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When	the	mathematician	David	Hilbert	tried	in			
1916	to	build	the	first	Theory	of	Everything	

Jean-Pierre	Petit1	

Assisted	by	Patrick	Marquet	
for	the	translation	from	German	

	

				The	present	article	 is	based	on	 the	 two	publications	made	by	Hilbert	 in	1915	
and	1916	([1],	[2]).	Before	entering	into	the	heart	of	the	matter,	it	is	necessary	to	
specify	the	context	in	which	these	works	were	realized.		

				We	 are	 in	 1915.	 At	 that	 time,	 only	 two	 forces	 at	 work	 in	 the	 universe	were	
known:	 the	 electromagnetic	 force	 and	 the	 force	 of	 gravity.	 The	 other	 two:	 the	
strong	 interaction	 force,	 binding	 the	 components	 of	 the	 atomic	 nuclei,	 and	 the	
weak	 force,	 responsible	 for	 beta	 radioactivity,	 would	 not	 be	 discovered	 until	
much	later.		

				The	 upheaval	 introduced	 by	 Albert	 Einstein,	 with	 his	 special	 relativity,	 was	
finally	 accepted,	 at	 least	 by	 some	 advanced	 minds,	 since	 it	 is	 the	 only	 one	 to	
account	 for	 the	 experiment	 initiated	 by	 the	 American	 Abraham	 Michelson	 in	
1887,	which	concludes	that	the	value	of	the	speed	of	light	is	invariant,	regardless	
of	the	reference	frame,	fixed	or	immobile,	in	which	we	operate.	No	other	credible	
interpretation	of	the	speed	of	light	was	found.			

				However,	this	idea	took	time	to	become	one	of	the	pillars	of	modern	physics,	so	
much	so	that	when	the	Nobel	Prize	was	awarded	in	1921	to	its	author,	it	was	not	
for	this	idea	but	for	his	interpretation	of	the	photoelectric	phenomenon.	Einstein	
is	considered	the	inventor	of	the	word	"photon".		

	

What	is	the	discovery	of	relativity?		

				It	 is	based	on	a	new	vision	of	 the	universe,	with	 the	appearance	of	a	 junction	
between	 two	words,	 leading	 to	 the	 compound	word	 space-time.	 Einstein,	 thus,	
can	be	considered	as	the	inventor	of	space-time.		

				Previously,	 space	 and	 time	 were	 dissociated	 objects.	 Space	 is	 considered	 as	
Euclidean.	That	is	to	say	that	the	theorem	of	Pythagore	in	three	dimensions,	as	if	
we	 locate	 the	 position	 of	 two	 points	 A	 and	 B	with	 the	 help	 of	 an	 orthonormal	
frame	of	reference	by	giving	them	coordinates		

  xA , yA , zA{ } 		et		  xB, yB, zB{ } 	
the	distance	between	them	is:		
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L = xB − xA( )2

+ yB − yA( )2
+ zB − zA( )2

	

				Time	 is	 measured	 differently,	 with	 clocks,	 with	 mechanical	 systems.	 Before	
Einstein,	nobody	would	have	had	the	idea	to	join,	to	mix	two	"objects"	as	different	
as	space	and	time,	to	combine	meters	and	seconds.		

				Behind	 all	 this	 there	 is	 a	 geometrical	 vision	 of	 the	 cosmos.	 If	 we	 remove	 a	
dimension	of	space,	the	z	coordinate,	for	example,	we	have	the	following	diagram:		

	

	

Fig.1	:	Pre-relativist	space	

	

				As	for	the	time	t	=	0,	it	obviously	refers,	in	1915,	to	the	instant	of	the	creation	of	
the	universe,	 "by	God".	At	 that	 time,	before	 the	 irruption	of	 special	 relativity	 in	
the	 mode	 of	 science	 and	 physics,	 the	 question	 "what	 is	 then	 the	 geometry	 of	
space-time?	It	cannot	be	identified	with	a	Riemanian	mathematical	space,	defined	
by	a	metric.	Otherwise,	what	sense	can	be	given	to	the	following	formula,	defining	
a	"length	»	s		:		

(1)																																																									  ds2 = dx2 + dy2 + dz2 + a2dt2 		

where	a	would	 be	 a	 constant,	 in	 the	 form	 of	 a	 velocity,	 so	 that	we	 can	 add	 up	
similar	quantities.	This	metric	is	then	devoid	of	physical	meaning.		

The	space	coordinates	are	obviously	real				:	   x, y, z{ }∈!3 	

				What	about	time?	It	would	never	occur	to	anyone	to	 imagine	a	negative	time,	
nor	would	it	occur	to	anyone	to	imagine	a	retrochronic	time	flow.	This	variable	t	
therefore	belongs	to	the	set	  t ∈! + .		

				Albert	Einstein's	discovery	has	however	a	very	clear	geometrical	interpretation,	
through	the	space	invented	by	the	Russian	mathematician	Hermann	Minkowski.		
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Fig.	1	:	Hermann	Minkowski	(1864-1909)	

	

				It	is	him	who	imposes	this	idea	of	a	space-time	continuum,	defined	by	the	way	
in	 which	 expresses	 the	 length,	 according	 to	 a	 tool,	 qualified	 by	 the	 French	
mathematician	Henri	Poincaré	of	pseudo-metric:		

  ds2 = c2dt2 − dx2 − dy2 − dz2 	

				The	constraint,	imposed	in	1905	by	Einstein's	special	relativity,	is	expressed	in	
a	simple	and	clear	way:	it	is	enough	to	say	that	s	is	real.	Thus	it	is	necessary	that:	

  c
2dt2 − dx2 − dy2 − dz2 ≥ 0 			ou	:				

  
v2 = dx2 + dy2 + dz2

dt2 ≤ c2 	

				This	 implies	 that	 the	 speed	 is	 less	 than	 c	 .	 To	 this	 metric,	 we	 associate	 its	
signature,	in	the	form	of	the	sequence	of	its	signs:	

 (+ − − − ) 	

				When	Einstein	 undertook	 to	 describe	 gravitation	 using	 a	 bilinear	 form,	 if	we	
note	by	 x1 , x2 , x3 , x4{ } 		the	coordinates	of	one	of	the	points	of	the	tangent	space,	
 x1 , x2 , x3{ } 	locating	it	in	space	and	x4	being	the	time	coordinate,	it	seems	logical	
to	write,	indifferently		:		

  ds2 = dx4
2 − dx1

2 − dx2
2 − dx3

2 	ou	  ds2 = − dx1
2 − dx2

2 − dx3
2 + dx4

2 ≥ 0 	

				This	 choice	appears	 for	 example	 in	 the	article	published	 in	1915	by	Einstein,	
referring	to	his	calculation	of	the	advance	of	Mercury's	perihelion	[3]	.		
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Fig.2	:	Einstein's	signature	choice	

	

				It	 is	easy	to	see	that	 this	choice	of	signature	 is	ubiquitous	 in	 the	papers	of	all	
authors	 who	 published	 papers	 prior	 to	 Hilbert's	 1916	 paper.	 Let	 us	 quote	
Schwarzschild,	Weyl,	Droste,	etc.		

	

Some	preliminaries	before	tackling	Hilbert’s		
conception	of	the	geometry	of	space-time.		

				A	2D	geometric	object	can	be	described	by	its	metric.	The	metric	of	the	sphere	
is	for	example:		

(1)																																																						  ds2 = R2( dθ2 + sin2θdϕ2 ) 	

				A	metric	that	is	totally	regular,	whatever	the	values	of	the	two	variables.	How	
can	we	say,	on	the	basis	of	this	simple	fact,	that	it	is	a	2-sphere?	Well,	we	perform	
a	 change	 of	 coordinate	  θ = arcsin(r / R) 	to	 shift	 from	 the	 set	 	 θ ,ϕ{ } 	to	 the	 set		
  r ,ϕ{ } .	Then	we	get	:		

(2)																																																					
  
ds2 = R2

R2 − r 2 dr 2 + r 2dϕ 	

				We	then	notice	 that	 for	r	=	R	 the	 first	 term	has	a	zero	denominator.	We	have	
thus	 created	 a	 coordinate	singularity.	 Another	 remark:	 for	 r	 <	R	 the	 term	ds2	 is	
negative.	The	element	of	 length	ds	becomes	pure	 imaginary.	This	 is	normal:	we	
are	outside	the	sphere.	For	these	2D	metrics,	defining	objects,	surfaces,	we	see	a	
thread	 emerging.	 The	 metric	 is	 a	 polynomial	 of	 degree	 two,	 a	 bilinear	 form,	
expressed	with	a	certain	set	of	coordinates,	a	priori	real.	If	the	length	element	is	
also	 real,	 it	 is	 because	 our	 definition	 interval	 has	 been	 judiciously	 chosen.					
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Otherwise,	where	ds	is	imaginary,	we	are	simply	outside	the	surface.	Of	course,	in	
a	 formal	 way,	 we	 can	 always	 consider	 studying	 the	 behavior	 of	 this	 object,	
outside	this	interval	of	definition.	But	then	we	break	our	rule	of	the	game.	We	are	
no	longer	in	the	world	of	the	real,	but	in	the	world	of	the	complex.		

			Let's	 go	 back	 to	 the	 question	 we	 asked.	 How	 do	 we	 know	 that	 (1)	 and	 (2)	
represent	a	sphere?	To	do	this,	we	will	plunge	it	into	a	three-dimensional	space

  r ,ϕ , z{ } .	 	 	 The	 physicist	 recognizes	 the	 "cylindrical"	 coordinates	 of	 a	 3D	
Euclidean	 space.	 In	 this	 imbedding	 operation	 the	 length	 element	 must	 be	
expressed	in	the	same	way,	especially	on	meridian	curves	with	constant	.	We	will	
therefore	write:		

(2)																																																			
  
ds2 = R2

R2 − r 2 dr 2 = dr 2 + dz2 	

				It	is	a	differential	equation	which	immediately	gives	us	the	link	between	r	and	z.	
Its	integration	gives	us:		

(3)																																																																  r
2 + z2 = R2 		

				This	surface	is	thus	generated	by	the	rotation	of	a	circle	centered	at	the	origin	
of	the	coordinates,	around	the	oz	axis.	It	is	indeed	a	sphere	S2.	We	could	do	the	
same	thing	starting	from	two	expressions	of	the	metric	of	the	torus	T2:		

(4)				
  
ds2 = rg

2dθ2 + (Rr + rgcosθ )2 dϕ2 			et				 	
  
ds2 = dr 2

− r 2 + 2 r Rr + rg
2 − Rr

2 + r 2dϕ2 	

				In	these	expressions	we	recognize	the	radius	rg	of	 the	generating	circle	of	the	
torus,	the	radius	of	this	small	circle	whose	center	turns	around	an	axis	passing	by	
its	 plane,	 along	 a	 circle	 of	 radius	Rr.	 On	 the	 left	we	 have	 opted	 for	 coordinates	

 θ ,ϕ{ } 	which	are	not	a	problem.	On	 the	 right,	 switching	 to	 the	 representation	
system	  r ,ϕ{ } 	we	 have,	 as	 for	 the	 sphere,	 created	 coordinate	 singularities	 for	
the	two	values	that	cancel	the	denominator	of	the	first	term	of	the	second	:	

(5)																																																							r	=	Rr	+	rg					et						r	=	Rr	-	rg	

Moreover	the	ds	is	real	only	if	this	denominator	remains	positive:		

(6)																																																														Rr	-	rg		<		r	<	Rr	+	rg						

otherwise	 we	 are	 outside	 the	 surface.	 An	 imbedding	 operation	 in	 the	 three-
dimensional	 Euclidean	 space	 allows	 to	 discover	 geometrical	 properties	 which	
will	make	appear	the	mode	of	generation	of	the	torus.	But	nobody	is	interested	in	
the	 geometrical	 properties	 of	 this	 object,	 for	 example	 for	 r	 <	 (Rr	 -	 rg)	 	 .	 If	 we	
decided	to	do	so,	we	would	leave	the	mode	of	the	real	to	enter	a	strange	complex	
geometry,	which	then	has	nothing	to	do	with	tangible	2D	objects.		

				These	are	objects	defined	by	metrics	whose	signs	are	all	positive.	We	will	call	
them	 elliptic	metrics.	 This	 is	 true	 for	 an	 unlimited	 number	 of	 dimensions,	 let's	
consider	for	example	the	3D	object:	
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(7)																																																					  ds2 = dr 2 + r 2( dθ2 + sin2θdϕ2 ) 	

				There,	 using	 adequate	 coordinate	 changes	 to	make	 the	metric	 of	 a	 Euclidean	
space	reappear:		

(8)																																																											  ds2 = dx2 + dy2 + dz2 	

				Thus	we	would	find	our	familiar	representation	space.	In	(7)	the	points	are	only	
marked	 in	 3D	polar	 coordinates.	 But,	 by	 studying	 the	 object	with	 the	 help	 of	 a	
family	 of	 surfaces	with	 constant	 r,	 fitting	 together	 like	 Russian	 dolls,	 we	 could	
"read"	the	object	with	the	help	of	 this	 folding	method.	This	space	has	geodesics	
which	are	the	infinite	number	of	lines	that	we	can	draw	in	this	3D	space.	Among	
these	are	 the	 straight	 lines	 coming	 from	 the	origin,	which	are	perpendicular	 to	
these	 surfaces	 S2	 which	 are	 spheres.	 The	 coordinates	 r , θ ,ϕ{ } 	are	 Gaussian	
coordinates,	a	concept	to	which	Hilbert	will	refer	in	what	follows.		

We	can	leave	the	3D	Euclidean	by	imagining	3D	spaces,	3D	hypersurfaces	defined	
by:		

(9)																																												  ds2 = f (r)dr 2 + r 2( dθ2 + sin2θdϕ2 ) 	

and	we	would	 have	 the	 same	 folding	 system	 by	 spheres.	We	will	 consider	 the	
particular	case:		

(10)																																				

  

ds2 = dr 2

1−
Rs

r

+ r 2( dθ2 + sin2θdϕ2 ) Rs > 0 	

				For	the	moment	there	is	no	time	variable.	In	the	perspective	of	an	extension	of	
what	 we	 said	 about	 2D	 surfaces	 to	 3D	 hypersurfaces,	 defined	 by	 their	 metric,	
from	which	we	can	build	their	geodesic	curves,	we	will	consider	the	existence	of	
this	hypersurface	in	its	ds	is	real,	so	when	ds2	>	0.	This	gives	a	defining	space	such	
that	r	>	Rs	.	By	making	r	constant	we	can	still	leaf	through	the	object	with	a	family	
of	 spheres	 nested	 one	 inside	 the	 other	 like	 Russian	 dolls.	 But	 there	 is	 then	 a	
sphere	of	minimal	area	  4π Rs

2
	which	corresponds	to	the	metric:		

(11)																																																			  ds2 = Rs
2( dθ2 + sin2θdϕ2 ) 																																		

				It	 is	a	throat	sphere.	But	what	happens	in	r	=	Rs?	The	denominator	of	the	first	
term	of	the	second	member	becomes	zero.	Is	this	sphere	singular?		No,	it	is	still	a	
coordinate	singularity.	We	can	eliminate	it	by	changing	the	variable:		

(12)																																																									  r = Rs ( 1+ Ln chρ ) 		

The	metric	thus	becomes:		

(13)												
  
ds2 = Rs

2 1+ Ln chρ
Ln chρ

th2ρ dρ2 + Rs
2 1+ Ln chρ( )2

dθ 2 + sin2θ dϕ 2( ) 	
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				There	is	then	no	limit	in	the	definition	space,	and	can	vary	from	minus	infinity	
to	plus	infinity.	The	metric	potentials	are:	

(14)	

  

gρ ρ = Rs
2 1+ Ln chρ

Ln chρ
th2ρ

gθθ = Rs
2 1+ Ln chρ( )2

gϕϕ = Rs
2 1+ Ln chρ( )2

sin2θ

	

				How	did	this	operation	make	this	metric	regular?	When			the	hyperbolic	cosine	
is	unity	and	its	logarithm	is	then	zero.	So	the	denominator	in	the	first	term	of	the	
second	 member	 is	 always	 zero.	 Yes,	 but	 the	 same	 is	 true	 for	 the	 hyperbolic	
tangent.	If	we	do	a	series	development	in	the	neighborhood	of	 ρ = 0 	you	will	see	

that	  
gρ ρ → 2 .	This	hypersurface	is	therefore	perfectly	regular.	Its	throat	sphere	

for	 ρ = 0 	has	 a	minimum	area	 equal	 to	  4π Rs
2 .	 To	 calculate	 this	 "2D	volume"	 (a	

surface)	you	must	do:		

(15)																																																														
 

g∫∫ dθdϕ 		

				But	you	can	convince	yourself	 that	 the	non-contractibility	 of	 the	object	 is	 still	
present.	All	you	have	to	do	on	this	sphere	is	to	make	 θ = π / 2 		and	to	vary	ϕ 	from	
0	 à	 2π 		 .	 You	 get	 a	 finite	 perimeter	  p = 2π R s 	.	 What	 happened?	 You	 are	 no	
longer	 in	 your	 comfortable	 three-dimensional	 Euclidean	 representation	 space	
(the	only	one	you	have	in	fact,	to	build	a	mental	image).		

				This	hypersurface	is	therefore	a	three	dimensional	manifold,	equipped	with	an	
elliptic	 Riemanian	metric.	 In	 this	 new	 system	 of	 axes	 the	 determinant	 is	 never	
zero.		This	means	that	this	hypersurface	is	orientable.	At	any	point	one	can	define	
a	vector	product	and	the	"corkscrew	rule",	which	goes	with	it,	will	be	the	same	at	
all	points.	 It	 is	obviously	painful	 for	 the	neurons	 to	consider	 this	kind	of	 "space	
bridge"	which	creates	a	passage	between	two	Euclidean	3D	spaces	(which	are	like	
"one	 inside	 the	other").	We	can	call	 it	a	 "3D	diabolo".	We	will	 see	 later	how	the	
mathematician	Hermann	Weyl	created	and	studied	this	object,	in	1917.		

By	the	way,	you	can	take	these	steps	with	the	"2D	diabolo",	defined	by	the	metric:		

(16)																																							

  

ds2 = dr 2

1−
Rs

r

+ r 2dϕ2 Rs > 0 																																																										

With	the	same	change	of	coordinate	you	could	check	its	regularity	by	obtaining:		

(17)																		
  
ds2 = Rs

2 1+ Logchρ
Logchρ

th2ρ dρ2 + Rs
2 1+ Logchρ( )2

dϕ 2 	
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				But	 then	 there	 is	a	much	more	"tangible"	way	 to	apprehend	this	surface.	 It	 is	
enough	 to	 imbed	 it	 in	 a	 three-dimensional	 space	 and	 to	 build	 its	 meridian	
 ( ϕ = cst ) 	.	You	then	obtain,	as	for	the	sphere,	the	differential	equation:		

(18)																																																					

  

ds2 = dr 2

1−
Rs

r

= dr 2 + dz2 	

Its	solution	is	the	"lying	parabola":		

(19)																																																															
  
r = Rs +

z2

4Rs
		

This	is	the	surface:		

	

	

Fig.3	:	The	2D	diabolo.	

	

				We	will	find	this	pattern	in	the	analysis	made	in	1917	by	Weyl,	which	we	will	
detail	later.		

	

Another	system	of	representation:	projection,	and	the	traps	of	thought.		

				We	have	evoked	a	mode	of	representation	of	a	2-surface	by	imbedding	it	 into	
our	 3D	 Euclidean	 space.	We	make	 there	 a	 transcendent	 gesture,	 by	 adding	 an	
additional	 dimension.	 But	 how	 a	 being	 living	 in	 a	 2D	 euclidean	 space	 would	
represent	this	diabolo?	He	could	only	conceive	it	projected	in	his	own	world.	He	
would	then	imagine	a	strange	border,	represented	by	a	circle.	The	objects	which	
go	on	this	surface,	not	Euclidean,	cross	then	a	circle	of	throat.	Our	inhabitant	of	
the	 Euclidean	 space	 2D	 can	 then	 imagine	 that	 his	 mode	 "has	 a	 place	 and	 a	
reverse	».		
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Dig.4	:	Plane	representation	of	the	2D	diabolo	

	

				We	 can	 illustrate	 this	 relation	of	enantiomorphy	 by	 starting	 from	an	oriented	
triangle	 drawn	 on	 this	 plane,	 "habitat	 of	 our	 2D	 observer".	 The	 figure	 below	
illustrates	this	inversion	of	the	orientation.		

	

Fig.5	:	Reverse	orientation.		
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				This	seems	obvious	 to	us	because	we	have	 the	possibility	of	 imbedding	 these	
two	structures	into	our	3D	Euclidean	representation	space.	But	for	the	inhabitant	
of	this	plane	it	would	be	very	problematic	to	consider	"that	inside	this	circle	there	
is	nothing".			

				Let's	move	 on	 to	 the	 3D	hypersurface.	Here,	we	 can	 no	 longer	 draw,	 but	 the	
idea	of	projection	into	a	3D	Euclidean	representation	space	is	the	same.	This	time,	
the	 inhabitant	 of	 this	 space	 is	 you,	 it	 is	me.	 It	will	 be	 very	 difficult	 to	 consider	
"that	 inside	 this	 throat	sphere	 there	 is	nothing",	 and	 that	one	cannot	 contract	a	
sphere	by	giving	it	an	area	lower	than	a	finite	value,	in	a	word	that	this	3D	space	
is	not	contractible.			

				Through	 these	2D	and	3D	examples	we	see	 that	 the	 fact	of	using	a	Euclidean	
space	 of	 representation	 (the	 only	 mental	 tool	 we	 have)	 to	 try	 to	 read,	 to	
"understand"	 (etymologically	 "to	 take	 together")	 objects	 presenting	 themselves	
in	the	form	of	sets	of	points	leads	us	to	imagine	objects	that,	in	fact,	do	not	exist.	
This	 is	 particularly	 striking	 for	 the	 3D	 structure	 where	 we	 are	 totally	 unable,	
mentally,	to	get	rid	of	this	idea	of	"the	inside	of	the	throat	sphere".	

	

Hyperbolic	surfaces	and	hypersurfaces.		

				The	 word	 hypersurface	 always	 evokes	 a	 possible	 representation	 in	 a	 higher	
dimensional	representation	space.	We	have	an	intuitive	image	of	the	geodesics	of	a	
surface.	It	is	much	more	difficult	to	imagine	them	in	3D.	In	general	relativity	it	is	
often	said	that	the	space-time	is	a	hypersurface	with	four	dimensions.	Here	again,	
the	object	is	defined	by	its	metric.	What	Einstein	and	Minkowski	have	brought	is	
the	 introduction	 in	 physics	 of	 hyperbolic	 metrics,	 whose	 signature	 makes	
opposite	 signs	 cohabit.	We	 can	 thus	 consider	 a	 relativistic	 space-time	with	 two	
dimensions	

	(20)																																																			  ds 2 = c2dt2 − dx2 		

The	calculation	of	geodesics	corresponds	to	the	variational	problem:		

(21)																																																										
  
δ ds

AB∫ = 0 		

				We	 look	 for	 curves	 corresponding	 to	 paths	 where	 the	 distance	 traveled	 is	
minimal.	 This	 leads	 us	 to	 solve	 the	 Lagrange	 equations.	 These	 lead	 us	 to	
representations	 of	 x	 and	 t	 that	 are	 linear	 as	 a	 function	 of	 the	 parameter	 s.	
Consequently	x	and	s	are	linked	by	the	linear	relation	x	=	v	s,	where	v	is	the	speed.	
And	if	we	impose	that	the	length	s	is	real,	we	must	have:		

(22)																																																																			
 
v = dx

dt
< c 		

				What	do	the	theorists	do	then?	What	do	we	find	in	all	the	books,	the	courses?	
We	find	images	like	these,	in	2D	or	3D:		
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Fig.6	:	The	light	cone.	

				On	the	left	a	way	to	represent	this	hyperbolic	space	(t,x)	in	two	dimensions.	On	
the	right	the	classical	"light	cone".	On	the	left	figure	the	red	curve	is	supposed	to	
represent	a	path	corresponding	to	x	=	v	t	with	v	<	c		

				The	black	curve	represents	a	path	with	v	>	c	 .	 It	 is	 located	in	the	"elsewhere".	
But	 in	 doing	 so,	 what	 are	 we	 doing?	 We	 are	 trying	 to	 build	 a	 2D	 image	 of	 a	
hyperbolic	space	by	projecting	it	into	a	2D	Euclidean	space,	of	metric:		

(23)																																																		  ds 2 = c2dt2 + dx2 	

				We	 thus	 create	 "something	 that	 does	 not	 exist",	 in	 this	 case	 this	 greyed-out	
surface	 or	 volume	 "outside	 the	 light	 cone".	 This	 space	does	not	 exist	 any	more	
than	 this	 "interior	of	 the	 throat	 sphere"	 that	we	 create	by	 trying	 to	project	 the	
structure	 of	 the	 3D	diabolo	 into	 a	 3D	Euclidean	 space.	 This	 "elsewhere"	 exists,	
etymologically	 speaking,	 only	 in	our	 imagination	 and	 stems	 from	 the	 image	we	
have	created.	
		
The	conclusion	is	simple:		
	

	
	

				This	preamble	having	been	made,	we	will	move	on	to	the	subject	of	the	article,	
to	the	way	Hilbert	created	his	own	representation	of	space-time	and	hence	of	the	
universe.		
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The	hectic	race,	neck	and	neck,	of	two	geniuses.		
	
				In	 1915	 Hilbert	 was	 53	 years	 old	 and	 already	 had	 an	 impressive	 record	 of	
achievement	 behind	 him,	which	 had	made	 him	 known	 far	 beyond	 the	 German	
borders.	He	loved	abstraction	and	logic	and	was	known,	among	other	things,	for	
publishing	 a	 treatise	 in	 which	 he	 defined	 the	 axioms	 underlying	 Euclidean	
geometry.	 	 All	 German	 and	 foreign	mathematicians	 consider	 him	 a	 "beacon"	 in	
the	discipline	and	know	that	his	name	will	go	down	in	the	history	of	mathematics.		
He	was	not	always	interested	in	physics.	An	amusing	anecdote	is	reported	about	
him.	When	 he	 was	 asked	 to	 replace	 the	mathematician	 Felix	 Klein,	 who	 every	
year	 gave	 a	 lecture	 to	 the	 students	 of	 an	 engineering	 school	 in	 Göttingen,	 he	
began	his	lecture	with	these	words:		

	
-	It	is	said	that	mathematicians	and	engineers	have	difficulty	understanding	
each	other.	This	is	not	true:	they	simply	have	nothing	to	do	with	each	other.		

	

	

Fig.7	:	David	Hilbert	(1862-1943),	in	1915	
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Fig.8	:	Félix	Klein	(	1849-1925)	in	1915	

	
				It	 should	 be	 noted	 that	 at	 that	 time	 a	 similar	 gap	 existed	 in	 the	 field	 of	
experimental	physics,	at	its	fundamental	level,	where	people	who	were	physicists	
and	 chemists	 were	 working	 on	 what	 would	 later	 be	 called	 nuclear	 physics.	
Among	them	was	the	colorful	New	Zealand	physicist	Ernst	Rutherford.	Solicited	
during	the	First	World	War	by	politicians,	who	asked	him	if	he	could	not	produce,	
from	 his	 work,	 some	 new	 weapon	 that	 would	 allow	 England	 to	 overtake	 its	
adversary,	Germany,	he	had	answered	them,	as	he	was	laying	the	foundations	of	
the	future	nuclear	physics:		
	

-	 I	 leave	 it	 to	 your	 chemists	 to	 invent	 asphyxiating	 gases	 and	 to	 your	
engineers	 to	 invent	 planes,	 submarines	 and	 torpedoes.	We,	 scientists,	 are	
concerned	with	totally	different	things,	seeking	to	penetrate	the	secrets	of	
matter.		

				It	was	 the	meeting	with	 the	young	Einstein,	 twenty	years	his	 junior,	 that	was	
decisive	 for	 Hilbert.	 He	 then	 discovered	 a	 fantastic	 field	 of	 applications	 of	
sophisticated	 mathematics	 to	 physics,	 which	 from	 then	 on	 was	 no	 less	
sophisticated.	He	established	close	relations	with	Einstein,	which	could	even	be	
described	as	friendly	and	which	were	in	any	case	based	on	a	great	mutual	esteem.	
In	June	1915	Einstein	gave	him	a	real	lecture	on	relativity	and	Hilbert	understood	
that	 there	 was	 a	 way	 to	 use	 the	 extremely	 powerful	 tool	 represented	 by	 the	
techniques	of	calculus	of	variations.		

			He	 began	 by	 applying	 this	 idea	 to	 electromagnetism,	 and	 then	 he	 became	
interested	 in	 gravitation.	 At	 the	 time,	 the	 telephone	 did	 not	 exist.	 It	 is	 thus	
through	 numerous	 letters	 that	 these	 two	 communicate.	 It	 so	 happens	 that	 a	
significant	number	of	 these	 correspondences	have	 come	down	 to	us.	 	 They	 are	
reproduced,	 in	 whole	 or	 in	 part,	 among	 others	 by	 Tilman	 Sauer	 [3,],	 who	 has	
kindly	reproduced	these	texts	in	their	English	translation.	Hilbert	communicated	
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to	Einstein	his	 vision	of	 things:	he	 thought	he	was	on	 the	verge	of	unifying	 the	
only	 two	 forces	 known	 at	 that	 time,	 the	 electromagnetic	 force	 and	 gravitation.	
Einstein	worked	differently,	by	trial	and	error.	Great	mathematics	is	not	his	forte.	
Very	intuitive,	being	above	all	a	fantastic	physicist,	it	is	by	trial	and	error	that	he	
is	about	to	arrive,	after	ten	years	of	reflection,	at	what	will	be	considered	as	the	
key	to	a	new	theory,	that	of	general	relativity.	But	Hilbert	beat	him	to	the	punch	
on	November	20,	 1915	 [1].	 It	was	only	 five	days	 later	 that	Einstein	 sent	 to	 the	
same	journal:	the	Annals	of	the	Prussian	Academy	of	Sciences	[4]:		

	

	

	

Fig.9	:	Albert	Einstein's	November	25,	2015	article	entitled:	
"The	Field	Equation	of	Gravitation."	[4]	

	

			Hereafter	 is	Einstein's	equation	where	he	 formulates	what	both	of	 them	were	
chasing,	an	equation	whose	two	members	are	at	zero	divergence.		
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Fig.9	:	The	Einstein	field	equation	in	its	first	form	(25	nov.	1915).	

	

Alas,	four	days	earlier	Hilbert	wrote	in	his	article	this	equation:		

	

	

Fig.10	:	The	Hilbert	field	equation	(20	nov.	1015)	[1].	
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Translation	:		

	

Using	the	notations	of	the	variational	derivation	with	respect	to	that	we	
introduced	above,	the	equation	of	gravitation	takes	the	form:		

																																			  
g K⎡

⎣
⎤
⎦µν

+
∂ g L
∂gµν = 0 	

With,	as	first	member		

																														  
g K⎡

⎣
⎤
⎦µν

= g ( Kµν −
1

2
K gµν ) 	

	

				For	 Hilbert	
 
Kµν 	is	 the	 Ricci	 tensor,	 which	 Einstein	 calls	 

Rµν .	 	K	 is	 the	 scalar	
derived	from	it,	the	"Ricci	scalar",	which	is	designated	by	the	letter	R	in	Einstein.	
Moreover,	the:		

  

∂ g L
∂gµν = − g Tµν 	

So	the	Hilbert	equation	is	written:		

(24)																																																					
  
Rµν −

1

2
R gµν = Tµν 	

				It	 is	 indeed	 in	 this	 form,	 which	 lacks	 the	 term	 attached	 to	 the	 cosmological	
constant:	

 
Λ gµν 	

that	Einstein	will	 introduce	 later,	on	Hilbert's	advice,	 to	succeed	 in	building	 the	
first	 relativistic	 cosmological	 model,	 describing	 a	 stationary	 universe,	 that	 this	
equation	will	enter	history.		

				The	 equation	 in	 Einstein's	 paper,	which	 is	 5	 days	 later	 than	Hilbert's,	 is	 just	
another	equivalent	form,	where	we	can	recognize,	on	the	right,	"the	matter	tensor	
 Tim »	 and	 «	the	 Laue	 scalar»	 T,	 which	 derives	 from	 it	2.	 But	 Hilbert	 adds	 a	
construction	of	the	equation	by	variational	method	by	basing	it	on	an	action	built	
on	what	he	calls	a	"function	of	the	universe":	

(25)																																																												H	=	K	+	L		

																																																								
2	Built	from	the	matter	tensor,	in	the	same	way	that	the	Ricci	scalar	R	derives	
from	the	Ricci	tensor	Rim.		
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K	is	obviously	the	Ricci	scalar.	This	 technique	will	be	remembered	 in	history	as	
the	"Einstein-Hilbert	action".		

				In	 the	 course	 of	 their	 intense	 correspondence,	 very	 warm	 relations	 were	
created	between	these	two	geniuses,	who	assumed	themselves	as	such,	perfectly	
conscious	of	their	own	value,	and	that	of	their	partner.			

	

Fig.11	:	Albert	Einstein	in	1915	

	

				Indeed,	Einstein	and	Hilbert	were	pursuing,	at	a	time	described	as	"hectic",	two	
parallel	 research	 programs,	where	 Einstein	 focused	 on	 gravitation	 alone,	while	
Hilbert	dreamed	of	uniting	the	two	force	fields,	electromagnetic	and	gravitational.	
In	[3]	you	can	read	about	these	days	of	agitation	and	doubt.	But	finally	Einstein	
chose	to	calm	down,	writing	to	Hilbert	on	December	20,	1915	(see	this	reference,	
page	48)		:		

-	There	was	a	certain	resentment	between	us,	the	cause	of	which	I	do	not	
wish	 to	 analyze.	 I	 have	 fought	 against	 the	 bitterness	 associated	with	 it,	
and	with	complete	success,	I	think	of	you	again	with	unmixed	friendship,	
and	I	wish	you	would	think	the	same	way.			

			In	all	 rigor	 the	conclusion	should	have	been	 to	attribute	 this	equation	 to	both	
authors.	But	at	that	time	Einstein's	steps	were	not	yet	completely	assured.	On	the	
other	 hand,	 Hilbert's	 brilliant	 career	 is	 a	 recognized	 fact.	 The	 elder	 one,	 very	
sporty,	leaves	the	premium	to	the	younger	one.		

			However,	 when	 we	 go	 back	 to	 these	 two	 equations	 there	 is	 a	 difference.	 In	
Einstein's	equation	there	is	a	radical	 − g 	where	the	determinant	of	the	metric	is	
preceded	by	a	minus	sign,	absent	in	Hilbert.	In	what	follows	we	will	discover	why.		
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The	cosmos	in	1915.	

			Before	presenting	David	Hilbert's	own	vision,	 it	 is	 important	 to	consider	what	
scientists	knew	about	the	universe	in	1915.		

			Spectroscopy	was	born	in	Germany,	in	Heidelberg,	in	1859	with	the	first	works	
of	Gustav	Kirchhoff	 and	Robert	Bunsen,	 inventor	of	 the	gas	burner	of	 the	 same	
name.	 It	 allows	 to	 identify	 the	 nature	 of	 a	 source	 on	 the	 basis	 of	 its	 spectral	
signature.	At	the	same	time,	with	the	help	of	a	telescope	installed	on	the	roof	of	
the	Vatican,	Father	Angelo	Secchi	pursued	 the	 idea	 that	each	 star	 is	 linked	 to	a	
deceased	person.	But	in	the	United	States,	in	New	England,	at	the	same	time	the	
astronomer	 Edward	 Pickering	 undertook	 a	 vast	 classification	 of	 the	 stars,	
according	 to	 their	 spectrum,	 which	 will	 give	 birth	 to	 the	 Hertzprung-Russel	
diagram	in	1900.		In	1865	the	Scottish	genius	James	Clerk	Maxwell	published	the	
equations	that	govern	electromagnetism.			

	

	

James	Clerk	Maxwell	1831-1879	
(died	at	48	years	old)		

			In	1916,	the	Englishman	Eddington	followed	very	closely	both	the	experimental	
and	 observational	 advances	 and	 the	 progress	 of	 the	 theory.	 He	 participated	
closely	 in	 the	 movement	 that	 led	 to	 the	 understanding	 of	 the	 mechanisms	 of	
energy	production	in	the	form	of	radiation	within	stars,	which	would	exploit	the	
understanding	 of	 radioactivity,	 a	 theory	 that	 would	 only	 become	 functional	 in	
1920.		

			Since	 1840	 we	 know	 the	 velocities	 of	 stars	 (and	 beyond	 their	 masses),	
evaluated	 by	 the	 effect	 discovered	 by	 the	 Austrian	 Christian	 Doppler	 (1803-
1853)	and	the	French	Armand	Fizeau	(1819-1896).		

			Thanks	to	Newton,	celestial	mechanics	had	taken	its	bearings.	Confronted	with	
the	problem	of	the	instability	of	the	trajectories	of	the	planets,	he	believed	that,	
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from	time	to	 time,	 it	was	God	who,	operating	behind	the	scenes,	put	 them	back	
into	 their	 orbits.	 This	 idea	was	 invalidated	 by	 the	 Frenchman	 Pierre	 Simon	 de	
Laplace	who	 solved	 the	 problem	using	mathematics.	 Questioned	 by	Bonaparte,	
who	asked	him	what	was	the	place	of	God	in	all	this,	he	replied	"that	he	did	not	
need	 this	 hypothesis	 in	 his	 calculations".	 In	 1902,	 the	 Englishman	 James	 Jeans	
formalized	 the	 mechanism	 of	 gravitational	 instability	 giving	 rise	 to	 stars	 and	
planets.		

			The	 first	 elementary	 particle	 discovered	was	 the	 electron,	 by	 the	 Englishman	
J.J.Thomson	in	1897,	thus	at	the	immediate	dawn	of	the	century.	The	idea	results	
from	 the	 interpretation	 of	 the	 experiments	 carried	 out	 by	 the	 Englishman	
Crookes	 where	 a	 cathode	 placed	 in	 a	 vacuum	 tube	 projects	 its	 "cathodic	
radiation",	which	 is	 deflected	 by	 a	magnetic	 field.	 In	 1995	 the	 Frenchman	 Jean	
Perrin	 identified	 these	 "rays"	 as	 a	 jet	 of	 electrons.	Very	quickly	 the	 ratio	mass-
charge	 and	 determined	 and	 the	 latter	 is	 measured	 in	 1911	 by	 the	 American	
Millikan.	

	

	

Fig.12	:	J.J.Thomson	1856-1940	

	

			When	 in	 1905	 the	 New	 Zealander	 Ernst	 Rutherford	 demonstrated	 the	
corpuscular	nature	of	matter	and	the	existence	of	atoms,	the	idea	of	atoms	made	
up	 of	 positively	 charged	 nuclei	 around	 which	 electrons	 gravitate	 emerged	 in	
1913.	The	first	model,	which	proposed	to	describe	the	hydrogen	atom,	had	been	
put	forward	by	the	Dane	Niels	Bohr,	who	was	then	28	years	old.		

			Thus,	during	the	first	half	of	the	19th	century,	all	the	tools,	both	theoretical	and	
observational,	were	developed.	When	Hilbert	wondered	about	the	functioning	of	
the	 cosmos,	 the	 quantity	 of	 discoveries	 made	 in	 the	 few	 preceding	 years	 was	
mind-boggling	and	contrasted	with	the	current	stagnation	of	physics,	astronomy	
and	astrophysics,	for	half	a	century,	where	no	new	particle	has	been	discovered,	
where	 the	 "scientists",	 the	 "finders"	 seem	 to	have	been	 replaced	by	an	army	of	
"researchers",	 five	 hundred	 times	 more	 numerous	 than	 their	 elders,	
"accumulating	the	data".		
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			It	remains	that	nobody	imagines	for	a	single	second	any	evolution	of	the	cosmic	
scene,	perceived	as	globally	homogeneous	and	stationary.	The	idea	of	a	creation	
by	God,	 at	 an	 "instant	 zero",	 is	 imposed	 in	 everyone's	mind,	whether	 explicitly	
formulated	or	not.		

			Let	 us	 add	 that	 the	 very	beginning	of	 the	discovery	of	 the	deep	nature	of	 the	
force	 of	 gravity,	 reinterpreted	 in	 terms	 of	 geodesics	 of	 a	 very	 weakly	 curved	
space,	does	not	change	the	global	nature	of	the	cosmos.		

			In	 this	 year	 1915,	 which	 was	 decidedly	 rich	 in	 scientific	 events	 of	 the	 first	
magnitude,	we	saw	that	Einstein	had	published,	on	November	25,	1915,	a	paper	
presenting	 the	 equation	 of	 the	 gravitational	 field	 [4].	 But,	 on	 the	 same	 day,	 he	
brings	 a	 second	 important	 contribution	 in	 the	 form	 of	 a	 first	 linear	 solution,	
which	gives	a	precise	evaluation	of	the	advance	of	Mercury's	perihelion	[5].	The	
linearization	is	amply	justified,	the	phenomenon,	minimal,	a	few	tens	of	seconds	
per	 century,	 can	 be	 assimilated	 to	 a	 disturbance.	 This	 result	 sounds	 like	 a	
thunderclap.	Not	only	the	approach	of	the	sky	phenomena	with	the	help	of	a	field	
equation	 represents	 a	 major	 paradigmatic	 leap,	 but	 a	 solution	 of	 this	 same	
equation	 brings	 the	 key	 of	 an	 enigma	 remained	 until	 now	without	 solution.	 A	
work	which	is	confirmed	a	few	weeks	later	when	the	Austrian	Karl	Schwarzschild	
[6]	 ,	who	writes	to	Einstein,	 in	December	2015,	that	he	has	just	constructed	the	
linear	solution.		

			This	 stimulated	 Hilbert	 who,	 throughout	 1916,	 feverishly	 prepared	 the	
publication	of	an	even	more	ambitious	work,	an	extension	of	his	November	1915	
paper,	which	he	published	on	December	23,	1916,	on	Christmas	Eve.	At	the	same	
time	he	announced	to	Einstein	that	he	was	about	to	synthesize	electromagnetism	
and	gravitation,	 in	short	to	create	what	can	be	considered	as	the	first	Theory	of	
Everything.		

	

Hilbert's	conception	of	the	geometry	of	space-time.		

				If	we	except	these	tiny	curvatures	linked	to	the	presence	of	masses,	space-time	
remains	 almost	 flat,	 almost	Euclidean.	 Einstein	has,	 of	 course,	 brought	 the	 idea	
that	motion	alters	the	flow	of	time,	but	the	phenomenon	seems	to	manifest	itself	
in	 a	 sensitive	 way	 only	 for	 "relativistic"	 speeds,	 not	 negligible	 in	 front	 of	 the	
speed	of	light,	which	do	not	yet	belong	to	the	world	of	experimental	physics	and	
in	 any	 case	 totally	 negligible	 in	 Nature.	 	 In	 the	 following	 figure,	 we	 can	 give	
Hilbert's	representation	of	space-time.		

				Of	course,	the	general	formalism	of	relativity	shows	that	the	points	of	this	space	
can	be	located	by	an	infinite	number	of	different	coordinate	systems,	just	as	there	
is	 an	 infinite	 number	 of	 ways	 to	 locate	 the	 points	 on	 a	 sphere,	 to	 map	 it.	 But	
Hilbert	 keeps	 in	 mind	 that	 there	 must	 be	 a	 particular	 system,	 better	 than	 the	
others,	 that	 he	 calls	 "true".	 (Eigentliche3).	 The	 underlying	 idea	 is	 that	 of	 a	 4D	
space	layered	by	an	infinity	of	3D	hypersurfaces	stacked	on	top	of	each	other.		

																																																								
3	That	which	is	most	suitable,	most	appropriate,	most	in	tune	with	reality.	
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Fig.13	:	The	Hilbert	space-time,	in	its	primitive	form.		

	

				The	mass	 points	 obviously	 follow	 geodesics	 of	 this	 time	 space.	 They	 go	 then	
according	to	"time	lines"	(Zeitlinie).	The	drawing	shows	this	family	of	time	lines,	
perpendicular	 to	 the	 3D	 hypersurfaces	 representing	 space.	 Of	 course,	 if	 there	
were	no	force,	the	3D	hypersurfaces	of	space	would	be	3D	Euclidean	spaces,	and	
the	 trajectories	 would	 be	 parallels,	 perpendicular	 to	 these	 parallel	 folds.	 And	
nothing	 would	 happen.	 But	 the	 gravity	 forces	 result	 in	 a	 barely	 perceptible	
warping	 of	 the	 3D	 hypersurfaces.	 	 Correlatively,	 the	 time	 lines	 deviate	 slightly	
from	this	 family	of	parallel	 lines.	This	being	the	case,	we	remain	very	close	to	a	
Euclidean	 structure.	 Hilbert	 therefore	 starts	 by	 introducing	 four	 coordinates	

  ( w1 , w2 , w3 , w4 ) 	which	he	designates	as	"universal	parameters"	(Weltparameter).		
The	 first	 three	 coordinates	 refer	 to	 space,	while	w4	 refers	 to	 time.	 The	 instant		
w4	=	0	represents,	even	if	Hilbert	does	not	formulate	it	explicitly,	"the	instant	of	
the	creation	of	the	world	by	God"	(Hilbert	comes	from	a	protestant	family,	deeply	
religious).		

				For	 Hilbert,	 time	 is	 of	 a	 different	 essence	 than	 space.	 The	 elegant	 way	 to	
account	 for	 this	 is	 to	 imagine	 that	 the	 coordinate	 of	 time	 is	 purely	 imaginary,	
which	he	does	by	writing,	on	the	first	page	of	his	paper	:		

	(26)																											  w1 = x1 w2 = x2 w3 = x3 w4 = ix4 	
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				Before	 talking	 about	 length,	 as	 a	 good	 mathematician,	 Hilbert	 considers	 a	
bilinear	form	G	constructed	from	the	coordinates	  ( X1 , X2 , X3 , X4 ) 	of	a	vector	of	
this	four-dimensional	space	:		

																																											
  
G ( X1 , X2 , X3 , X4 ) = gµν Xµ

µν
∑ X ν

	
		

He	does	not	specify	his	choice	concerning	this	form	until	six	pages	later:	

	

	

	

Fig.14	:	The	bilinear	form	preferred	by	Hilbert,		
expressed	in	a	Gaussian	coordinate	system.	

	

This	expression	can	then	be	expressed	in	its	differential	form:		

(28)																																					
  
G ( dx1 , dx2 , dx3 , dx4 ) = gµν dxµ

µν
∑ dxν

	
		

				Hilbert	then	considers	a	curve	whose	points	are	marked	with	a	parameter	p	:		

(29)																																		  xs = xs( p) ( s = 1, 2 , 3 , 4 ) 	

					It	specifies	well	that	these	coordinates	the	  xs( p) 		are	real.	He	then	divides	his	
curve	into	portions	and	considers	the	expression	:		

(30)																																															
  
G (

dx1

dp
,

dx2

dp
,

dx3

dp
,

dx4

dp
) 	
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He	then	considers	two	cases.		

Either	the	bilinear	form,	in	the	region	where	this	curve	is	spanned,	is	positive:	

(31)																																																										
  
G (

dxs

dp
) > 0 	

				He	then	decided	to	call	these	portions	of	the	curve	segments	(Strecke).	He	then	
introduced	a	first	"length	of	this	segment",	according	to:		

(32)
																																																  

λ = G (
dxs

dp
) dp∫ 	

Then	 he	 considers	 another	 portion	 that	 he	 decides	 to	 call	 a	 timeline	 (Zeitlinie)	
where	:		

(33)																																																										
  
G (

dxs

dp
) < 0 	

and	the	integral	calculated	along	this	other	portion	of	the	curve	will	be	called	the	
proper	time	of	this	timelike	curve:		

(34)																																																										
  
τ = − G (

dxs

dp
) dp∫ 	

Finally	it	introduces	curves	of	zero	length	(Nullinie),	such	as:		

(35)																																																																	
  
G (

dxs

dp
) = 0 .

	

				Thanks	 to	 the	 expression	 (34)	 Hilbert	 manages	 to	 establish	 a	 link	 with	
Einstein's	relativity.	Indeed	its	bilinear	form,	in	its	differential	form,	is:		

(36)																																											  G ( dxs ) = dx1
2 + dx2

2 + dx3
2 − dx4

2 	

				It	is	therefore	negative	if	we	want	to	fit	with	the	requirements	of	relativity,	with	
a	speed	of	light	c	=	1	:		

(37)																																											
  
v2 =

dx1
2 + dx2

2 + dx3
2

dx4
2 <1	

				Thanks	to	the	introduction	of	the	minus	sign	under	the	root,	Hilbert	 finds	the	
proper	time	of	special	relativity:		

(38)																																								  dτ
2 = dx4

2 − dx1
2 − dx2

2 − dx3
2 	
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				But	 now	 you	 have	 the	 origin	 of	 the	 change	 of	 signature,	 which	 has	 imposed	
itself	as	a	standard	today,	in	cosmology	as	well	as	in	theoretical	physics,	without	
finding	a	trace	of	an	article	that	justifies	it.		

				In	 the	 expression	 (37)	we	 find	 the	 signature	 introduced	by	Einstein	which	 is	
 ( + − − − ) .	 In	what	Hilbert	writes	 it	has	become	 ( + + + − ) 	or	 ( − + + + )

	
and	 the	

signs	were	reversed.		

				In	these	first	pages	of	his	article	of	1916	we	find	something	much	more	serious,	
which	will	weigh	on	all	the	later	development	of	cosmology,	which	is	this	idea	of	
endowing	its	four-dimensional	variety	M4	,	not	with	one	length,	but	with	two,		λ
and	 τ 	!	He	thus	speaks	of	two	different	measuring	instruments.	The	length	will	be	
measured	 with	 a	 "light	 clock"	 (Lichtuhr).	 In	 other	 regions	 of	 his	 space-time,	
where	his	G-form	is	positive,	he	will	use	a	tape	(Maβfaden	)	to	measure	his	length
λ 	.		But	he	points	out	that	if	you	try	to	measure	in	one	region	with	the	instrument	
used	in	the	other,	it	does	not	work.	One	obtains	indeed	then	imaginary	values.		

				He	 will	 not	 say	 more,	 in	 the	 rest	 of	 the	 article,	 about	 the	 nature	 of	 these	
mysterious	 regions	of	his	 space-time	where	 the	 lengths	are	measured	with	 this	
scalar.	 And	 this	while	 he	 concentrates	with	 great	 insistence	 on	what	 can	 have,	
according	to	him,	a	physical	meaning	(Physicalischer	Natur).		

			A	 little	 further	 on,	 Hilbert	 defines	 the	 light	 cone	 (Null-kegel:	 the	 null	 cone)	
which	 is	 in	   as = ( x1 , x2 , x3 , x4 ) 	(its	 vertex)	 and	 whose	 current	 point	 has	
coordinates	  ( X1 , X2 , X3 , X4 ) 	satisfying	the	equation:		

	(39)																																		  G ( X1 − x1, X2 − x2 , X3 − x3 , X4 − x4 ) = 0 	

			And	he	specifies	that	all	the	time	lines	(timelike	curves)	resulting	from	the	point	

 as 	are	located	inside	this	four-dimensional	part	of	the	world	whose	border	is	the	
temporal	separation	of	 as .		

All	 time	 lines	 (time-like	 curves)	 from	 the	 point	 as 	are	 located	 inside	 this	 four-
dimensional	part	of	the	world	whose	border	is	the	temporal	separation	of	 as .	He	
then	 focuses	 on	 the	 problem	 of	 causality	 in	 physics,	 looking	 for	 a	 "true"	
coordinate	system.		

On	this	subject	he	states	:		

-	 A	 space-time	 coordinate	 system	 is	 called	 "true"	 (Eigentliches	 Raum-
Zeitkoordinatensystem)	 if	 it	 is	 a	 system	 for	 which	 the	 following	 four	
inequalities	are	satisfied,	with	the	additional	condition	that	the	determinant	
is	negative.	
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(40)	

	

				He	then	adopts	the	definition	of	a	system	of	a	change	of	space-time	coordinates	
also	 called	 "true",	 "real"	 (eigentliches).	 It	 is	 simply	 the	 system	 of	 coordinate	
changes	 which,	 to	 "true"	 coordinates,	 satisfying	 the	 inequalities	 (40),	 makes	
another	 system	 correspond,	 endowed	 with	 the	 same	 properties.	 The	 four	
inequalities	mean	that	at	any	point	event	as	the	associated	null	cone	excludes	the	
linear	 space	 x4	 =	 a4	 but	 contains	 inside	 the	 line	 through	 the	 point	

  ( x1 = a1 , x2 = a2 , x3 = a3 , x4 = a4 ). 		

				He	 then	considers	a	 line	of	universe	xs	=	xs(p).	From	 	 (33)	 it	 follows	 that	 in	a	
"true"	space-time	coordinate	system	we	must	have	:	

(41)																																																																	
	  

dx4

dp
≠0 	

								He	deduces	 that	 along	 this	 time	 line,	 the	 "true"	 time	 coordinate	x4	must	be	
systematically	 increasing	 and	 cannot	 decrease.	 Because	 a	 time	 line	 remains	 a	
timeline	under	any	 transformation	of	 the	 coordinates,	 two	point	events	 located	
on	 the	 same	 time	 line	 can	 never	 correspond	 to	 the	 same	 value	 x4	 of	 the	 time	
coordinate,	 through	 a	 "true"	 space-time	 transformation.	 This	means	 that	 these	
two	events	cannot	be	simultaneous.		

				We	 thus	 see	 that	 the	 cause	 and	 effect	 relations	 underlying	 the	 principle	 of	
causality	(Kausalitätsprinzips),	do	not	lead	to	internal	contradictions	in	this	new	
physics,	 if	 we	 take	 into	 account	 the	 inequalities	 (31)	 as	 part	 of	 our	 basic	
equations,	which	leads	us	to	confine	ourselves	in	"true"	space-time	coordinates.		

			Hilbert	 now	 introduces	 the	 important	 point	 of	 his	 presentation:	 the	 use	 of	
coordinates	 that	 he	 decides	 to	 call	 Gaussian,	 because	 they	 represent	 a	
generalization	 of	 the	 polar	 coordinate	 system	 used	 by	 Gauss	 in	 his	 theory	 of	
surfaces.	 Figure	 (13)	 illustrates	 the	 concept,	 which	 is	 a	 foliation,	 where	 these	
surfaces	correspond	to	a	constant	value	of	x4.	The	family	of	orthogonal	curves	are	
geodesics	 along	 which	 this	 coordinate	 runs.	 If	 we	 opt	 for	 a	 coordinate	 system	
where	  

g44 = − 1 	then	 the	 x4	 coordinate	 is	 identified	 with	 the	 proper	 time	 .	 The	
Gaussian	coordinates	then	satisfy	the	relation	(32)	and	correspond	to:	

(42)																															 
g14 = 0, g24 = 0, g34 = 0, g44 = −1	4	

			Mais,	à	ce	stade,	 le	choix	de	Hilbert	reste	arbitraire.	Il	avoue	échouer	à	le	faire	
émerger	sur	la	base	de	considérations	purement	mathématiques.		

																																																								
4	In	the	translation	published	by	Springer	an	error	has	crept	in.	We	find	 

g44 = 0 	



	 26	

	

How	Hilbert	justifies	his	choice.		

				When	 a	 Riemann	 space	 is	 put	 in	 its	 diagonalized	 form	 (absence	 of	 crossed	
terms)	 the	 sequence	 of	 signs	 attached	 to	 the	 different	 terms	 represents	 its	
signature.	 	 It	 is	 an	 invariant	 by	 change	 of	 coordinates	 (real).	 Thus	 the	 Einstein	
space-time	corresponds	to	the	bilinear	form:		

(43)																								
  
G(dxs ) = g44 dx4

2 − g11 dx1
2 − g22 dx2

2 − g44 dx33
2 		

and	his	 signature	 is	 ( + − − − ) .	 In	 contrast,	 in	his	 vision	of	 space-time	 the	 form	
retained	by	Hilbert	is		:		

(45)																								
  
G(dxs ) = − g44 dx4

2 + g11 dx1
2 + g22 dx2

2 + g44 dx33
2 		

and	his	signature	is			 ( − + + + ) .	Einstein's	choice	is	based	on	the	identification	of	
the	fourth	coordinate	through	  x4 = ct 	.	Thus,	the	simple	fact	of	imposing	that	the	
shape	 is	positive	 translates	 this	physical	property	which	 is	 the	 limitation	of	 the	
speed	 to	 the	 speed	 c,	 that	 of	 light	 (corresponding	 to	 a	 zero	 value	 of	 the	 line	
element).		The	proper	time	is	then	calculated	by	:	

	(46)																																																				
  
τ = G(

dxs

dp
)∫ dp 		

Hilbert's	 choice	 is	 less	 clear	 and	 forces	 him	 to	 situate	 the	 real,	 time-like	
trajectories,	in	a	representation	such	that	G	<	0.	He	must	then	introduce	a	change	
of	sign,	and	opt	for	the	relatio:		

(47)																																																				
  
τ = − G(

dxs

dp
)∫ dp 	

				To	 this	 we	 can	 add	 the	 idea,	 singular,	 of	 endowing	 space	 with	 a	 second	
measurement	 tool,	 giving	 a	 length,	 whose	 physical	 nature	 is	 not	 even	 touched	
upon	 in	 the	 article,	 nor	 in	 the	 following	 ones,	 and	which	will	 give	 birth	 to	 the	
myth	of	"spacelike	curves".		

It	is	then	necessary	to	understand	why	Hilbert	made	this	choice.		

	

The	explanation	of	the	choice	of	an	inverted	signature	by	Hilbert.		

				For	Einstein,	this	fourth	coordinate	is	"of	the	same	nature"	as	the	other	three.	
Let's	 take	our	 familiar	three-dimensional	Euclidean	space.	On	the	surface	of	 the	
Earth	we	will	speak	for	example	of	the	"length	x",	"width	y"	and	"height	z"	of	an	
object,	knowing	that	these	denominations	are	arbitrary.	We	can	make	an	element	
of	the	group	of	rotations	act	on	this	object	by	totally	modifying	this	scheme,	while	
we	do	not	alter	the	object	itself.	The	distances	between	its	different	points	remain	
unchanged.	These	rotations	are	part	of	 the	 isometry	group	of	 this	3D	Euclidean	
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space.	Instead	of	rotating	the	object	we	can	decide	to	observe	it	from	a	different	
angle.		

				The	 objects	 of	 the	 space-time	 are	movements,	 characterized	 by	 the	 energy	E	
and	 the	 impulse	 p	 which	 are	 associated	 to	 them	5.	 The	 isometry	 group	 of	
Minkowski	space,	the	Poincaré	group,	has	a	subgroup,	the	Lorentz	group,	which	
happens	 to	 be	 the	 equivalent	 of	 the	 group	 of	 rotations	 and	 symmetries,	 in	 the	
Euclid	group.		The	latter	operates	rotations	and	symmetries	that	preserve	lengths	
(isometry:	 same	 length).	 The	 Lorentz	 group	 "operates	 rotations	 in	 four	
dimensions"	and	preserves	a	length,	that	of	the	impulse-energy	quadrivector.		

				These	who	see	things	in	this	way,	through	this	"group-view"	are	then	tempted	
to	 imagine	 that	 this	 x4	 dimension	 is	 real	 and	 is	 measured	 in	 ...	 meters.	 What	
creates	these	"hyperbolic	rotations"	then	comes	from	the	axiomatic	construction	
of	the	Lorentz	group:		

(48)								 L
T G L = G 					with	the	Gramm	matrix					

 

G =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

		

				This	 aspect	 is	 present	 in	 Einstein's	 thought,	 but	 not	 in	 Hilbert's,	 who	 is	
immediately	attached	to	the	reassuring	Gaussian	coordinates.	Certainly,	the	mass	
points	 do	 not	 remain	 immobile.	 But	 in	 a	 world	 which	 remains	 very	 far	 from	
relativistic	physics,	we	are	very	close	to	the	Euclidean	vision	evoked	in	figure	13.	
So	what	is	real	for	Hilbert	are	the	space	coordinates			:	

  ( x1 , x2 , x3 )
	

			These	are	tangible	 for	him.	Time	is	another	matter.	Nobody	can	take	a	second	
between	thumb	and	forefinger.	So,	Hilbert	concludes,	this	one	must	be	of	another	
nature,	imaginary.	Finally,	another	point,	the	universe	has	a	beginning,	in			x4	=	0.		

Hilbert	is	protestant.	One	can	imagine	him	paraphrasing	Genesis:		

- God	 first	 created	 a	 four-dimensional	 space	 whose	 points	 were	
marked	by	the	coordinates		

																																																			  ( w1 , w2 , w3 , w4 )
		

				Before	the	play	began,	the	author	had	to	set	the	stage	before	the	curtain	rose.		
All	the	objects	were	put	in	their	place,	the	stars	and	their	procession	of	planets,	
ready	to	launch	themselves	into	their	orbits.		The	distances	that	separated	them	
being	predefined	and	real.		

																																																								
5	The	mathematician	J.M.Souriau	added	the	spin,	as	an	object	of	pure	geometry.	
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-	 Then	 God	 decided	 that	 the	 fourth	 coordinate	 should	 be	 purely	
imaginary,	according	to	  w4 = i x4 	and	that	was	the	first	day,	the	first	
moment.	 	 The	 Earth	 then	 began	 its	movement	 around	 the	 Sun,	 the	
same	 as	 the	 other	 stars	 of	 the	 cosmos.	 Time	 appeared,	 irreversible	
and	implacable.		

			We	read	this	interpretation	of	Hilbert's	thought	through	these	lines	of	his	article.	
Let	us	quote	him:		

Due	 to	 the	 nature	 of	 the	 three-dimensional	 space	 in	 x4	 =	 0	 ,	 as	 we	 have	
posed	it	a	priori	(Vorausgesestzen:	"posed	first,	before")	the	quadratic	form	
of	the	variables	X1	,		X2	,		X2		described	by	the	right-hand	side	of	(see	Figure	
14)	is	necessarily	positive	and	defined.	

					Therefore	the	 first	 three	 inequalities	(40	 in	this	paper)	are	satisfied,	as	
well	as	 the	 fourth,	and	 the	Gaussian	coordinate	 system	appears	 to	be	 the	
true	(eigentliches:	proper)	coordinate	system	of	spacetime.		

			What	 creates	 events?	Hilbert	 takes	 up	 the	 idea	 launched	 a	 century	 earlier	 by	
Laplace.	He	writes:		

-	 If	 in	 the	 present	 time	 we	 have	 the	 data	 concerning	 the	 physical	
quantities	 and	 their	 first	 derivatives	with	 respect	 to	 time,	 their	 future	
values	can	always	be	determined:	the	 laws	of	physics,	and	this	without	
exception,	 the	 laws	 of	 physics,	 have	 been	 expressed	 to	 date	 through	 a	
system	 of	 differential	 equations	 in	 which	 the	 number	 of	 unknown	
functions	is	equal	to	the	number	of	these	equations.		

			Hilbert	lists	these	data.	These	are	the	ten	potentials	  
gµν (µ ,ν = 1,2,3) 	which	

emerge	from	the	symmetrical	tensor	of	format	(4,4),	representing	the	matter.	To	
this	 we	 must	 add,	 at	 any	 point,	 the	 components	 of	 the	 quadrivector	

  qs (s = 1,2,3,4) of	electromagnetism.	This	makes	a	total	of	fourteen	potentials.	
But,	when	counting	 the	equations,	 including	 those	 found	 in	1840	by	 the	genius	
Maxwell,	Hilbert	counts	only	ten,	independent	of	each	other.		

				Under	such	conditions,	as	is	the	case	in	this	new	physics	of	general	relativity,	he	
concludes	that	it	is	not	possible,	from	the	knowledge	of	physical	quantities	at	the	
present	 moment,	 to	 determine	 future	 values	 in	 a	 unique	 way.	 Faced	 with	 this	
impossibility	 of	 anchoring	 a	 logic	 of	 physics	 on	 a	 causality	 based	 on	 concrete	
elements,	Hilbert	 falls	back	on	the	opinion	that	"to	follow	the	essence	of	this	new	
principle	of	relativity	one	must	require	the	invariance,	separately,	of	each	postulate	
of	physics	that	has	a	physical	meaning".		And	he	adds	"In	physics,	we	must	consider	
everything	that	is	not	invariant	by	change	of	the	system	of	coordinates,	as	devoid	of	
physical	meaning".	And,	without	any	 real	mathematical	 argumentation,	 since	he	
adds	"it	is	not	mathematical	problems	that	are	important	to	discuss	here".	And	he	
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concludes:	("Instead	I	will	limit	myself	to	formulate	considerations	concerning	this	
particular	problem")6.		He	concludes	that	his	choice;		

	(49)																								

  

g11 = 1, g22 = 1, g33 = 1, g44 = −1

gµν = 0 (µ ≠ ν)
		

presents	 itself,	 for	 him,	 as	 the	 only	 alternative	 representing	 "the	 only	 regular	
solution	 of	 the	 basic	 equations	 of	 physics",	 and	 that	 it	 represents,	 according	 to	
him,	 "a	 solution,	 and	 even	 the	 only	 regular	 solution	 of	 the	 basic	 equations	 of	
physics".			

	

Conclusion	on	this	first	part	of	Hilbert's	1916	article.		

				After	the	Second	World	War,	at	the	turn	of	the	seventies,	a	change	of	signature	
was	de	facto	ratified,	through	the	scientific	publications	that	followed,	without	an	
article	published	in	a	physics	journal	justifying	the	reason.	In	the	same	way	these	
chimeras,	 like	"the	 light	cone",	 "outside	of	which"	 is	a	part	of	space	qualified	as	
"elsewhere",	 populated	 with	 "spacelike	 curves",	 appeared,	 whereas	 this	 vision	
comes	from	the	projection	of	a	reality	associated	with	a	hyperbolic	geometry,	in	a	
space	of	representation	endowed	with	an	elliptical	geometry,	an	act	of	which	we	
have	shown	that	it	generated	objects	exempt	from	reality.		

				We	had	to	go	back	to	Hilbert's	1916	paper	to	trace	the	source	of	these	drifts.	In	
fact,	 a	 "standard"	 vision	 of	 cosmology,	 populated	 by	 presentations	 that	 were	
considered	 as	 acquired,	 not	 contestable,	 was	 built	 on	 the	 basis	 of	 later	 texts,	
written	 in	 English,	 and	 therefore	more	 easily	 assimilated	 in	 this	 language	 that	
had	become	commonplace	on	a	planetary	 scale	 after	 the	war.	The	authors,	 like	
medieval	 copyists,	 copied	 one	 another	without	 any	 being	 able	 to	 return	 to	 the	
fundamental	texts	if	they	did	not	master	German.		

				To	this	we	must	add	that	 if	 they	had	simply	made	the	effort	to	go	back	to	the	
original	 version,	 by	 simply	 looking	 at	 equation	 (14)	 of	 this	 article	 they	 would	
have	 been	 able	 to	 see	 immediately	 that	 their	 interpretation	 was	 in	 total	
contradiction	with	the	result	of	Schwarzschild.		

			It	 is	 significant	 that	 Hilbert's	 articles	 of	 1915-1916	were	 only	 translated	 into	
English	in	2007	([1],	[2]),	i.e.	ninety	years	after	they	were	published.	Worse	still,	
these	 translations	remain	 today,	 like	many	others,	under	copyright,	as	part	of	a	
work	 gathering	 elements	 of	 this	 kind	 made	 available	 to	 scientists	 for	 a	 price	
(October	 2021)	 of	 733	 dollars	 for	 the	 printed	 version	 and	 608	 dollars	 for	 the	

																																																								
6	In	 the	 English	 translation	 by	 Springer,	 2007,	 we	 read	 	 	 :	 «	is	 a	 mathematical	
problem	not	to	be	discussed	here.	Instead	I	confine	myself	to	presenting	thoughts	
concerning	 this	 problem	 in	 particular	».	 Le	 texte	 allemand	 est	:	 «sind	 ist	
mathematisch	hier	nicht	 allgemein	 zu	erörternde	aufgade.	 Ich	beschränke	mich		
vielmehr	 darauf,	 einige	 besondere	 diese	 Aufgabe	 betreffende	 überlegungen	
anzustellen	».	
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digital	version!	We	had	to	pay	58	dollars	to	buy	the	two	pdf's	corresponding	to	
the	two	articles	that	serve	as	a	basis	for	this	paper,	while	they	are	working	tools	
for	 researchers.	 If	 readers	want	 to	 consult	 these	 translations,	 they	will	 have	 to	
pay	 the	same	amount.	 	Today,	 there	are	no	scientists,	presenting	 themselves	as	
experts	in	cosmology,	who	have	read	the	fundamental	texts,	or	even	know	of	the	
existence	of	a	mass	of	capital	 texts,	some	of	which	have	not	yet	been	translated	
from	German.		

				In	 what	 follows	 we	 will	 highlight	 a	 glaring	 and	 indisputable	 error	 of	 David	
Hilbert,	the	immense	impact	of	which	will	be	measured	in	all	the	development	of	
cosmology	that	followed.		

				This	 error	was	 first	 identified	by	 the	Canadian	L.S.	Abrams	 [7]	 in	1989,	 after	
examining	 the	 original	 text,	 published	 in	 German	 by	 Karl	 Schwarzschild	 in	
January	1916	[6],	and	comparing	it	with	Hilbert's	article	of	December	1916,	also	
in	German.		

				In	 1999	 a	 similar	 approach	was	 taken	by	A.Loinger	 [8],	 always	 starting	 from	
German	texts,	which	he	reads	fluently.		

				En	 1999	 l'italien	 S.Antoci,	 et	 l'allemand	 D.E	 Liebscher	 reprennent	 cette	
question	 [9]	 et	 installent	 sur	 arXiv	 les	 traductions	 faites	 par	 Liebscher,	 enfin	
disponibles	en	langue	anglaise,	83	ans	après	 leur	publication	en	allemand,	alors	
que	ces	textes	sont	considérés	comme	la	base	même	de	la	théorie	des	trous	noirs.			

			En	2001	ils	montrent	que	l'erreur	relève	d'une	mauvaise	compréhension	de	la	
topologie	de	la	solution	trouvée	par	Schwarzschild	[10]	.	

			En	2003	S.Antoci	réitère	en	publiant	un	article	très	documenté	 :	David	Hilbert	
and	the	origin	of	the	Schwarzschild	Solution	[11].		

Plus	récemment,	en	2021,	le	Russe	Anatoli	Vankov	souligne	ce	point	en	concluant	
"Strictly	talking	the	Black	hole	does	not	come	from	the	general	relativity	theory"	
[12].	

	

Hilbert's	error.		

				Let's	go	back	to	 the	chronology.	On	November	20,	1916	Hilbert	published	his	
first	 paper	 entitled	 "Foundations	 of	 Physics"	 [1].	 Five	 days	 later	 Einstein	
published	his	own	version	of	the	field	equation	[4]	as	well	as	the	first	solution	of	
the	 linearized	 version	 of	 the	 equation,	 providing	 the	 first	 explanation	 of	 the	
advance	of	Mercury's	perihelion	 [5].	On	December	22,	1915	 the	mathematician	
Karl	Schwarzschild,	who	avidly	follows	everything	published	in	the	section	of	the	
Prussian	 Academy's	 annals	 devoted	 to	 mathematics,	 writes	 to	 Einstein	
announcing	that	he	has	 just	constructed	the	non-linear	solution	of	his	equation,	
which	 confirms	 his	 calculation.	 He	 announces	 to	 him	 that	 he	 will	 publish	 an	
article	in	the	same	review.	The	text	of	this	letter	is	available	at	the	reference	[3].:		
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Fig.14	:	Schwarzschild's	letter	to	Einstein	of	December	22,	1916	

	

Translation	of	the	underlined	passage:		

  R , θ ,ϕ 	are	not	the	coordinates	"in	use	7	»,	but	it	turns	out	that	this	
is	the	best	way	to	express	the	metric.		

				We	 see	 that	 the	 genuine	 radial	 variable	 r	 is	 clearly	 visible.	 Schwarzschild	
introduces	an	"intermediate	variable"	(Hilfsgröβe)	R	,	according	to	the	relation:		

  
R= r3 + α3( )1/3

	,	

that	Hilbert	will	confuse	with	a	radial	variable.		

				In	 his	 defense,	 we	 can	 say	 that	 in	 1916	 the	 mathematical	 tool	 "differential	
geometry"	 was	 not	 completely	 mastered.	 In	 order	 to	 point	 out	 the	 error	 with	
precision,	we	will	resume	Hilbert's	calculation,	point	by	point.		

				He	 begins	 by	 listing	 the	 hypotheses	 which	 are	 at	 the	 basis	 of	 this	 solution,	
which	 he	 chooses	 to	 describe	 using	 what	 is	 for	 him	 a	 touchstone,	 Gaussian	
coordinates,	with:		

(50)																																					  
g14 = 0, g24 = 0, g34 = 0, 	

			The	metric	 potentials	 are	 independent	 of	 time	 x4	 .	 To	 this	 he	 adds	 that	 they	
present	a	central	symmetry	(zentrisch	symmeytisch),	with	respect	to	the	origin	of	

																																																								
7	Erlauten	:	authorized,	permitted,	standard,	in	use.	
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the	coordinates.	An	origin	that	he	assimilated	to	the	value	R	=	0	and	not	r	=	0.	In	a	
more	 modern	 way	 one	 would	 speak	 of	 an	 invariance	 under	 the	 action	 of	 the	
group	SO(3)	and	even	O(3).	 Indeed,	a	geometric	object	which	has	 this	property	
does	not	automatically	have	a	"center".	A	torus	has	an	"axial"	symmetry,	but	this	
axis	only	appears	when	we	plunge	it	into		  !3 	.	Formally,	this	axis	does	not	exist.	
Similarly,	returning	to	the	metric	of	the	"3D	diabolo",	this	object	does	not	have	a	
"central	symmetry",	because	this	"center"	only	appears	when	we	project	it	into	a	
representation	 space	 which	 is	 the	 three-dimensional	 Euclidean	 space.	 It	 is	
invariant	by	action	of	the	group	O(3).			

Hilbert	then	writes:		

(51)	

In	agreement	with	Schwarzschild,	if	we	pose:		

  

w1 = r cosϑ
w2 = r sinϑ cosϕ
w3 = r sinϑsinϕ
w4 = l

	

	

			We	find	a	character	l	which	translates	the	vision	that	Hilbert	has	of	the	universe.	
These	are	four	coordinates	which	are,	let	us	refer	to	the	beginning	of	his	article,	
universal	parameters	(weltparameter)	  ( w1 , w2 , w3 , w4 ) 	.	What	is	extraordinary	is	
that	Hilbert	will	conduct	his	calculation	in	this	coordinate	system.	The	time	t	will	
appear	only	at	the	very	end	"when	all	the	cosmic	mechanics	will	start	working".			

In	 the	 Lagrange	 equations,	 which	 will	 follow,	 he	 does	 not	 manipulate	 the	

derivative	
 

dt
dp
	mais	la	dérivée		

 

dp
dp
.		

This	is	a	way	for	him	to	affirm	that	this	metric	"exists",	that	this	geometry	"pre-
exists"	before	God	decides	that	l	=	it,	before	starting	the	time	race.	For	Hilbert	the	
solar	system	exists,	as	it	is,	since	the	creation	of	the	universe	by	God,	since	time	
zero.			

			Another	 remark,	 in	 this	 following	 you	 will	 find	 g 	and	 not	 −g 	.	 So	 the	
determinant	of	 the	metric	 is	positive.	We	have	to	remember	that	 for	Hilbert	 the	
curvature	phenomena	are	exceptional	accidents,	almost	imperceptible	folds	in	a	
practically	 Euclidean	 universe.	 The	 universe	 associated	 to	 these	 coordinates	

  ( w1 , w2 , w3 , w4 ) 	is	 therefore	 Euclidean.	 Does	 it	 have	 a	 length?	 No,	 not	 yet.	 It	 is	
only	when	 this	 length	 (these	 lengths	 in	 the	 plural,	 if	 we	 stick	 to	 Hilbert's	 text,	
which	defines	 two	of	 them)	 that	 the	 space	becomes	pseudo-Euclidean	 and	 that	
the	determinant	becomes	negative.	Before	God	gives	it	a	physical	character,	it	is	
an	object	of	pure	mathematics.	We	could	call	it	"metaphysical"..		
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->	When	Einstein	produced	his	field	equation,	he	created	a	tool	with	which	
to	 interpret	 physical	 phenomena,	 accessible	 to	 astronomy.	 He	 is	 thus	
already	 in	 a	 four-dimensional	 world	   ( x1 , x2 , x3 , t ) ,	 concret.	 The	

determinant	of	its	metric	is	therefore	negative	and	it	must	handle	a	 −g .		

->	When	Hilbert	 produces	 his	 own	 version	 of	 the	 field	 equation	 he	 is	 in	
another	universe,	which	he	wants	to	be	more	abstract,	more	fundamental,	
the	 universe	 of	  ( w1 , w2 , w3 , w4 ) .	 You	 now	 have	 an	 explanation	 for	 the	

presence	 of	 the	 g 	in	 its	 field	 equation,	 constructed	 and	written	 in	 the	
system	  ( w1 , w2 , w3 , w4 ) .		

	

				It	is	extremely	regrettable	that	I	cannot	provide	a	link	to	the	English	translation	
of	Hilbert's	1915	article	[1],	which	is	still	under	this	scandalous	copyright,	even	
though	it	is	a	key	element	of	the	world's	scientific	culture.	So	it	will	cost	you	29	
dollars	if	you	want	to	check	that	the	coordinates	  ( x1 , x2 , x3 , x4 ) 	are	totally	absent	

from	this	article	where	all	derivatives	are	 in	
 

∂
∂ws

.	This	 is	 true	 for	all	 terms,	 the	

Christoffels	coefficients,	the	terms	of	the	Ricci	tensor.		

										So	the	Hilbert	field	equation	refers	to	a	space	  ( w1 , w2 , w3 , w4 ) 	

				End	of	this	digression.	 In	his	1916	paper	Hilbert	puts	the	bilinear	form	in	the	
form		:		

(52)																												  F(r)dr 2 + G(r)( dϑ2 + sin2ϑ dϕ2 ) + H (r) dl2 	

A	further	step	has	been	taken.	Hilbert	is	then	in	a	reference	frame:		

(53)																																		  w1= x1 , w2 = x2 , w3= x3 , w4 = l1{ } 		
			The	passage	 in	polar	coordinates	 implies	 that	 its	variable	r	 is	defined,	as	with	
Schwarzschild	[10]8;		by	:		

(54)																																																		  r = x1
2 + x2

2 + x3
2 ≥ 0 		

			Then,	thanks	to	the	change	of	variable,	implicit,	it	is	passed	in	polar	coordinates:		

(54)																																					  ϑ = arcsin x3 ϕ = arccos x1 		

				We	are	thus	in	the	coordinates	(51).	From	(52)	it	is	clear	that	Hilbert	expresses	
his	bilinear	form	in	the	system:		

(55)																																																						  ( r ,ϑ ,ϕ , l ) 	

																																																								
8	What	you	can	check	in	the	English	translation,	not	covered	by	a	copyright	
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				Other	form	of	the	system	  ( w1 , w2 , w3 , w4 ) .		

There	is	no	question	of	time.		

He	then	poses	:		

(56)																																																										  r *= G(r) 		

			It	is	then	that	he	will	commit	a	major	error,	reported	since	1989	in		

([7],	[8],	[9],	[10],	[11],	[12])	.		

He	writes:		

	

	

Fig.15	:	Hilbert's	error	

	

Translation	:		

-	We	are	therefore,	in	the	same	way,	entitled	to	interpret	  ( r* ,ϑ ,ϕ , l ) 	
as	 polar	 spatial	 coordinates.	 If	 we	 introduce	 r	 instead	 of	 r*	 in	 (our	
expression	of	 the	bilinear	 form)	and	omit	the	*	sign	again,	we	obtain	
the	expression:		

(57)																													  M (r)dr 2 + r 2( dϑ2 + sin2ϑ dϕ2 ) +W (r)dl2 		

				This	bilinear	form	is	a	solution	of	the	Einstein	field	equation	without	a	second	
member	 which	 then	 reduces	 to	 canceling	 the	 components	 of	 the	 Ricci	 tensor,	
which	Hilbert	denotes	by	

 
Kµν 	.	These	are	calculated	on	 the	basis	of	Christoffels	

symbols.	Note	that	Hilbert,	as	in	his	1915	paper,	does	all	his	calculations	with	the	
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variables	   ( r ,ϑ ,ϕ , l ) 	i.e.	 "universal"-	 coordinates	»	   ( w1 , w2 , w3 , w4 ) 	.	 	 His	
calculation	 of	 the	 geodesics	 is	 then	 based	 on	 the	 variation	 of	 the	 action,	
constructed	with	these	same	variables		:		

	

(58)											
  
δ M

dr
dp

⎛
⎝⎜

⎞
⎠⎟

2

+ r 2 dϑ
dp

⎛
⎝⎜

⎞
⎠⎟

2

+ r 2sin2ϑ dϕ
dp

⎛
⎝⎜

⎞
⎠⎟

2

+ W dl
dp

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ dp = 0 	

	

Hs	corresponding	Lagrange	equations	are:	

(59)	

	

	The	 type	 '	 in	 these	 equations,	 and	 in	what	 follows,	 refers	 to	 a	 derivation	with	
respect	to	r.		The	differential	equations	of	the	geodesic	curves	are:	

	

(60)																																						
  

d 2ws
dp2 +

µν
∑ µ ν

s

⎧
⎨
⎩

⎫
⎬
⎭

dwµ

dp
dwν

dp
= 0 	

	

We	notice	 that	we	 are	 always	 in	 these	 "universal"	 coordinates	  ( w1 , w2 , w3 , w4 ) .	
Hilbert	then	computes	non-zero	Christofells	symbols:		

(61)																																																	
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This	allows	him	to	calculate	the	components	of	the	Ricci	tensor	9		

(62)	

	

The	calculation	of	the	Ricci	scalar	follows:	

																																																								
9	In	 the	 English	 translation,	 under	 copyright,	 a	 sign	 error	 in	 the	 equation	
giving	K22	where	the	translator	has	put	a	plus	sign	instead	of	a	minus	sign	in	
the	second	term	of	the	right	member.		
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	(63)	

	

	

				Hilbert	places	himself	in	a	coordinate	system	where	the	determinant	is	positive,	
which	allows	him	to	write:		

(64)																																																						  g = M W r 2sinϑ 		

Then	:	

(65)		

	

He	poses	

(64)
																																							  

M = r
r - m

W = w 2 r - m
r 		

	

			->		The	letter	w	does	not	designate	the	modulus	of	the	vector	  ( w1 , w2 , w3 , w4 ) 	

				It	 is	 an	 unknown	 function.	 By	making	 the	 change	 (64)	Hilbert	will	 now	have	
two	unknown	functions	to	determine:	m	and	w	.	Why	such	a	change?	It	is	inspired	
by	the	equation	in	Schwarzschild's	paper	and	these	functions	m	and	w	will	turn	
out	to	be	simple	constants.		

			But,	in	passing,	we	discover	the	origin	of	lette	m	used	to	describe	what	has	the	
dimension	of	a	length!		

It	comes	from:		

(65)	

	

				Hilbert	constructed	his	action	on	the	basis	of	a	function	H	=	K	+	L	 ,	where	K	is	
the	Ricci	 scalar.	But	 in	 a	portion	of	 the	universe	which	 is	 empty,	L	 =	0	 .	 So	 the	
variation	reduces	to:		

	(66)																																																				
  
δ K g∫∫∫∫ dr dϑ dϕdl = 0 		
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				Note	that	we	are	still	in	the	coordinate	system	   ( r ,ϑ ,ϕ , l ) .	These	geodesics	
"exist",	 but	 "as	 God	 has	 not	 yet	 created	 time",	 the	 planets	 cannot	 launch	
themselves	on	these	geodesic-orbits.	This	equation	is	equivalent	to:		

(67)																																																																	
  
δ wm '∫ dr = 0 	

And	the	Lagrange	equations	then	give:		

(68)																																																																							
  

m ' = 0
w ' = 0

		

The	solution	constructed	by	David	Hilbert	is	then	written:		

(69)																					
  
G ( dr , dϑ , dϕ , dl ) = r

r − α
dr 2 + r 2sin2ϑdϕ2 + r − α

r
dl2 	

And,	posing		l	=	i	t		(i.e.	w4	=	i	x4	,	according	to	Hilbert's	notation).		

(70)															
  
G ( dr , dϑ , dϕ , dt ) = r

r − α
dr 2 + r 2sin2ϑdϕ2 − r − α

r
dt2 	

				In	 the	 original	 text	 we	 find	 a	 typographical	 error	 of	 Hilbert	 who	 leaves	 his	
"universal	variable"	l	in	the	first	member	10.			

	

Fig.16	:	A	typographical	error	by	Hilbert.	

At	 this	 point,	 Hilbert	 is	 convinced	 that	 he	 has	 found	 Schwarzchild's	 result.	 He	
writes:		

																																																								
10			Error	also	in	the	translation	published	by	Springer	(still	under	copyright):	the	
letter	l	must	be	replaced	by	the	letter	t	in	both	members.	Considering	the	number	
of	 obvious	 errors	 in	 this	 translation,	 available	 since	 2007,	 that	 is	 to	 say,	 at	 the	
time	of	writing,	since	14	years,	it	is	doubtful	that	this	translation	has	been	read	by	
people	mastering	general	relativity.			
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-	Für	l	=	it	die	gesuchte	Maβbestimmung	in	der	von	Schwarzschild	zuerst	
gefunden	Gestalt		

Translation	:		

-	For	l	=	it	we	find	the	metric	first	constructed	by	Schwarzchild.		

It	 is	 this	 error	 that	was	 very	 quickly	 propagated	 through	 successive	 erroneous	
interpretations.		

	

The	true	Schwarzschild	metric.		

				Had	Schwarzschild	survived	that	spring	of	1916,	when	he	died	of	an	infection	
contracted	 on	 the	 Russian	 front,	 he	 would	 have	 immediately	 brought	 these	
commentators	of	his	work	back	to	the	original	form	of	it,	where	the	nature	of	R	is	
well	specified	and	corresponds	only	to	an	intermediate	quantity	(Hilfsgröβe)	and	
in	no	case	to	the	radial	distance	r.		

	

	

Fig.17	:	Schwarzschild's	true	metric,	1916	

	

				What	is	extraordinary	is	that	this	confusion	between	R	and	r,	which	is	the	basis	
of	Hilbert's	 error,	 has	been	a	 standard	 for	more	 than	a	 century,	 even	 though	 it	
was	 obvious	 in	 Schwarzschild's	 result	 in	 equation	 (14),	 even	 to	 a	 non-German	
speaker.	 The	 only	 possible	 explanation	was	 that	 this	misinterpretation	 spread,	
like	 the	misinterpretation	 of	 a	 founding	 text	 by	 people	 behaving	 like	medieval	
copyists.		

				In	fact,	the	generations	of	theorists	that	followed	were	satisfied	by	the	fact	that	
this	 solution	 fulfilled	 for	 them	 a	 consideration	 that	 could	 be	 considered	 as	
fundamental:	to	identify	with	the	Lorentz	metric	at	infinity.	In	his	article	of	2003	
[11],	 the	 Italian	 mathematician	 Salvatore	 Antoci	 analyzes	 with	 the	 greatest	
precision	 the	 mechanism	 of	 construction,	 by	 Hilbert,	 of	 this	 error,	 putting	 in	
perspective	 his	 calculation	 and	 that	 of	 Schwarzschild.	 In	 another	 paper	 [10]	 ,	
Antoci	 and	 the	 German	 D.E.	 Liebscher	 show	 that	 Hilbert's	 error	 translates	 an	
erroneous	interpretation	of	the	topology	of	the	object.		
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			To	 this	we	must	add	 that	 for	43	years	 the	only	application	 that	came	 to	mind	
concerned	 the	 linearized	 form	 of	 this	 metric.	 And	 this	 is	 the	 reason	 why	
Schwarzschild	himself	does	not	provide	the	expression	of	 its	nonlinear	solution	
in	his	coordinates.	 In	his	paper,	Schwarzschild	 takes	 the	case	of	 the	Sun,	where	
the	large	α	is	then	3	km	,	noting:			

	

	

Fig.18	:	Schwarzschild	justifies	his	limitation	to	the	linearized	solution.	

	

Translation:		

-	Nevertheless,	Mr.	Einstein's	approach	to	the	calculation	of	the	geodesics	is	
compatible	with	the	exact	solution,	if	we	express	it	using	r	instead	of:		

  
R = r3 + α3( )1/3

= r 1+ α3

r3

⎛
⎝⎜

⎞
⎠⎟

1/3

	

since	 α/r	 is	 close	 to	 twice	 the	 square	 of	 the	 planetary	 speed	 (taking	 the	
speed	 of	 light	 as	 the	 unit).	 For	Mercury,	 the	 order	 of	magnitude	 is	 10-12.	
Thus	 R	 is	 practically	 equal	 to	 r	 and	Mr.	 Einstein's	 approach	 is	 sufficient,	
beyond	the	needs	of	current	practice.		

	

					If	Schwarzschild	had	finalized	his	work,	which	he	did	not	find	necessary,	which	
he	would	have	done	by	expressing	the	metric	in	the	coordinates		  ( r ,ϑ ,ϕ , t ) 	this	
would	have	led	him	to	write	the	true	solution,	which	is	obtained	immediately	by	
performing	 the	 change	 of	 coordinate,	 explicitly	 mentioned	 by	 Hilbert.	 	 An	
operation	 which	 would	 have	 made	 appear	 this	 true	 metric	 solution	 of	 the	
Einstein	equation	without	second	member.		

		

	



	

(71)		

  

ds2 =
( r3 + Rs

3)1/3 − Rs

( r3 + Rs
3)1/3 c2dt2 − r 4

( r3 + Rs
3) ( r3 + Rs

3)1/3 − Rs
⎡⎣ ⎤⎦

dr 2 − ( r3 + Rs
3)2/3( dθ2 +sin2θdϕ2 )

r ≥ 0
	

			!	 Obviously,	 if	 we	 perform	 a	 series	 development	 according	 to	 the	 small	
parameter	Rs/r	we	find	the	linearized	solution	of	Einstein.		

In	 a	 footnote	 on	 page	 70	 of	 his	 manuscript,	 Hilbert	 signs	 his	 obvious	
misunderstanding	 of	 the	 relation	 (number	 14	without	 Schwarzschild's	 original	
paper;	which	accompanies	his	expression	of	its	metric	solution,	according	to	the	
intermediate	quantity	R	:				

(72)																																																							
  
R = r3 + α3( )1/3

	
	

	

Fig.18	:	Hilbert’s	footnote	

Translation	:		

- In	my	opinion	I	will	not	recommend,	as	Schwarzschild	does,	this	
transformation	bringing	the	point	r	=	α	 to	the	origin,	especially	
since	there	are	simpler	ways	to	achieve	this.	

				Thus,	 while	 the	 expression	 according	 to	 the	 true	 radial	 coordinate	 r	 is	
consistent	with	 the	 approach	 followed	by	 Schwarzschild,	 the	 fact	 of	 presenting	
the	 result	 according	 to	 this	 intermediate	 quantity	 R	 is	 only	 an	 artifice	 used	 by	
Schwarzschild	 to	 stick	 more	 simply	 with	 the	 linearized	 solution	 of	 Einstein,	
Hilbert	reverses	the	reasoning	by	considering	R	as	the	radial	variable	and	r	as	an	
artifice	 of	 calculation	 to	 get	 rid	 of	 the	 singularity	 in	what	he	believes	 to	be	 the	
origin	 of	 the	 coordinates,	 in	 R	 =	 0	 ,	 whereas,	 according	 to	 (72)	 this	 point	
corresponds	to	the	pure	imaginary	value:		

(73)																																																				
  
r = i R3 − α3( )1/3
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In	doing	so,	Hilbert	does	not	realize	that	he	has	left	the	domain	of	definition	of	the	
manifoold	M4.		

						An	 error	 that	 will	 lead	 to	 floods	 of	 ink	 and	 the	 production	 of	 theorems	
(Penrose,	 Hawking)	 referring	 to	 a	 "central	 singularity",	 existing	 only	 in	 the	
imagination	of	scientists	who	have	studied	this	question,	thus	taking	for	a	reality	
what	belongs,	mathematically	speaking,	to	an	imaginary	space	domain.		

				Coming	back	 to	 this	expression	 (71),	by	performing	a	 series	development	we	
obtain	the	values	of	the	metric	potentials	when	r	tends	to	zero:	

(74)															
   
gt t → 0 gr r !

3r
Rs

→ 0 gθθ → Rs
2 gϕϕ → Rs

2sin2θ 		

				At	r	=	0	the	Kretschman	scalar	is	nonzero,	so	the	sphere	is	not	a	singular	locus.	
On	the	other	hand	the	determinant	is	zero,	which	indicates	that	the	hypersurface	
is	locally	inorientable.	It	is	doubly	so,	since	the	two	potentials	and	are	zero.	If	the	
sphere	 is	a	gorge	sphere,	 it	 reflects	a	double	 inversion	of	space	and	 time,	a	PT-
symmetry,	as	established	in	.	[13]].		If	we	consider	this	nullity	of	the	determinant	
as	 a	 singular	 region"	 we	 can	 then	 conclude	 that	 the	 hypersurface	 is	 not	 a	 4-
manifold	but	a	4-orbifold.		

				Recall,	as	Hilbert	notes,	that	these	coordinates	are	Gaussian.	We	can	therefore	
consider	a	 layering	of	 the	hypersurface	where	the	variable	with	t	as	parameter.	
This	corresponds	for	these	three-dimensional	hypersurfaces	to:		

	

(75)											
  
dσ2 = r 4

( r3 + Rs
3) ( r3 + Rs

3)1/3 − Rs
⎡⎣ ⎤⎦

dr 2 + ( r3 + Rs
3)2/3( dθ2 +sin2θdϕ2 ) 	

	

These	are	themselves	subject	to	a	new	layering	at	r	=	Cst	which	gives	a	family	of	
nested	spheres	like	Russian	dolls	having	the	minimal	area,	corresponding	to	r	=	0:	

(75)																																																															  4π Rs
2 	

The	4D	hypersurface	is	therefore	non-contractile.	It	is	then	:	

-	Either	a	bordered	manifold.	

-	 Either	 a	 geometrical	 object	 translating	 a	 space-time	 bridge	 between	 two	
Minkowski	spaces,	realized	through	a	sphere	of	throat	area	  4π Rs

2 .		

We	 can	 produce	 a	 finer	 description	 of	 the	 object	 by	 introducing	 a	 variable	
through	the	change	of	variable	[13].		:		

(77)																																																					  r = Rs ( 1+ Ln chρ ) 		

The	metric	then	becomes:		
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(78)	

  
ds2 = Logchρ

1+ Logchρ
c2dt2 − Rs

2 1+ Logchρ
Logchρ

th2ρ dρ2 − Rs
2 1+ Logchρ( )2

dθ 2 + sin2θ dϕ 2( )
	

				The	determinant	is	always	zero	because	of	the	term		
 
gt t 	but	now	  

gρρ → 2 .		

			This	 explains	 why	 theorists	 have	 massively	 embarked	 on	 this	 erroneous	
interpretation	of	Schwarzschild's	solution,	which	is	repeated	on	several	points.		

->	 The	 fact	 that	 the	 non-linear	 aspects	 of	 the	 solution	 were	 taken	 into	
account	 only	 in	 1939,	 after	 the	 publication	 of	 a	 key	 article	 [14]	 by	 R.	
Oppenheimer,	without	references,	which	we	will	mention	in	the	following.		

->	 The	 fact,	 highly	 probable,	 that	 no	 cosmologist,	 starting	 from	 this	
"founding	article"	had	the	curiosity	to	take	a	 look	at	the	original	article,	 in	
German,	in	which	case	the	equation	(14)	of	this	paper	should	have	attracted	
their	attention.		

->	The	 fact	 that	 this	 curiosity	 came	up	against	 the	 fact	 that	 these	German	
texts	were	only	 available,	 until	 the	 advent	of	 the	 internet	 and	pdf	 files,	 in	
books	that	were	generally	expensive.		

->	The	fact	 that	Schwarzschild's	article	was	only	translated	 into	English	 in	
1999	[6],	i.e.	86	years	after	its	publication	in	its	original	form.		

->	The	fact	that	the	translations	of	the	documents	that	are	essential	to	clear	
up	this	matter	were	only	translated	into	English	in	2007	([1],	[2]),	that	is	91	
years	after	their	publication,	and	are	still	covered	by	a	scandalous	copyright.		

->	 In	 1960	 the	 publication	 by	M.D.Kruskal	 [15]	 of	 the	 construction	 of	 an	
analytical	 extension	 allowing	 to	 "penetrate	 inside	 the	 Schwarzschild	
sphere"	 gives	 the	 illusion	 of	 a	 progress	 in	 the	 understanding	 of	 this	
geometry,	with	that	it	does	not	change	anything	to	the	case.	This	extension,	
which	refers	to	an	 imaginary	r-value,	 is	outside	the	definition	space	of	 the	
geometric	object.	 In	 the	same	way	one	could	build	an	analytical	extension	
allowing	to	study	a	torus	inside	its	throat	circle.		

->	To	this	we	must	add,	for	more	than	half	a	century,	the	illusory	conviction	
of	a	progress	in	the	understanding	of	this	solution,	whereas	the	generalized	
contagion	of	this	flagrant	error	has	made	thousands	of	publications	fall	into	
what	is	nothing	but	science	fiction.		

	

The	birth	act	of	the	black	hole	model.		

				In	1939	the	hypothesis	of	the	existence	of	neutron	stars	was	already	circulating,	
although	their	existence	was	only	confirmed	in	1967	by	the	discovery	of	pulsars.	
In	 their	 article	 [14]	 J.R.	Oppenheimer	 and	H.Snyder	 explicitly	mention	 them.	 In	
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fact,	it	all	started	with	an	article	published	a	few	months	earlier	by	R.C.	Tolman,	
then	working	at	Caltech	[16].		

	

	

Fig.19		:	Richard	Tolman	and	Albert	Einstein		

	

We	find	this	expression	of	the	metric:	

	

	

Fig.20	:	Tolmans’	line	element.		

	

This	 description	 still	 places	 us	 in	 Gaussian	 coordinates.	 We	 can	 therefore	 leaf	
through	the	space-time	by	using	t	as	a	parameter,	translating	a	simple	temporal	



	 45	

translation	and	by	considering	the	three-dimensional	hypersurfaces	described	by	
the	metric:		

(79)																																						  dσ
2 = eλ(r ) dr 2 + r 2dθ2 + r 2sin2θdϕ2 		

				Hypersurfaces	 that	 can	be	 foded	 through	a	 family	of	 area	 spheres	  4π r 2 	.	 Can	
this	 area	 be	 brought	 to	 zero?	 If	 so,	 this	 will	 mean	 that	 the	 geometric	 object	
associated	with	this	portion	of	space-time	is	contractible.		

				Moreover,	by	introducing	the	two	functions	  e
ν(r ) and	  e

λ(r ) 	strictly	positive,	if	we	
are	 in	 a	mode	governed	by	 reals,	 Tolman	 rejects	 a	possible	modification	of	 the	
hyperbolic	signature	which,	for	him,	is	(	-	-	-	+	);	or	(	+	-	-	-)	according	to	the	order	
of	the	terms.	

	

	

Fig.21	:	Tolman's	expression	after	Oppenheimer	and	Snyder.		

	

					This	work	 is	 in	 fact	 a	 resumption	of	 the	 second	article	 [17]	published	by	
Karl	 Schwarzschild,	 just	 before	 his	 death,	 where	 he	 entirely	 constructs	 the	
geometry	 inside	 a	 sphere	 filled	 with	 an	 incompressible	matter,	 of	 constant	
density.	R.Oppenheimer	and	H.Snyder	quote	him	in	the	article	they	published	
in	1939	 [14]	 and	 start	 again	 from	 the	 same	 form	of	 the	metric,	 this	 time	 to	
take	up	the	question	of	geometry	outside	the	mass.	The	question	of	the	end	of	
life	of	 stars	having	exhausted	 their	 fusion	 fuel	 is	at	 the	center	of	 the	article.	
The	accentuation	of	the	gravitational	redshift	is	evoked,	as	the	contraction	of	
the	star	increases.	The	free	fall	time	of	a	test	particle	is	calculated	in	two	ways.	
The	authors	show	that	 if	we	rely	on	 the	proper	 time,	 this	 time	 is	 finite,	 and	
very	short.	On	the	other	hand,	if	we	measure	this	time	by	using	the	coordinate	
t	 ,	which	 is	supposed	to	refer	 to	 the	proper	time	of	an	observer	 located	at	a	
great	distance	from	the	object,	this	time	becomes	infinite.		
	
				This	 remark	 signs	 the	 birth	 of	 the	 Black	 Hole	 model,	 according	 to	 the	
following	reasoning:		
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->	A	star,	no	longer	able	to	counterbalance	the	force	of	gravity	with	the	
help	 of	 pressure,	 undergoes	 a	 free	 fall	 towards	 its	 center,	 which	
nothing	can	counteract.		
	
->	Without	undertaking	a	description	of	 this	phenomenon,	we	rely	on	
the	 data	 emanating	 from	 the	 metric	 describing	 the	 exterior	 of	 this	
object,	which	we	will	call	"Schwarzschild's	exterior	metric".	
->	 By	 calculating	 the	 free	 fall	 times	 of	 test-mass,	 if	 we	 find	 that	 it	
reaches	 the	 Schwarzschild	 sphere	 in	 a	 finite	 time,	 this	 time	 becomes	
infinite	by	an	observer	located	at	a	great	distance.	For	the	latter,	this	
implosion	phenomenon	seems	to	be	like	a	frozen.		
	
->	At	the	same	time,	the	radiation	emitted	by	the	matter	undergoes	a	
gravitational	redshift	effect	which	becomes	infinite	when	this	signal	is	
emitted	from	a	point	located	on	the	Schwarzschild	sphere	of	radius	Rs.	
Thus,	 a	 fortiori,	 no	 radiation	 can	 cross	 this	 sphere	 which	 will	 be	
qualified	as	cosmological	horizon.		

				An	outside,	distant	observer	will	then	perceive	this	object	as	a	perfectly	black	
disk,	which	will	be	called	a	black	hole.		

				This	reasoning	allows	us	to	free	ourselves	from	the	description	of	the	collapse	
phenomenon	by	starting	from	the	reasoning:		

->	I	do	not	feel	obliged	to	describe	a	phenomenon	which	for	me,	
an	outside	observer,	lasts	an	infinite	time.	

	
					This	also	allows	us	to	reduce	the	description	of	the	geometry	of	the	object	to	
the	 only	 geometry	 referring	 to	 the	 outside	 of	 the	 horizon	 sphere,	 thus	 to	 a	
solution	 of	 Einstein's	 equation	 that	 refers	 to	 a	 portion	 of	 the	 empty	 universe.	
Assuming	that	one	can	start	from	the	solution	of	figure	21	to	calculate	the	free	fall	
time	of	a	witness	particle	up	to	the	point	r	=	0	,	supposed	to	be	the	"center"	of	the	
object,	one	obtains	a	finite	and	brief	value.	We	deduce,	although	we	cannot	carry	
out	 any	 observation	 on	 what	 happens	 and	 has	 happened	 inside	 the	 horizon	
sphere,	that	all	the	matter	is	concentrated	in	a	central	singularity.		
	
				This	 reasoning	 is	 based	on	 the	 assumption	 that	 the	 considered	 expression	of	
the	solution	has	a	physical	meaning.	However,	as	mentioned	above,	this	is	not	the	
result	 found	by	 Schwarschild	 in	1916	but	 the	 result	 of	 the	 error	 committed	by	

Hilbert,	 by	 confusing	 the	 intermediate	 quantity	 	
  
R = r3 + α3( )1/3

	with	 the	 radial	
distance	 r.	 Considering	 to	 exploit	 a	 calculation	 referring	 to	 a	 value	 r	 <	 ro	
(	Schwarzschild	radius)	one	is	simply	outside	the	four-dimensional	hypersurface,	
which	 can	 be	 seen	 immediately	 from	 the	 fact	 that	 the	 exponential	 functions	
become	negative.	Now	:		
	
(80)																																										 e

λ = − n → λ = Ln n + iπ 	
	



	 47	

				A	complex	function	appears,	itself	a	function	of	a	complex	value	of	the	variables.	
Thus	the	supposed	"interior"	of	such	an	object	exists	only	 in	 the	 imagination	of	
theorists,	 in	 the	 strict	 sense,	 since	 they	 decide	 to	 consider	 as	 real	 what	 is	
imaginary.	
	
	
The	emergence	of	surrealism	in	physics.		
	
The	years	have	passed.	No	theorist	cares	to	return	to	the	 founding	texts,	nor	to	
consider	another	model.	Here	are	the	arguments	that	appear	in	all	the	books	and	
manuals	 intended	 for	 the	 training	 of	 students.	 As	 an	 example,	 we	 reproduce	
elements	of	section	6.8	of	chapter	6	of	the	book	of	reference	[18].	The	choice	of	
the	 form	 of	 the	metric	 introduced	 by	 Tolman	 [16]	 is	 then	 simply	 presented	 as	
"reasonable".		

	

When	 r	 becomes	 less	 than	 2I	 (the	 Schwarzschild	 radius),	 the	 signs	 of	 the	
components	 of	 the	 metric	 (potential	 metric	 referring	 to	 time)	   

g11 (	 metric	

potential	 referring	 to	 the	 assumed	 radial	 coordinate)	 change,	 	   
g11 becomes	

positive	ans	  
goo 	negative.	This	 forces	us	 to	reconsider	 the	physical	meaning	(...)	

given	to	the	variables	t	and	r	as	a	system	of	marking	time	and	radius,	inside	the	
Schwarzschild	sphere.	In	fact	a	line	of	universe	which	is	described	according	to	a	
t	,	that	is	to	say	with	  ( r , θ ,ϕ ) 	constants,		corresponds		to	  ds2 < 0 	.	It’s	a	spacelike	
curve,	while	a	line	of	universe	for	which	  ds2 > 0 	is	a	timelike	curve.		

					And	there	you	come	across	the	consequence	of	another	of	Hilbert's	errors,	that	
of	endowing	space-time	with	two	systems	of	measurement,	the	second	referring	
to	 portions	 of	 curves	 that	 he	 calls	 "segments"	 and	 for	 which	 the	 sign	 of	 the	
bilinear	form	is	inverted.		

	

	

Fig.22	:	The	second	"length"	measured	on	Hilbert	«	segments	».		
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Translation	:		

-	A	portion	of	a	curve	where	(the	form	G	is	positive)	will	be	called	a	
segment,	while	(the	expression	giving	the	scalar	λ 	)	 is	the	length	of	
this	segment.		

This	 vision	 of	 things	 is	 in	 total	 contradiction	 with	 the	 one	 of	 Einstein,	 K.	
Schwarzschild,	J.	Droste,	H.Weyl,	and	all	the	scientist-mathematicians	who	at	that	
time	 contributed	 to	 the	 construction	 of	 the	 general	 relativity.	 In	 the	 article	 of	
Schwarzschild,	for	example,	we	read:		

	

	

Fig.23	:	How	Schwarzschild	defines	length,	essentially	positive.		

	

Translation	:		

-	 Consider	 a	 point	 that	 moves	 according	 to	 (the	 expressions	 in	 the	
figure),	 where	 the	 variables	 are	 functions	 of	 the	 x	 variables	
(coordinates	of	points	of	the	space-time	hypersurface)	and	where	the	
values	 of	 x	must	 be	 considered	as	 constant	at	 the	beginning	and	at	
the	end	of	the	path	followed	for	the	integration.	Clearly,	the	point	will	
have	 to	 move	 according	 to	 a	 geodesic	 of	 the	 variety	 (manifold)	
characterized	by	the	element	ds.			

					
How	did	Hilbert	come	to	endow	space-time	with	two	lengths?	Perhaps	he	had	in	
mind	to	create	a	metaphysics,	with	respect	to	the	events	occurring	inside	(...)	the	
Schwarzschild	sphere.		
	
	
Let's	go	back	to	the	text	of	the	reference	[18].	
	

-	Let	us	take	again	the	text	of	the	reference	It	would	thus	appear	
natural	 (...)	 to	 treat	 r	 as	 a	 time	 coordinate	 and	 t	 as	 a	 radial	
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coordinate	 (...).	We	 interpret	 ds/c	 as	 the	 proper	 time	 along	 the	
lines	of	universe	traveled	by	a	particle.	Then,	as	we	have	shown	in	
section	 4.2,	 this	 definition	 only	 has	 a	 physical	 meaning	 if	 .	
Similarly,	 a	 massive	 particle	 cannot	 maintain	 itself	 on	 a	
trajectory	with	constant	r	inside	the	Schwarzschild	sphere,	which	
would	imply	that	  ds2 < 0 		along	this	line	of	universe.	

		
	
	
					Let	us	quote	the	"standard"	derivation	of	the	so-called	Schwarzschild	solution,	
e.g.,	 by	 quoting	 the	 corresponding	 pages	 of	 chapter	 6	 of	 the	 1975	 book	 of	
reference	[18].	Page	186	equation	(6.4)	represents	the	most	general	form	of	the	
metric,	 in	 the	 absence	 of	 cross	 terms.	 The	 minus	 sign	 shows	 that	 the	 authors	
intend,	with	A	 ,	B	 ,	C	 ;	D	positive,	 to	 introduce	 the	signature	of	 the	metric	 right	
away:		
	

	
	

Fig.24	:		Excerpt	from	page	186	of	the	reference	[18]	
	
				But	in	the	last	lines	we	read	"nevertheless,	it	is	possible	to	obtain	an	additional	
simplification	by	a	judicious	choice	of	radial	coordinate"	
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Fig.	25	:	Excerpt	from	page	187	of	the	referenc	[18].	
	
	
				And	there	we	see,	reproduced	identically,	 the	reasoning	held	by	Hilbert	 in	his	
1916	 paper,	 which	 shows	 that	 he	 is	 at	 the	 origin	 of	 this	 distortion	 of	 the	 true	
Schwarzschild	solution.	In	equation	(6.9)	the	authors	take	up	the	introduction,	in	
1939,	 of	 two	 exponentials	 by	 Tolman	 [16]	 and	 Oppenheimer	 [14].	 They	 even	
specify	 that	 these	 functions	 are	 "intrinsically	 positive"	 and	 that	 "these	
coordinates	 have	 a	 clear	 physical	 meaning",	 whereas,	 precisely,	 attributing	 a	
physical	meaning	to	coordinates	is	the	first	source	of	error.		
	
Six	pages	later,	on	page	193,	we	find	the	result	of	their	calculation:		
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Fig.	25	:	Extrait	de	la	page	193	de	la	référence	[18].	
	
	

					If	 these	 exponential	 functions	 are	 "intrinsically	 positive",	 then	 the	 variable	 r	
cannot	be	less	than	2m,	otherwise	the	quantities	and	would	correspond	to:		
	

(81)																											
  
e λ = − 1− 2 m

r
→ λ = Ln 1− 2 m

r
+ iπ 	

	
				
The	artifact	of	the	Kruskal	coordinates.	
	
					In	spite	of	 this	obvious	contradiction	D.Kruskal	has	constructed	an	analytical	
extension,	 so	 as	 to	 be	 able	 to	 build	 a	 description	 of	 this	 "interior	 of	 the	
Schwarzschild	 sphere	 (	 0	 <	 r	 <	 2m	 ).	 The	 reader	 will	 find	 the	 "standard"	
construction	of	these	new	coordinates	u	and	v	,	as	well	as	the	resulting	metric,	in	
pages	 226	 to	 230	 of	 the	 reference	 [18].	We	will	 only	 reproduce	 the	 equations	
themselves.	First,	we	have	the	two	equations	identified	by	(6.91)	in	the	book:		
	

(82)																																																
  
ξ = r + 2 m Ln

r
2 m

− 1 	

	

(83)																																																					
  
F (ξ) = 1− 2m / r

f 2 	

	
					
				From	these	relations	it	is	established	by	introducing	the	intermediate	quantity	
η 	,	equation	(6.200)	of	reference	[18]	shows	that:		
	
(84)																																																								  F (ξ) = η2 e 2ηξ 	
	
	
	
We	then	read,	in	the	equations	(6.201)	:	
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(85)		
	

  

u = r
2m

− 1
⎛
⎝⎜

⎞
⎠⎟

2mη

eη r ch ηx°

v = r
2m

− 1
⎛
⎝⎜

⎞
⎠⎟

2mη

eη r sh ηx°

f 2 = 2m
η2 r

r
2m

− 1
⎛
⎝⎜

⎞
⎠⎟

1− 4mη

e−2η r

	

	
Then:		
	

	
	

Fig.	26	:	From	page	229	of	the	reference	[18].		
	

	
The	scalar	m	being	real,η 	is	therefore	also	real.		
	
This	leads	to	the	final	expression	of	the	new	variables,	in	two	configurations.			
	
(86)				r	>	2m		:			
	

  

u = r
2m

− 1 e r /4m ch x°
4m

v = r
2m

− 1 e r /4m sh x°
4m

f 2 = 32m3

r
e r /2m

	

	
	

(87)																																
  
u2 − v2 = r

2m
− 1

⎛
⎝⎜

⎞
⎠⎟

e r /2m v
u
= th x°

4 m
		



	 53	

	
And	
	
(88)					r	<	2m	:	

  

u = 1 − r
2m

e r /4m sh x°
4m

v = 1 − r
2m

e r /4m ch x°
4m

f 2 = 32m3

r
e r /2m

	

	
With	:		

(89)																													
	  
v2 − u2 = 1− r

2m
⎛
⎝⎜

⎞
⎠⎟

e r /2m u
v
= th x°

4 m
		

	
The	metric	then	takes	the	form,	equation	(6.187)	of	the	reference	[18]:		
	
(90)																								  ds2 = f 2 (u,v)( dv2 − du2 ) − r 2( dθ2 + sin2θdϕ2 ) 		
	
					Although	this	metric	is	not	identified	with	the	Lorentz	metric	at	infinity,	when	
we	form	ds	=	0	we	have	,	see	equation	(6.188)	of	reference	[18]	:		
	

(91)																																																													
  

du
dv

⎛
⎝⎜

⎞
⎠⎟

2

= 1		

	
Here	is	the	famous	Kruskal	diagram:		
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Fig.27	:	Kruskal	diagram.	
	

				If	one	follows	this	diagram,	where	all	quantities	become	real,	with	a	real	ds	one	
thus	manages	to	penetrate	"inside	the	Schwarzschild	sphere".	The	points	located	
at	constant	r	are	on	hyperbolas.	The	one	on	the	right	refers	to	the	value	r	=	4m.	
The	 path	 A	 is	 that	 of	 a	 particle	 with	 mass,	 which	 plunges	 towards	 the	
Schwarzschild	sphere.	The	half	 line	x°	=	2m	evokes	the	way	time	evolves.	In	the	
chosen	 coordinate	 system	 this	 mass	 reaches	 this	 sphere	 in	 an	 infinite	 time,	
shown	by	the	half	line	v	=	u	 .	Then,	assuming	that	this	point-mass	can	penetrate	
inside	 this	 sphere,	 it	 continues	 its	way	and	 reaches	 the	point	 associated	with	a	
zero	 value	 of	 r	which	 is	 another	 hyperbola	 accompanied	 by	 hatching,	which	 is	
supposed	to	represent	"the	singularity".	A	similar	reasoning	 is	associated	to	the	
trajectory	B.		
			
					By	a	real	magic	wand,	Kruskal	seems	to	have	transformed	an	unreal	portion	of	
the	variety	into	something	real,	described	by	equations	(85)	to	(89).	But	we	have	
to	 remember	 that	 if	 with	 real	 quantities,	 like	 space-time	 coordinates,	 we	 can	
obtain	a	complex	quantity	ds,	the	opposite	is	also	possible.		
	
So	we	have	to	go	back	to	Kruskal's	approach.	Let	us	explain	the	relation	(84)		
	

(92)																																																								
  
F (ξ) = η2 e 2ηξ = 1

16 m2 e ξ/2m 	

	
Within	the	Schwarzschild	sphere	(83)	indicates	that:		
	

(93)																																																							
  
F (ξ) = 1− 2m / r

f 2 < 0 	

	
Combined	with	the	previous	equation	this	gives	us:		
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(94)																																																  e

ξ/2m = 16 m2 F (ξ) < 0 	
	
Now	the	exponential	can	only	be	negative	if	the	exponent	is	complex:		
	
	
(95)																																											

  
ξ = 2m Ln 16m2 F (χ)⎡⎣ ⎤⎦ − iπ 	

	
Note	all	the	calculation	has	been	based	on	the	hypothesis	(82),	which	leads	to:	
	

(96)																		
  
ξ = r + 2 m Ln

r
2 m

− 1 = 2m Ln 16m2 F (χ)⎡⎣ ⎤⎦ − iπ 		

	
			There	is	therefore	a	contradiction.	This	relation	becomes	incoherent.	In	the	two	
members	 of	 an	 equation,	 one	 cannot	 be	 real	 and	 the	 other	 complex.	 This	
analytical	extension	makes	sense	if	we	are	in	the	mode	of	complexes,	but	it	does	
not	make	sense	in	the	mode	of	physics,	which	is	in	the	world	of	reals.		
	
	
	
The	interpretation	of	Hermann	Weyl	(	1917)	
	
					In	1915	Hermann	Weyl	was	thirty	years	old.	After	having	taught	mathematics	
at	 the	 University	 of	 Göttingen,	 where	 he	 was	 fascinated	 by	 the	 revolutionary	
ideas	introduced	by	Riemann	and	particularly	by	hyperbolic	varieties,	he	found	a	
position	 in	Zurich,	at	 the	Federal	Polytechnic,	where	he	was	offered	a	chair.	He	
then	met	 Einstein	 and	 quickly	 assimilated	 the	 basic	 concepts	 of	 relativity,	 first	
special	and	then	general.		Discovering	the	exact	nonlinear	solution	found	by	Karl	
Schwarzschild,	he	published	his	interpretation	in	1917	[19].		
	
	

	
	

Fig.28	:	Hermann	Weyl	in	1915	
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						To	access	 the	German	version	of	 this	 article,	 published	more	 than	a	 century	
ago	but	copyrighted	by	Springer	in	a	2012	republication	which	also	includes	the	
English	translation,	 it	will	cost	you	$49,	regardless	of	 the	version.	 In	this	paper,	
unlike	Hilbert's,	the	letter	R	is	used	to	designate	the	Riemann	scalar:		
	

	
	

Fig.29	:	Derivation	of	the	field	equation	by	Weyl.		
	

				The	 first	 equation	 shows	 that	Weyl	 immediately	 integrated	 the	 technique	 of	
derivation	of	the	field	equation	by	the	variational	method,	with	the	introduction	
of	the	Ricci	tensor	and	the	scalar	R	derived	from	it.	At	the	bottom,	we	see	the	field	
equation	to	which	Einstein	gave	his	name,	 in	the	form	(equivalent	to	that	of	his	
publication	of	November	25,	1916	[4])	that	students	know	today.	The	first	thing	
that	 Weyl	 does	 is	 to	 remind	 us	 of	 the	 inequality	 which	 gives	 the	 solution	 a	
physical	character:		
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Fig.30	:	Length	measurement,	after	H.Weyl	[21].	

	
	
				Like	Schwarzschild,	he	 is	perfectly	clear	 in	his	choice	of	Gaussian	coordinates	

  ( x1 , x2 , x3 , x4 ) .	 The	 space-time	 is	 therefore	 foldable	 by	means	 of	 a	 sequence	 of	
three-dimensional	hypersurfaces,	invariant	with	respect	to	time	x4.	The	problem	
is	 to	construct	 this	stationary	 three	dimensional	hypersurface,	described	by	 the	
coordinates	  ( x1 , x2 , x3 ) 	and	defined	by	its	length	element	 dσ 	according	to	:		
(97)																																																			  ds2 = f dx4

2 − dσ2 		

				If	we	 compare	 the	 choices	made	by	Weyl	with	Schwarzschild's	 approach,	 the	
latter	 carries	 out	 his	 calculation	 with	 a	 coordinate	 r	 which	 is	 in	 fact	 his	
intermediate	quantity	R.	He	calculates	the	function	f	as	well	as	the	expressions	of	
the	three	other	metric	potentials.		

	

	Fig.31	:	Result	of	the	calculation	of	the	potential	  
g44 = f 		[21].	

Like	 Schwarzschild,	 he	 makes	 appear	 what	 he	 calls	 the	 gravitational	 radius	
associated	to	a	mass	m.		His	metric	can	be	summarized	as:		

(98)								

  

ds2 = 1− 2a

r
⎛
⎝⎜

⎞
⎠⎟

dt2 − dr 2

1− α
r

− r 2 ( dϑ 2 + sin2ϑ dϕ 2 ) = 1− 2a

r
⎛
⎝⎜

⎞
⎠⎟

dt2 − dσ 2 		
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With	the	3D	hypersurface	11	defined	by	the	metric:		

(99)																																							

  

dσ 2 = dr 2

1− 2 a

r

+ r 2 ( dϑ 2 + sin2ϑ dϕ 2 ) 		

			But	Weyl	is	not	naive	enough	to	consider	that	this	solution	could	make	physical	
sense	for	r	<	2a,	where	the	length	element	would	cease	to	be	real.	This	variable	r	
(which	is	not	the	same	as	the	one	in	the	Schwarzschild	paper)	corresponds	to	a	
ray	vector	with	coordinates	  ( x1 , x2 , x3 ) .	It	is	a	3-dimensional	hypersurface	which	
we	know	"exists"	only	for	r	>	2a.	Weyl	will	therefore	push	further,	to	pierce	the	
secret	of	 its	geometry,	and	more	precisely	of	 its	 topology.	On	 these	 three	space	
coordinates	he	can	always	delete	one	of	them.	So	he	writes:		

	

	

Fig.	32	:	The	analysis	of	the	topology	of	the	3D	hypersurface	by	Weyl	

																																																								
11	We	recognize	the	metric	of	our	"3D	diabolo"	from	the	beginning	of	the	article.	
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Then	he	weites:		

- In	 order	 to	 determine	 the	 geometry	which	 is	 characterized	 by	 the	
form	of	the	metric	giving	 	  dσ

2 	,	we	will	project	 in	a	corresponding	
plane	à	  x3 = 0 	.	If	we	introduce	the	polar	coordinates:		
	

  

x1 = r cosϑ x2 = r sinϑ

dσ2 = hdr 2 + r 2dϑ2

	

Ce	qui	lui	donne	:		

  
dσ2 = 1− 2a

r
⎛
⎝⎜

⎞
⎠⎟

dr 2 + r 2dϑ2 	

				In	the	following,	 it	does	exactly	what	we	did	for	the	3D	diabolo,	 i.e.	 it	sets	the	
angle	ϑ 	to	determine	the	equation	of	the	meridian,	which	gives	it	the	differential	
equation:		

(100)																																																		
  
dr 2 + dz2 = 1− 2a

r
⎛
⎝⎜

⎞
⎠⎟

dr 2 	

Whose	solution	is:		

(101)																		  z = 8a ( r − 2 a ) 			or			
  
r = 2 a + z 2

8a
= Rs +

z 2

4Rs
	

							We	find	the	equation(19)	of	the	lying	parabola.	The	hypersurface	is	thus	a	"3D	
diabolo"	 which	 is	 the	 projection	 of	 the	 3D	 hypersurface	 in	 a	 Euclidean	 space	

  ( x1 , x2 , x3 ) .	And		Weyl	adds	:		

- Die	 projektion	 bedekt	 das	 äubere	 doppelt	:	 This	 projection	 covers	
twice	 (doppelt	)	 the	 portion	 of	 space	  r > 2 a ,	das	 innere	überhaupt	
nicht	:	but	this	(3D)	structure	definitively	does	not	fit	the	portion	of	
space	  r < 2 a 12	.	 BeI	 natürlicher	 analytischer	 Fortsetzung	 wird	 also	
der	wirkliche	Raum	 in	dem	zur	Darstellung	benuntzen	Koordinaten	
der	xi	das	durch	  r ≥ 2a 	gekennziechnete	Gebeit	dopplet	überdecken	:		
In	a	natural	analytical	extension,	 the	real	space	 in	 the	coordinates	
used	 for	 the	 representation	 of	 the	 coordinate	 xi	 of	 the	 point	
correspond	 two	points	 of	 the	3D	hypersurface.	 	On	 this	 sphere	of	
radius	2a,	which	makes	the	junction	between	these	two	coverings,	
is	located	the	mass.					
	

	Là	on	voit	poindre	une	 idée	 tout	à	 fait	extraordinaire,	assimilant	 les	masses	à	
des	singularités	topologiques.	On	se	rappellera	que	la	topologie,	à	cette	époque,	

																																																								
12	On	dirait	aujourd’hui	:	cette	hypersurface	3D	constitue	le	revêtement	à	deux	
feuillets	de	la	portion	d’un	espace	Euclidien	3	extérieur	à	une	sphère	de	rayon	2a.		
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est	en	train	de	naître	en	tant	que	discipline	mathématique.	Les	surfaces	fermées	
régulières	2D	sont	au	nombre	de	quatre.	On	a	la	sphère,	le	tore,	puis	la	bouteille	
de	Klein	et	 la	surface	de	Boy.	 	 	Précisos	que	Félix	Klein	invente	sa	bouteille	en	
1882,	 tandis	 que	Werner	 Boy,	 élève	 de	 Hilbert,	 	 créera	 sa	 propre	 surface	 en	
1902.	Comme	Schwarzschild	ce	dernier	s’engage	à	35	ans,	dès	l’entrée	en	guerre	
de	l’Allemagne,	en	juillet	1914		et	est	tué	en	France,	où	il	repose,	en	septembre	
de	la	même	année.		

				Weyl	 (who	 also	 joined	 the	 army,	 but	 was	 discharged	 for	 health	 reasons)	
continued	his	analysis	of	the	3D	hypersurface.	He	is	thus	the	first	to	introduce	the	
isotropic	form	of	the	metric.		

	

	

Fig.	33	:	Isotropic	form	of	the	Schwarzschild	metric.	

	

				His	variable	r	is	not	the	previous	one.	Its	formula	(12)	corresponds	to	equation	
(6.69)	 of	 reference	 [18].	 The	 last	 expression	 represents	 the	 linear	 expansion	
coefficient	(lineare	Vergröberungsverhältnis).		

					It	 is	 clear	 that	 Weyl	 has	 perfectly	 integrated	 the	 fact	 that	 the	 various	
coordinates	are	only	representations	of	the	objects	defined	by	their	metrics	and	
that	the	only	object	endowed	with	an	intrinsic	reality	(invariant	by	any	change	of	
coordinates)	 is	 the	 element	 of	 length	 s	 .	 These	 successive	 choices	 allow	 us	 to	
discover	 their	 topology.	Thus,	 in	1917	 is	 the	 first	 to	discover	 that	 the	geometry	
discovered	by	Schwarzschild	is	non-contractile.		
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The	P-symmetry	that	goes	with	the	passage	of	the	throat	sphere.		

					Weyl	 thus	 creates	 this	 concept	 of	 a	 representation	 space	 and	 a	 two-sheet	
covering	 of	 a	 manifold.	 The	 homologous	 points	 of	 these	 two	 four-dimensional	
sheets	can	thus	be	identified	using	the	same	coordinates	xi.	We	can	consider	four	
points	 in	 the	 vicinity	 of	 a	 point	 of	 coordinates	 xi	 which	 form	 a	 tetrahedron	
consisting	 of	 four	 equilateral	 triangles	 having	 two	 common	 vertices.	 We	 can	
define	a	positive	orientation	by	defining	a	direction	of	 travel	of	 these	 triangles,	
considered	 as	 positive.	 This	 one	 defines	 a	 normal	 vector.	 The	 following	 figure	
shows	what	happens	to	this	set	of	points	when	they	cross	the	throat	sphere.	The	
tetrahedron	 with	 black	 edges	 is	 supposed	 to	 belong	 to	 one	 of	 the	 two	
tridimensional	layers	of	the	object.	Let	one	of	its	faces	ABC,	the	positive	direction	
of	travel,	arbitrary,	being	indicated	by	arrows.	The	tetrahedron	with	the	shaded	
edges	 A'B'C'	 belongs	 to	 the	 other	 layer.	 If	 we	 bring	 these	 two	 objects	 into	
coincidence	we	can	see	that	the	two	directions	are	the	opposite	of	each	other	

	

	

	

	

Fig.34	:	 Reversal	 of	 the	 orientation	 of	 a	 tetrahedron	 after	 crossing	 the	 throat	
sphere.		

	

												We	deduce	that	any	object	crossing	the	throat	sphere	of	the	Schwarzschild	
geometry	undergoes	a	P-symmetry.		

	

Free	fall	time	or	escape	time	in	Schwarzschild	geometry.		

						The	black	hole	model	is	based	on	the	complete	decoupling	of	the	proper	time	
of	 objects	 accompanying	 the	 implosion	 phenomenon	 that	 this	 geometry	 is	
supposed	 to	 describe	 and	 the	 proper	 time	 of	 an	 observer	 located	 at	 infinity,	
observing	the	phenomenon,	which	for	him	is	supposed	to	last	an	infinite	time.	Let	
us	consider	radial	trajectories.	We	have	(keeping	the	Schwarzschild	notation)		:		
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(102)																

  

ds2 = 1−
Rs
R

⎛
⎝⎜

⎞
⎠⎟

dx4
2 − dR2

1−
Rs
R

s = cτ x4 = ct 		

The	Lagrange	equations	give:		

(103)																																																								
  

dτ
dR

= ± 1
c

R
Rs
	

	(104)																																																				
  

dt
dR

= ± 1
c

R
R - Rs

	

The	integration	gives	the	diagram:			

	

	

	

Fig.	35	:	The	free	fall	time.		

	

The	witness	particle	reaches	the	throat	sphere	in	a	finite	time,	in	terms	of	its	own	
time,	but	this	path	corresponds	to	an	infinite	time	for	a	distant	observer.		

	

The	Kerr	metric.		

					In	1963	Roy	Kerr	constructed	the	solution	of	the	Einstein	equation	without	a	
second	 member	 [20],	 describing	 a	 portion	 of	 empty	 space,	 invariant	 by	 time	
translation	and	by	action	of	the	group	O(2).		
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(105)	

  

ds2 = 1 − 2 mρ
ρ2 + a2 cos2θ

⎛
⎝⎜

⎞
⎠⎟

c2dt2 − ρ2 + a2 cos2θ
ρ2 + a2 − 2 mρ

dρ2 − ρ2 + a2 cos2θ( )dθ 2

− ρ2 + a( )sin2θ + 2mρ a2 sin4θ
ρ2 + a2 cos2θ

⎡

⎣
⎢

⎤

⎦
⎥dϕ 2 − 4mρ asin2θ

ρ2 + a2 cos2θ
c dt dϕ

	

					The	parameter	a	figures	the	importance	of	the	rotation.	If	it	is	zero	we	find	the	
Schwarzschild	metric.	In	the	plane	this	metric	becomes:		

(106)	

  

ds2 = 1 − 2 m
ρ

⎛
⎝⎜

⎞
⎠⎟

c2dt2 − ρ2

ρ2 + a2 − 2 mρ
dρ2

− ρ2 + a( ) + 2m a2

ρ
⎡

⎣
⎢

⎤

⎦
⎥dϕ 2 − 4m a

ρ
c dt dϕ

	

					Consider	two	rays	of	light	emitted	tangentially	to	a	trajectory	at	ρ 	constant	:		

(107)						
  
0 = 1 − 2 m

ρ
⎛
⎝⎜

⎞
⎠⎟

c2dt2 − ρ2 + a( ) + 2m a2

ρ
⎡

⎣
⎢

⎤

⎦
⎥dϕ 2 − 4m a

ρ
c dt dϕ 	

					The	speed	of	light	then	takes	two	different	values,	depending	on	the	direction	
of	emission:		

(108)																									
  
vϕ = c 2ma ± 18m2a2 +2mρ3 − ρ2a2 − ρ4⎡

⎣⎢
⎤
⎦⎥ 		

				This	phenomenon	is	classically	interpreted	as	a	phenomenon	of	dragging	of	the	
coordinate	system	(frame-dragging)	and	is	not	without	evoking	the	idea	of	Ernst	
Mach	 according	 to	which	matter	 and	 space	would	be	 closely	 linked.	These	 two	
values	of	the	photon	velocity	is	related	to	the	presence	of	a	cross	term	in		 dϕdt 	
The	 presence	 in	 the	 stationary	 solution	 of	 such	 a	 cross	 term	was	 envisaged	 in	
1916	by	the	Dutchman	J.	Droste13	[21],	but	immediately	rejected	by	this	author	as	
unphysical.			

				Let	us	digress	for	a	moment.	Droste,	a	student	of	Lorentz,	presented	this	work	
on	May	27,	1916,	he	was	thirty	years	old.		

	

																																																								
13	https://fr.wikipedia.org/wiki/Johannes_Droste	
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Fig.36	:	Johannes	Droste	(1886-1963)	

	

He	starts	with	the	same	assumptions	as	Schwarzschild,	and	here	is	his	result:	

	

Fig.37	:	Droste	metric	.	

				The	result	is	absolutely	identical	to	Schwarzchild's.	In	this	very	complete	article,	
everything	 is	 explained.	 The	 expressions	 of	 the	 geodesics	 and	 the	 rest.	 Later	
Droste	 will	 say	 that	 when	 he	 presented	 his	 paper,	 he	 did	 not	 know	 that	
Schwarzschild	had	just	solved	this	problem	three	months	earlier.		

But	let	us	return	to	Roy	Kerr's	work:		

				Since	we	 admit	 in	 his	 solution	 the	 presence	 of	 an	 azimuthal	 frame-dragging,	
what	do	we	obtain	if	we	consider	in	a	solution	invariant	by	action	of	O(3)	a	radial	
frame-dragging.	This	results	in	the	presence	of	a	cross	term	in	dRdt.		

Keeping	the	Schwarzschid	notations,	 this	corresponds	to	the	Eddington-	metric,	
which	is	deduced	from	the	Schwarzschild	metric	by	the	change	of	variable	

	(109)																																				
  
t = t ' + δ

Rs
c

Ln ( R
Rs

− 1) δ = ± 1 		

		Which	gives:	

(110)						

  
ds2 = 1−

Rs
R

⎛
⎝⎜

⎞
⎠⎟

c2dt' 2 − 1+
Rs
R

⎛
⎝⎜

⎞
⎠⎟

dR2 − R2( dθ2 + sin2dϕ2 ) + 2δ
Rs
R

c dt' dR 	
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This	 situation	 was	 recently	 studied	 in	 [22].	 The	 transit	 time	 along	 a	 radial	
trajectory	becomes:		

(111)			 ν = − 1 	:		centripetal	trajectory;		 ν = 1 	:		centrifugal	path.	

																							

  

dt'
dR

= 1
c

λ R − δ νRs λ2 − 1+
Rs
R

− h2

R2 +
h2Rs
R3

ν( R − Rs ) λ2 − 1+
Rs
R

− h2

R2 +
h2Rs
R3

δ = ± 1
ν = ± 1

	

For	radial	paths	(	h	=	0	)		

(112)	

  

dt'
dR

= 1
c

λ R − δ νRs λ2 − 1+
Rs
R

ν( R − Rs ) λ2 − 1+
Rs
R

δ = ± 1
ν = ± 1

	

Quand	R	tend	vers	Rs	,	cette	contribution	du	temps	devient	infini	if	 δ ν < 0 	

In	the	conditions:		

(113)																																															
	   

dt'
dR
!
ν
c

R − δ νRs
R − Rs

	

			It	 is	 therefore	 possible	 to	 couple	 two	metric	 solutions,	 two	 sheets	 connecting	
according	 to	 the	sphere	of	groove,	playing	 then	 the	role	of	one-way	membrane,	
surface	 that	 the	 masses	 can	 cross	 only	 in	 one	 direction.	 Let's	 consider	 the	
following	pair	 of	metrics.	 In	 the	 first	 one,	 the	masses	 can	only	 enter	 the	 throat	
sphere	 in	 a	 short	 time,	 but	 can	 only	 emerge	 in	 an	 infinite	 time,	 which	 is	
equivalent	to	an	impossibility.		The	opposite	situation	with	respect	to	the	second	
layer,	 defined	 by	 the	metric	 (91).	 Globally	 the	 transit,	 with	 entry	 into	 the	 first	
layer	 and	 emergence	 into	 the	 second,	 takes	 place	 in	 a	 finite	 time.	 The	 reverse	
transit	is	impossible.		

	

	(114)

	
  
ds2 = 1−

Rs
R

⎛
⎝⎜

⎞
⎠⎟

c2dt' 2 − 1+
Rs
R

⎛
⎝⎜

⎞
⎠⎟

dR2 − R2( dθ2 + sin2dϕ2 ) − 2
Rs
R

c dt' dR 	

(115)	
  
ds2 = 1−

Rs
R

⎛
⎝⎜

⎞
⎠⎟

c2dt' 2 − 1+
Rs
R

⎛
⎝⎜

⎞
⎠⎟

dR2 − R2( dθ2 + sin2dϕ2 ) + 2
Rs
R

c dt' dR 	

	

A	 star	 in	 implosion	 would	 thus	 see	 its	 mass	 transferred	 into	 a	 second	 sheet,	
according	to	a	finite	time.		
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Epilog.		

Frankfurt	 is	 the	 birthplace	 of	 Karl	 Schwarzschild.	 Every	 year	 a	 "Schwarzschild	
Colloquium"	 is	 held	 at	 the	 Advanced	 Studies	 Institute	 in	 Frankfurt,	 devoted	 to	
questions	 of	 cosmology	 and	 astrophysics.	 In	 2017	 the	 organizers	 of	 the	
colloquium	 had	 invited	 the	 cosmologist	 Juan	 Malcadena,	 member	 of	 the	 	 the	
Advanced	Studies	 Institute	 in	Princeton,	USA.	He	began	his	conference,	devoted	
to	the	latest	advances	in	the	field	of	thermodynamics	of	black	holes	by	saying	:		

-	 In	 1916,	 when	 Karl	 Schwarzschild	 published	 his	 paper,	 the	 scientific	
community	had	to	spend	some	time	before	certain	points	were	clarified.	Today	
these	problems	have	been	well	mastered.	
	

To	show	the	way	the	community	of	specialists	perceives	these	questions,	since	the	
sixties,	 the	 simplest	way	 is	 to	 reproduce	 the	main	 stream	 interpretation	 as	 it	 is	
presented	 in	 page	 223	 of	 the	 reference	 [18],	 and	which	 translates	 a	 unanimous	
consensus	within	the	community	of	cosmologists	of	today	and	the	partisans	of	the	
Black	Hole	model.		
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Fig.44	:	Standard	interpretation	of	the	Schwarzschild	metric	

	

This	present	article	shows	that	this	view	should	be	reconsidered.	
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