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Abstract
The Eddington-Finkelstein metric is obtained from the

Schwarzschild metric by a change of the time variable. It is
well known that a test mass falling into a black hole does not reach the
event horizon for any finite value of the Schwarzschild time variable t.
By contrast, we show that the event horizon is reached for a finite
value of the Eddington-Finkelstein time variable t′. Then we study in
Eddington-Finkelstein time the fate of a massive particle traversing
an Einstein-Rosen bridge and obtain a different conclusion than
recent proposals in the literature: we show that the particle reaches
the wormhole throat for a finite value t′1 of the time marker t′, and
continues its trajectory across the throat for t′ > t′1. Such a behavior
does not make sense in Schwarzschild time since it would amount to
continuing the trajectory of the particle "beyond the end of time."

1 Introduction

The simplest black hole model is described by the Schwarzschild metric:

ds2 = (1− α

r
)c2dt2 − dr2

1− α/r
− r2(dθ2 + sin2 θdφ2), (1)

where α is the Schwarzschild radius. The singularity at the event horizon
(r = α) is an artificial one, due to a bad choice of coordinates. A better
choice is provided by the Eddington-Finkelstein coordinates, where the time
marker t is replaced by:

t′ = t+
α

c
ln
∣∣∣ r
α
− 1
∣∣∣ . (2)

In the new coordinates (t′, r, θ, φ), the metric takes the form

ds2 = (1− α

r
)c2dt′2 − r + α

r
dr2 − 2αc

r
dr dt′ − r2(dθ2 + sin2 θdφ2), (3)
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which is indeed nonsingular for r = α.1

It is well known that an infalling mass following a radial trajectory in
the Schwarzschild spacetime reaches the Schwarzschild radius r = α in finite
proper time; but the Schwarzschild radius is not reached for any finite value
of the time parameter t. In this paper we show that the opposite is true
in the Eddington-Finkelstein metric (3): the infalling mass will reach the
Schwarzschild radius for a finite value of the time parameter t′. This effect
is not directly observable because a light ray emitted by the particle at the
Schwarzschild radius will not reach a distant observer in finite time.

Nevertheless, the finiteness of infall time will play an important role in
Section 4, where we analyze the fate of a massive particle traversing an
Einstein-Rosen bridge. This question was considered in several recent pa-
pers [11, 8, 7]. In particular, for an observer located across from the wormhole
throat, it was suggested that:

- the throat appears as a past black hole horizon [7].

- the particle goes "backward in time" after crossing the throat, and the
observer sees an antiparticle falling into a black hole [8].

In this paper we study a version of the Einstein-Rosen bridge obtained by
coupling the ingoing Eddington-Finkelstein metric (3) to the outgoing ver-
sion of this metric. Our analysis leads to a different conclusion than in [7, 8]:
the particle reaches the throat for a finite value t′1 of the time marker t′,
and continues its trajectory across the throat for t′ > t′1. Such a behavior
clearly does not make sense if one works in Schwarzschild time, since it would
amount to continue the particle’s trajectory "beyond the end of time."

2 Trajectories of light rays

In Section 3 we study the trajectories of massive particles in the Eddington-
Finkelstein metric. As a preliminary to this study, we consider in this section
the trajectories of light rays. In contrast to the Schwarzschild metric, we
will see that in the Eddington-Finkelstein metric the speed of light dr/dt′ is
different for inward and outward pointing light rays. This effect is of course
not physically observable: it is only an artifact of the choice of a system
of coordinates. Measuring the one-way speed of light involves indeed the
use of synchronized clocks [15]. The proper times measured by these clocks
will be the same in both metrics since they are equivalent up to a change of
variables.

1Throughout the paper we use the (+,−,−,−) sign convention for the signature of the
metric. This was the choice of most of the pioneers of relativity theory, including Einstein
himself (as in e.g. [3]), Schwarzschild [12, 13], Weyl [14], Lemaître [9], Eddington [2] or
Finkelstein [4].

2



We only consider radial trajectories, so (3) simplifies to:

ds2 = (1− α

r
)c2dt′2 − r + α

r
dr2 − 2αc

r
dr dt′. (4)

Setting ds2 = 0 in (4), we obtain for dr/dt′ the quadratic equation:

(r + α)(dr/dt′)2 + 2αc(dr/dt′)− (r − α)c2 = 0

which admits the two solutions −c for inward rays and r−α
r+αc for outward

rays. We therefore have a smaller speed of light for outward rays.
Since the speed of inward light rays is constant and equal to c, they will

reach the Schwarzschild radius r = α for a finite value of the time marker t′.
This contrasts with the Schwarzschild metric (1), for which the amount of
time ∆t needed to reach the Schwarzschild radius is infinite. For outward
rays we have cdt′/dr = (r + α)/(r − α). The time needed to travel from
radial position r = R to r = R0 > R is equal to:

∆t′ =

∫ R0

R

r + α

r − α
dr

c
.

We therefore have a logarithmic divergence as R→ α: escape time is infinite
like in the Schwarzschild metric. We will derive similar results for massive
particles (finite infall time but infinite escape time) in the next section. To-
ward this study we note that

c
dt′

dr
>
r + α

r − α
(5)

for outward moving massive particles since cdt′/dr = r+α
r−α for outward light

rays.

3 Trajectories of massive particles

In this section we study radial trajectories of massive particles in the
Eddington-Finkelstein metric. In order to compute geodesics in metric (4)
we consider the associated Lagrangian

F =

√
(1− α

r
)c2ṫ′

2 − r + α

r
ṙ2 − 2αc

r
ṙṫ′

where ṙ = dr/ds, ṫ′ = dt′/ds. By the Euler-Lagrange equations, geodesics
must satisfy the differential equation:

d

ds

(
∂F

∂ṫ′

)
=
∂F

∂t′
.
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Since F is independent of t′ and F is identically equal to 1 along the geodesic
we obtain

(1− α

r
)cṫ′ − α

r
ṙ = µ (6)

where µ is a constant of motion. Or equivalently,

cṫ′ =
µr + αṙ

r − α
. (7)

Note that µ > 0 for an infalling trajectory since (6) expresses µ as the sum of
two positive terms. We will see in a moment that outward moving particles
also satisfy the same constraint µ > 0.

We need a second equation in order to compute geodesics. The constraint
F = 1 gives:

(1− α

r
)c2ṫ′

2 − r + α

r
ṙ2 − 2αc

r
ṙṫ′ = 1. (8)

From this quadratic equation in ṙ we could express ṙ as a function of r and ṫ′.
We will instead express ṙ as a function of r only. For this we replace cṫ′ in (8)
by the right-hand side of (7). This yields another quadratic equation:

ṙ2 − µ2 + 1− α/r = 0

which admits the solution

ṙ = ν
√
µ2 − 1 + α/r (9)

where ν = −1 for an infalling trajectory, ν = +1 for an outgoing trajectory.
Hence µ 6= 0 if there is a point on the trajectory with r > α. By substitution
of this solution in (7) we can also express ṫ′ as a function of r. Then we have

dt′/dr = ṫ′/ṙ = (ν/c)g(r)

where

g(r) =
µr + αν

√
µ2 − 1 + α/r

(r − α)
√
µ2 − 1 + α/r

. (10)

Consider a portion of geodesic beginning at t′ = t′0 and r = R0 > α. The

radial position r = R is reached at time t′(R) = t′0 +

∫ R

R0

(ν/c)g(r)dr. In

order to show that infall time to the Schwarzschild radius is finite, we will
show that g(r) remains bounded as r → α when ν = −1.

The numerator of (10) is indeed equal to (r−α)µ+α(µ−
√
µ2 − 1 + α/r).

The quotient of the first term (r−α)µ by the denominator of (10) converges
to 1 as r → α. The quotient of the second term by the same denominator is
equal to:

α

r(µ+
√
µ2 − 1 + α/r)

.
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It converges to 1/(2µ) as r → α (recall indeed that µ > 0 for an infalling
trajectory). We conclude that limr→α g(r) = 1 + 1/(2µ) is finite, as needed.

Let us now turn our attention to outgoing trajectories. We have with (10)
an exact expression for dt′/dr, but we also know that dt′/dr must satisfy (5).
From these two constraints one can easily derive the inequality

µ >
√
µ2 − 1 + α/r,

which implies µ > 0. This implies in turn that for outgoing trajectories
(ν = 1), g(r) is equivalent to 2α/(r − α) as r → α. As a result, t′(R)
exhibits a logarithmic divergence as R → α: infall time is finite but escape
time is infinite.

Remark 1. By (9), if µ < 1 the particle’s trajectory is limited to the region
r ≤ α/(1−µ2). For µ ≥ 1 an outgoing trajectory will escape to infinity, and
likewise for an ingoing trajectory: it can be continued backward in time as
the trajectory of a particle "plunging from infinity" into the black hole.

3.1 Finite infall time: an alternative derivation

We now present an alternative derivation of the main result of Section 3:
infall time for massive particles is finite. For this we leverage the very stan-
dard computation of geodesics in Schwarzschild spacetime (e.g., [1, chapter
6] or [10, chapter 25]). Recall that for a radial geodesic in metric (1) we have

(1− α/r)ṫ = `, 1− α/r = c2`2 − ṙ2, (11)

where ṙ = dr/ds, ṫ = dt/ds and ` is a constant of motion. From these
equations we can compute dt/dr as a function of r, and t as a function of
r by integration. We can then express t′ as a function of r from (2), and it
remains to show that t′(r) remains bounded all the way to r = α. Let us
now fill in the details. From (11) we have

dt

dr
=

−`
1− α/r

√
r

α+ r(c2`2 − 1)
. (12)

Consider a portion of geodesic beginning at t = t0 and r = R0 > α. From (2)
we have

ct′(R) = ct(R) + α ln(R/α− 1) = ct(R) + α ln(R0/α− 1)−
∫ R0

R

dr

r/α− 1
.

Then from (12) we have ct′(R) = ct′0 +

∫ R0

R
f(r)dr where

f(r) =
1

r − α

[
c`r3/2√

α+ r(c2`2 − 1)
− α

]
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and t′0 = t0 +(α/c) ln(R0/α−1). This is the same expression that was given
for t′(R) earlier in Section 3 in terms of the integral of the function g(r).
Indeed we have f(r) = g(r) when the constants of motion satisfy µ = c`,
and ν = −1 in (10). In particular, we obtain the same value of the infall
time as before.

3.2 The outgoing Eddington-Finkelstein metric

Besides the Schwarzschild metric, we have so far considered only the ingoing
Eddington-Finkelstein metric (3). There is also an outgoing form of the
latter metric [10, chapter 31], obtained from the Schwarzschild metric by the
change of variables

t′ = t− α

c
ln
∣∣∣ r
α
− 1
∣∣∣ . (13)

Both metrics are of the form

ds2 = (1− α

r
)c2dt′2 − r + α

r
dr2 + δ

2αc

r
dr dt′ − r2(dθ2 + sin2 θdφ2), (14)

where δ = −1 for the ingoing metric and δ = +1 for the outgoing metric.
These two metrics are images of each other by the time reversal t 7→ −t.
Ingoing trajectories in one metric therefore correspond to outgoing trajecto-
ries in the other metric. As a result, for the outgoing metric escape time is
finite but infall time is infinite.2 This conclusion can also be reached by a
direct analysis of geodesics, or the "alternative derivation" of Section 3.1. In
Section 4 we will pair these two metrics through an Einstein-Rosen bridge.

4 Einstein-Rosen bridges in Eddington-Finkelstein
time

In recent years, several papers [11, 8, 7] have studied the fate of particles
traversing an Einstein-Rosen bridge.3 The Einstein-Rosen bridge was con-
structed in the seminal paper [3] from the Schwarzschild solution (1) by the
change of variables r = α+u2, where the new radial coordinate u is allowed
to take any real value. The resulting spacetime contains two copies of the
exterior Schwarzschild region r > α glued together at the wormhole throat
r = α.

An alternative change of variables r = α + |η| was suggested in [6, 7].
Contrary to the original construction in [3], the resulting spacetime satisfies

2The same line of reasoning can be applied to the Schwarzschild metric. Since it is
invariant under time reserval, the fact that infall time is infinite follows from the knowledge
that escape time is infinite, and vice versa.

3The standard "textbook treatment" [5, 10] of Einstein-Rosen bridges leads to the
conclusion that they are non-traversable, but this analysis contains a serious flaw. This
point is clearly explained in the appendix of [6], see also [7, 11].
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the Einstein field equations everywhere including at the throat η = 0 because
a lightlike brane is added at the throat (see [6, 7] for details). Here we
propose to combine their change of variables with the Eddington-Finkelstein
change of variables (2).

We therefore have
t′ = t+

α

c
ln
|η|
α
, (15)

and
dt′ = dt+ αdη/c = dt− (δα)/(c|η|)

where δ = −1 in the region η > 0, δ = +1 in the region η < 0. This amounts
to applying the change of variables of the ingoing Eddington-Finkelstein
metric in the region η > 0, and the change of variables (13) of the outgoing
metric in the region η < 0. After substitution in (1) we therefore obtain
a spacetime described by the ingoing Eddington-Finkelstein metric in the
region η > 0, and by the outgoing metric in the region η < 0. The resulting
line element is:

ds2 =
|η|

α+ |η|
c2dt′2 − 2α+ |η|

α+ |η|
dη2 − 2αc

α+ |η|
dη dt′. (16)

Here we have omitted the rotational degrees of freedom θ, φ like in (4). This
line element already appears in the appendix of [6] in slightly different nota-
tions. The description in [7] of the fate of a particle traversing an Einstein-
Rosen bridge is based on [6], but it is nevertheless significantly different from
the description that we now propose. The reason for this difference is that [7]
works in Schwarzschild time instead of Eddington-Finkelstein time.

Let us consider a massive particle falling into the Einstein-Rosen bridge
along a radial trajectory, beginning at time t′ = t′0 = 0 for a value of the
radial parameter η = η0 > 0 and a value τ = τ0 = 0 of the particle’s proper
time. It will reach the wormhole throat η = 0 for a finite value τ1 of its
proper time, and also (by the analysis in Section 3) for a finite value t′1 of
the time marker t′. For τ > τ1 the parameter η continues to decrease and the
outgoing metric takes over. The particle continues in the region η < 0, where
(by Section 3.2) its trajectory will be a mirror image of the trajectory in the
region η > 0. In particular, it will reach the position η = −η0 for a value
of its proper time τ = 2τ1 and at t′ = 2t′1. The particle’s subsequent fate
depends on the value of the constant of motion µ. By Remark 1, the particle
will escape to infinity (η → −∞) if µ ≥ 1. For µ < 1, the particle will reach a
maximum value of |η| and it will then fall back toward the wormhole throat
in finite proper time. Since we are now in the region where the outgoing
metric applies, the throat η = 0 will not be reached for any finite value of
the time marker t′.

The above behavior is significantly different than in [7, 8]: as recalled
in the introduction, these authors have suggested that an observer located
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across the wormhole throat sees it as a past black hole horizon [7], or sees
an antiparticle falling into a black hole [8].

5 Conclusions

We have studied the fate of a massive particle traversing an Einstein-Rosen
bridge, and have reached a different conclusion than previous proposals in the
literature [8, 7]: the particle reaches the wormhole throat for a finite value t′1
of the time marker t′, and continues its trajectory across the throat for
t′ > t′1. This difference is due to our use of Eddington-Finkelstein time as our
time marker t′. The Eddington-Finkelstein metric was originally conceived
as a tool for the study of the Schwarzschild metric. The results presented
in this paper suggest that it could also be considered as an alternative to
the Schwarzschild metric for the study of Einstein-Rosen bridges. Indeed,
working in Schwarzschild time leads to the different conclusions that an
observer located across the wormhole throat sees it as a past black hole
horizon [7], or sees an antiparticle falling into a black hole [8].

It is a central tenet of general relativity that metrics which are equiv-
alent up to a change of variables should be considered physically equiva-
lent. This is not in contradiction with our proposal because the change of
variables (15) leading from Schwarzschild to Eddington-Finkelstein time is
well-defined only when the radial parameter η of the Einstein-Rosen bridge
takes a nonzero value; whereas in the line element (16) any real values of t′

and η are allowed.
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