω . By linearizing and
differentiating these metrics also satisfy the relationship (26).

9 Linearized metric coupled stationary ax-

isymmetric solutions

(after Lense and Thiring )

ds(+)2 = (1− 2m

r
)c2dt2−(1+

2m

r
)dr2−r2(dθ2+sin2θ dϕ2)+

4GJ

c2r
sin2θ dϕ dt

(53)

ds(−)2 = (1+
2m

r
)c2dt2−(1− 2m

r
)dr2−r2(dθ2+sin2θ dϕ2)− 4GJ

c2r
sin2θ dϕ dt

(54)
The couple of metrics depends on two parameters, m and J (angular mo-
mentum). Switching from one to the other is done by changing both m into
- m and J into - J .
In their dimensionless form

dσ(+)2 = (1− µ

u
)dξ(0)

2 − (1 +
µ

u
)du2 − u2(dθ2 + sin2θ dϕ2) +

β

u
sin2θ dϕ dξ(0)

(55)
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dσ(−)2 = (1 +
µ

u
)dξ(0)

2 − (1− µ

u
)du2 − u2(dθ2 + sin2θ dϕ2)− β

u
sin2θ dϕ dξ(0)

(56)
Here again formula (26) is satisfied.

10 Conjugated, stationary, homogeneous, isotropic

and linearized solutions

FLRW metrics in their dimensionless form are written as :

dσ(+)2 = dξ(0)
2 − α(+)2 [

du2

1− k(+)u2
+ u2(dθ2 + sin2θ dϕ2)] (57)

dσ(−)2 = dξ(0)
2 − α(−)2 [

du2

1− k(−)u2
+ u2(dθ2 + sin2θ dϕ2)] (58)

The introduction of these metrics in the system of field equations, modulo
the hypothesis of negligible pressure (matter dominated era) leads to the
system of differential equations:

α(+)′2

α(+)2
+

k(+)

α(+)2
= −1

3
[ω(+) + (

α(−)

α(+)
)3ω(−)] (59)

2
α(+)′′

α(+)
+
α(+)′2

α(+)2
+

k(+)

α(+)2
= 0 (60)

α(−)′2

α(−)2
+

k(−)

α(−)2
= −1

3
[ω(−) + (

α(+)

α(−)
)3ω(+)] (61)

2
α(−)′′

α(−)
+
α(−)′2

α(−)2
+

k(−)

α(−)2
= 0 (62)

which are analogous to the Einstein classic equations of general relativity.
The condition of compatibility between these equations leads to the conser-
vation of the mass :

ω(+)α(+)3 + ω(−)α(−)3 = 3µ = cst (63)

Such constant can be positive, negative or zero. We also get k(+) = k(−) =
−1. The resulting differential equations are :

2
α(+)′′

α(+)
= −[ω(+) + (

α(−)

α(+)
)3ω(−)] (64)
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2
α(−)′′

α(−)
= [ω(−) + (

α(+)

α(−)
)3ω(+)] (65)

Then we have the two equations

α(+)′′ = − µ

α(+)2
; α(−)′′ =

µ

α(−)2
(66)

The observational evidence of the acceleration of cosmic expansion ([3], [4],
[5]) indicates that the dynamics of the set is dominated by the negative mass
content, i.e. −µ < 0 . We then have α(+)′′ > 0, α(−)′′ < 0 .
These second derivatives tend towards zero when the dimensionless time
marker ξ(0) tends towards infinity. The equation of the asymptote corre-
sponds to the line:

α = ξ(0) (67)

The goal of the Janus model is to take account of available observational data.
As regards cosmic evolution (700 type Ia supernovae), these data relate to
relatively low redshift values, and thus to a relatively recent past. This then
corresponds to the linearization of the solutions, in the form of perturbation
terms with respect to the asymptotic form

α(+) = ξ(0) + ϵζ(+) , α(−) = ξ(0) + ϵζ(−) (68)

with schematical evolution curves like this (see Fig 1)
We get

α(+)′′ = ϵζ(+)′′ ≃ |µ|
2ξ(0)2

; α(−)′′ = ϵζ(−)′′ ≃ − |µ|
2ξ(0)2

(69)

α(+)′ = ϵζ(+)′ ≃ 1− |µ|
2ξ(0)

; α(−)′ = ϵζ(−)′ ≃ 1 +
|µ|
2ξ(0)

(70)

The comparison of the model with observational data has already been done
and published [21] (see Fig. 2)
The purpose of this work is not to revisit this point but to justify the rela-
tionship (18).
The metrics in question are part of the sets of metrics describing an un-
steady situation associated with isotropic and homogeneous media, in their
linearized form (confronted with observations).
These metrics depend on only one parameter µ , the variation δµ of which
determines the variations of δω̄

(+)
µν and δω̄

(−)
µν . We have

δω̄(+)
µν ∝ 2α(+)δα(+) ∝ 2ξ(0)δα(+) (71)
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Figure 1: Schematical evolution of the spatial scale factor in the dimension-
less linear representation

δω̄(−)
µν ∝ 2α(−)δα(−) ∝ 2ξ(0)δα(−) (72)

to the second order.
The variations being opposite, the relationship (18) is well satisfied. This
study completes the examination of the mathematical basis of the model.
The system of coupled field equations results from an action and satisfies,
asymptotically, the conditions of zero divergence. The ratio of the dimen-
sionless scale factors remains close to unity. How is it then possible that they
differ so much in their dimensional form :

a(+)

a(−)
≃ 100 (73)
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Figure 2: Dashed line: the model ΛCDM. Red line: the Janus model

11 Two different ways of reading physical phe-

nomena

In his article [15] S.Hossenfelder insists on the fact that in his bimetric model
there are two different observers, designated by the letters g and h .
It is the same in the Janus model. For us, who are made up of positive mass,
it all comes down to making all quantities dimensional using the quantities

{c(+), G(+), h(+), e(+),m(+), µ
(+)
0 , L(+), T (+)} (74)

In this set we find

- The speed of light c(+)

- The constant of gravity G(+)

- The Planck’s constant h(+)

- The unit electric charge e(+)
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- The “elementary mass” m(+)

- The magnetic permeability of vacuum µ
(+)
0

- A space scale factor L(+)

- A time scale factor T (+)

These magnitudes are not totally independent since we assume that

T (+) =
L(+)

c(+)
(75)

This reduces the number of these quantities to seven. We will transform the
metric into its dimensional form by multiplying left and right sides by L(+)

, which gives

L(+)2dσ(+)2 = L(+)2dξ(0)
2 − L(+)2

∑
space

ω̄(+)
µν dξ

µdξν (76)

The proper time t
(+)
pr and the time coordinate t(+) are displayed according to

t(+)
pr =

L(+)σ(+)

c(+)
; t(+) =

L(+)ξ(0)

c(+)
(77)

same for space variables
x(+)µ = L(+)ξµ (78)

By the way can replace ω̄
(+)
µν by g

(+)
µν , insofar as these coefficients of the

metric are numbers. It comes, always by separating the temporal part and
the spatial part

c(+)2dt(+)2

pr = c(+)2dt(+)2 −
∑
space

g(+)
µν dx

(+)µdx(+)ν (79)

In vacuum,

c(+)2dt(+)2

pr = c(+)2dt(+)2 −
∑
space

dx(+)µdx(+)ν (80)

If, in the manifold, where the points are marked by the coordinates {ξ0, ξ1, ξ2, ξ3},
we consider two distinct points A and B , with coordinates

{ξ0, ξ1A, 0, 0} , {ξ0, ξ1B, 0, 0}
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they will be separated by different distances

D
(+)
AB = L(+)(ξ1B − ξ1A) , D

(−)
AB = L(−)(ξ1B − ξ1A) (81)

depending on whether this distance will be taken into account by an observer
(+) or an observer (-).
The histories α(+)(ξ0) and α(−)(ξ0) will be read in a different way, both
spatially and temporally according to the scales used in (abscissa/ordinate).

12 Poisson’s equation and the action-reaction

principle

This is known to derive from the linearization of the field equation. We
will have two readings of the gravitational potential ψ(+) and ψ(−) with two

different gravitational fields −∂ψ(+)

∂x(+) and −∂ψ(−)

∂x(−) .But we can consider a grav-
itational potential without dimension noted and a gravitational field also
without dimension

−∂Φ
∂ξ

Let’s come to the establishment of the Poisson equation, as a linearization
of a field equation. Let us take again the system of coupled field equations
(33), (34) written in covariant form where we operate a double development
into a series in the vicinity of a Lorentzian metric

ω̄(+)
µν = ηµν + ϵ γ(+)

µν ; ω̄(−)
µν = ηµν + ϵ γ(−)

µν (82)

The calculation analogy [22] leads us to

ϵ

3∑
i=1

γ
(+)
00|ii = −[ω(+) + (

α(−)

α(+)
)3ω(−)] (83)

ϵ
3∑
i=1

γ
(−)
00|ii = [ω(−) + (

α(+)

α(−)
)3ω(+)] (84)

Here we exploit the fact that

α(−)

α(+)
≃ 1 (85)
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ϵ
3∑
i=1

γ
(+)
00|ii = −[ω(+) + ω(−)] (86)

ϵ

3∑
i=1

γ
(−)
00|ii = [ω(−) + ω(+)] (87)

Knowing that
3∑
i=1

γ
(+)
00|ii =

∂2γ
(+)
00

∂ξ12
+
∂2γ

(+)
00

∂ξ22
+
∂2γ

(+)
00

∂ξ32
(88)

we introduce gravitational potentials according to

−ϵγ(+)
00 =

Φ(+)

4π
, −ϵγ(−)

00 =
Φ(−)

4π
(89)

which leads us to Poisson’s first equation

∂2Φ(+)

∂ξ12
+
∂2Φ(+)

∂ξ22
+
∂2Φ(+)

∂ξ32
= 4π[ω(+) + ω(−)] (90)

By posing

∆ =
∂2

∂ξ12
+

∂2

∂ξ22
+

∂2

∂ξ32
(91)

we have two Poisson equations, written in dimensionless form

∆Φ(+) = 4π[ω(+) + ω(−)] ; ∆Φ(−) = −4π[ω(+) + ω(−)] (92)

In other words,
Φ(+) = −Φ(−) (93)

Hence the gravity fields and the accelerations

∂Φ(+)

∂ξi
= −∂Φ

(−)

∂ξi
(94)

Placed in a given field of gravity two test particles of equal and opposite mass
have equal and opposite reactions. This reflects the action-reaction princi-
ple. The latter will project itself into the two coordinate systems, and this
principle of action-reaction will also be observed by plus or minus observers.
We will write the projection of this Poisson equation in the positive mass
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system. To do this we multiply the two sides by G(+)M (+)L(+)−3
. The first

member will become

G(+)M (+)L(+)−3

(
∂2Φ(+)

∂ξ12
+
∂2Φ(+)

∂ξ22
+
∂2Φ(+)

∂ξ32
)

=
G(+)M (+)

L(+)
(
∂2Φ(+)

∂x12
+
∂2Φ(+)

∂x22
+
∂2Φ(+)

∂x32
) =

G(+)M (+)

L(+)
∆ Φ(+) (95)

With
1

L(+)2
∆ = ∆(+) , ψ(+) =

G(+)M (+)

L(+)
Φ(+) (96)

and

ρ(+) =
M (+)

L(+)3
ω(+) (97)

we get
∆(+)ψ(+) = 4πG(+)[ρ(+) + ρ(−,+)] (98)

The density ρ(−,+) represents the apparent negative mass as it contributes
to the apparent gravitational potential ψ(+) . For an observer with negative
mass this equation would become

∆(−)ψ(−) = −4πG(−)[ρ(−) + ρ(+,−)] (99)

The construction of the mechanism of joint gravitational instabilities; de-
scribed for example by a positive mass observer will involve the Poisson
equation projected into this particular frame of reference. In the study of the
dynamics of cosmic expansion we have assumed that |ω(−)| >> ω(+) . This
leads to

|ρ(−)| >> ρ(+) (100)

which justifies the drafts of the numerical simulations carried out since 1995
[23] as well as those leading to the spiral structure [7].

13 Conclusion

We have placed the Janus cosmological model on the required mathematical
basis, by locating in which domain this model is currently valid, i.e. for
all relativistic observations where the comparison is made with linearized
metrics, which excludes situations with high gravitational field. The Bianchi
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equations are then satisfied and the fundamental relationship δg
(−)
µν = −δg(+)

µν

between the metrics, which is involved in the Lagrangian derivation of the
system, is justified. For the moment we are not in a position to go further
into the past, i.e. to describe the radiative era, where pressures can no
longer be neglected. Beyond that it will remain to justify the hypothesis
of deep asymmetry |ω(−)| >> ω(+) from which arise the phenomenon of
acceleration of expansion, the phenomenon of confinement of galaxies, the
flatness of their rotation curves, the confinement of clusters, the intensity of
observed gravitational (negative) lens phenomenon, the spiral structure, the
large-scale structure, the Great Repeller phenomenon, the low magnitude of
galaxies with high redshift, as presented in previously published papers . In
a future paper we will extend to the two cosmic entities the hypothesis of a
double evolution with systems of variable constants evoked in [23]. In this
scheme we start from a totally symmetrical situation, which turns out to be
unstable and leads to an exponential break in symmetry.
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Appendix

In the case of spherical symmetry the two metrics are written

ds(+)2 = eν
(+)

dx0
2 − eλ

(+)

dr2 − r2(dθ2 + sin2θ dϕ2) (A1)

ds(−)2 = eν
(−)

dx0
2 − eλ

(−)

dr2 − r2(dθ2 + sin2θ dϕ2) (A2)

In the following, in order to lighten the writing, we will pose

g(+)
µν ≡ gµν , g

(−)
µν ≡ ḡµν

R(+)
µν ≡ Rµν , R

(−)
µν ≡ R̄µν

R(+) ≡ R , R(−) ≡ R̄

E(+)
µν ≡ Eµν , E

(−)
µν ≡ Ēµν

ρ(+) ≡ ρ , ρ(−) ≡ ρ̄

ν(+) ≡ ν , ν(−) ≡ ν̄

λ(+) ≡ λ , λ(−) ≡ λ̄

We will perform the calculations starting from an expression of the field
equations presented in mixed form

Eν
µ = Rν

µ −
1

2
Rgνµ = χ[T νµ +

√
g(−)

g(+)
T̂ (−)ν
µ ] (A3)

Ēν
µ = R̄ν

µ −
1

2
R̄ḡνµ = −χ[T (−)ν

µ +

√
g(−)

g(+)
T̂ νµ ] (A4)

Let us consider the calculation of the geometry inside an object consisting of
a sphere filled with a positive mass. The equations become

Eν
µ = Rν

µ −
1

2
Rgνµ = χT νµ (A5)
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Ēν
µ = R̄ν

µ −
1

2
R̄ḡνµ = −χ

√
ḡ

g
T̂ (+)ν
µ (A6)

The first equation can then be identified with Einstein’s equation without
cosmological constants.
The second equation acconts for an induced geometry effect (on the geodesics
of the negative mass species, due to the presence of positive mass inside a
sphere of radius and density ρ(+) = ρ .
We will place ourselves in weak field conditions.
With the metric in this form the non-zero components of the Ricci tensor are

R00 = eν−λ(−ν
′′

2
+
ν ′λ′

4
− ν ′2

4
− ν ′

r
) ; R0

0 = −e−λ(ν
′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′

r
)

R11 =
ν ′′

2
− ν ′λ′

4
+
ν ′2

4
− λ′

r
; R1

1 = −e−λ(ν
′′

2
− ν ′λ′

4
+
ν ′2

4
− λ′

r
)

R22 = e−λ(1 +
ν ′r

2
− λ′r

2
)− 1 ; R2

2 = −e−λ( 1
r2

+
ν ′

2r
− λ′

2r
) +

1

r2

R33 = R22sin
2θ ; R3

3 = R2
2 (A7)

and the Ricci scalar

R = Rµ
µ = e−λ[2(−ν

′′

2
+
ν ′λ′

4
− ν ′2

4
)− ν ′

r
+
λ′

r
− 2

r2
− 2ν ′

2r
+

2λ′

2r
] +

2

r2
(A8)

which gives the Einstein tensor

E0
0 = e−λ(

1

r2
− λ′

r
)− 1

r2
(A9)

E1
1 = e−λ(

1

r2
+
ν ′

r
)− 1

r2
(A10)

E2
2 = e−λ(

ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r
) (A11)

Consider the first of the two equations

Eν
µ = χ T νµ (A12)

e−λ(
1

r2
− λ′

r
)− 1

r2
= χ T 0

0 (A13)

e−λ(
1

r2
+
ν ′

r
)− 1

r2
= χ T 1

1 (A14)
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e−λ(
ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r
) = χ T 2

2 (A15)

and

χ T 0
0 − χ T 1

1 = −ν
′ + λ′

r
e−λ (A16)

We will now consider the outer metric, where the right sides of the equations
are zero. The method is described in reference [2] , in chapter 14, and it
corresponds to

eν = e−λ = 1− 2m

r

ds2 = (1− 2m

r
)dx0

2 − dr2

1− 2m
r

− r2(dθ2 + sin2θ dϕ2) (A17)

with

m =
GM

c2
(A18)

M being the (positive) mass of the star.
Let’s move on to the classical construction of the inner metric [2] . We have

T νµ =


ρ 0 0 0
0 − p

c2
0 0

0 0 − p
c2

0
0 0 0 − p

c2

 (A19)

The equations are written

e−λ(
1

r2
− λ′

r
)− 1

r2
= χ ρ (A20)

e−λ(
1

r2
+
ν ′

r
)− 1

r2
= −χ p

c2
(A21)

e−λ(
ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r
) = −χ p

c2
(A22)

−ν
′ + λ′

r
e−λ = χ (ρ+

p

c2
) (A23)

from which we get

e−λ(
1

r2
+
ν ′

r
)− 1

r2
= e−λ(

ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r
) (A24)
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eλ

r2
=

1

r2
− ν ′′

2
+
ν ′λ′

4
− ν ′2

4
+
ν ′ + λ′

2r
(A25)

For the resolution, we ask

e−λ ≡ 1− 2m(r)

r
→ 2m(r) = r(1− e−λ) (A26)

We derive this expression

2m′ = (1− e−λ) + rλ′e−λ (A27)

m′ = −r
2χρ

2
= 4πr2

G

c2
ρ (A28)

We get

m(r) =

∫ r

0

m′(r)dr =
4

3
πr3ρ

G

c2
(A29)

ν ′ = 2
m+ 4πGp r

3

c4

r(r − 2m)
(A30)

Deriving Eq(21) and combining with Eq (25) we get

−χp
′

c2
= −e−λ ν

′

2r
(ν ′ + λ′) (A31)

Using (23) we get
p′

c2
= −ν

′

2
(ρ+

p

c2
) (A32)

At the end we get the well-known TOV equation 1 ( Tolmann-Oppenheimer-
Volkoff )

p′

c2
= −

m+ 4πGp r
3

c4

r(r − 2m)
(ρ+

p

c2
) (A33)

When moving to the Newtonian approximation (p << ρc2 , 2m << r)and
taking into account that

m =
4

3
πr3ρ

G

c2

we get

p′ = −ρmc
2

r2
= −GMρ

r2
(A34)

1which corresponds to equation (14.22) of reference [22]

27



In spherical symmetry, the gravitational field that prevails at a distance
r < rs (inside the star of supposed constant density) is equal to the field
that would be created by the mass M(r) contained in a sphere of radius rs ,
concentrated in the center.
The calculation is then identical to that of the reference [22] and leads to the
expression of the inside metric 2

[
3

2
(1− r2s

R̂

2

)
1
2 − 1

2
(1− r2

R̂

2

)
1
2 ]2dx0

2 − dr2

1− r2

R̂

2 − r2(dθ2 + sin2θ dϕ2) (A35)

We are now going to deploy the same calculation scheme, but this time
adapting it to the metric describing the negative mass species, which is then
the solution of the equation

Ēν
µ ≡ R̄ν

µ −
1

2
ḡνµR̄ = −χ

√
−g√
−ḡ

T νµ ≡ −χ w

w̄
T̂ νµ (A36)

The determinants ratio can be written

√
−g√
−ḡ

=

√
−det(gµν)√
−det(ḡµν)

=

√
eνeλr4sin2θ√
eνeλr4sin2θ

= e
ν
2 e

λ
2 e−

ν
2 e−

λ
2 ≡ kD (A37)

kD will be taken little different from 1 because we will always be in the New-
tonian approximation.
Now we calculate the impact of the presence of positive masses on the ge-
ometry ḡµν of the negative sector. It should be remembered that we are

perfectly free to choose this tensor T̂ νµ , insofar as this choice can result from
a Lagrangian derivation. And we opt for

T̂ νµ =


ρ 0 0 0
0 p

c2
0 0

0 0 p
c2

0
0 0 0 p

c2

 (A38)

The construction of the left side of the field equation is again based on a
metric which this time is

ds̄2 = eνdx0
2 − eλ̄dr2 − r2(dθ2 + sin2θ dϕ2) (A39)

2Equation (14.47) from reference [22]
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The Ricci tensor coefficients are recalculated. The first members of the equa-
tions are the same, simply replacing (ν, λ) by (ν, λ̄) . We then get

e−λ(
1

r2
− λ̄′

r
)− 1

r2
= −χ ρ (A40)

e−λ(
1

r2
+
ν̄ ′

r
)− 1

r2
= −χ p

c2
(A41)

e−λ̄(
ν ′′

2
− ν ′λ̄′

4
+
ν ′2

4
+
ν ′ − λ̄′

2r
) = −χ p

c2
(A42)

− ν̄
′ + λ̄′

r
e−λ̄ = −χ (ρ− p

c2
) (A43)

eλ̄

r2
=

1

r2
− ν̄ ′′

2
+
ν̄ ′λ̄′

4
− ν̄ ′2

4
+
ν̄ ′ + λ̄′

2r
(A44)

For the resolution, we ask

e−λ ≡ 1− 2m̄

r
→ 2m̄ = r(1− e−λ) (A45)

Similarly we derive this expression

2m′ = (1− e−λ) + rλ̄′e−λ → −2m̄′

r2
= − 1

r2
+ e−λ̄(

1

r2
− λ̄′

r
) (A46)

Using (40),

m′ = −4πr2
G

c2
ρ → m̄(r) =

∫ r

0

m̄′(r)dr = −4

3
πr3ρ

G

c2
= −m

In conclusion, at this point

¯m(r) = −m(r) (A47)

We get

ν̄ ′ = 2
−m+ 4πGp r

3

c4

r(r + 2m)
(A47)

To eliminate ν̄ ′′, we derive (A41). Combining to (A44) we get

p′

c2
= −

m− 4πGp r
3

c4

r(r + 2m)
(ρ− p

c2
) (A48)
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to be compared to what emerged from the analysis for positive masses, i.e.
equation (A34)

p′

c2
= −

m+ 4πGp r
3

c4

r(r − 2m)
(ρ+

p

c2
)

If we introduce the Newtonian approximation these equations become iden-
tical. The pressure terms are negligible. The variable r is large in front of
2m (Schwarschild radius).
Finally we have to introduce on the value of m

m =
4

3
πr3ρ

G

c2

Both equations lead to the same result

p′ = −mρc
2

r2
(A49)

We can, as before, finalize the calculation of the inner metric of the negative
species.
Hence the final expression of the inner metric ḡµν

[
3

2
(1 +

r2s

R̂

2

)
1
2 − 1

2
(1 +

r2

R̂

2

)
1
2 ]2dx0

2 − dr2

1 + r2

R̂

2 − r2(dθ2 + sin2θ dϕ2) (A50)

which links to the outside metric

ds̄2 = (1 +
2GM

c2r
)c2dt2 − dr2

1 + 2GM
c2r

− r2(dθ2 + sin2θ dϕ2) (A51)

Under linearized forms

ds̄2 = (1 +
3r2s

2R̂2
)dx0

2 − (1− r2

R̂2
)dr2 − r2(dθ2 + sin2θ dϕ2) (A52)

ds̄2 = (1 +
2GM

c2r
)c2dt2 − (1− 2GM

c2r
)dr2 − r2(dθ2 + sin2θ dϕ2) (A53)
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