§31.3. BEHAVIOR OF SCHWARZSCHILD COORDINATES AT r = 2M 823

In every local Lorentz frame this will be a sum of products of curvature components, At r = 0 the curvature is
and it will have the same value 48M2/r. Thus, in every local Lorentz frame, infinite

including the traveler’s, Riemann will have one or more infinite components as

r— 0; i.e., tidal forces will become infinite.

Exercise 31.1. TIDAL FORCES ON INFALLING EXPLORER EXERCISE

(a) Carry out the details of the derivation of the Riemann tensor components (31.6).
(b) Calculate, roughly, the critical mass M, such that, if M > M_; the explorer’s body

erit
(a human body made of normal flesh and bones) can withstand the tidal forces at r = 2M,
but if M < M, his body is mutilated by them. [Answer: M ~ 1000M,. Evidently, if

crit
M ~ M, the physicist should transform himself into an ant before taking the plunge! For
details see §32.6.]

§31.3. BEHAVIOR OF SCHWARZSCHILD
COORDINATES AT r = 2M

Since the spacetime geometry is well behaved at the gravitational radius, the singular ~ Nature of the coordinate
behavior there of the Schwarzschild metric components, g, = —(1 — 2M/r) and Pathology at r = 2M:
g, = (1 —2M/r)™!, must be due to a pathology there of the Schwarzschild coordi-

mates 7, 1, 0, ¢. Somehow one must find a way to get rid of that pathology—i.e., one
must construct a new coordinate system from which the pathology is absent. Before
doing this, it is helpful to understand better the precise nature of the pathology.
The most obvious pathology at r = 2M is the reversal there of the roles of 7 and (1) ¢ and r reverse roles as
r as timelike and spacelike coordinates. In the region » > 2M, the ¢ direction, 3/0t, timelike and spacelike
is timelike (g,, < 0) and the r direction, d/0r, is spacelike (g, > 0); but in the region coordinates
r < 2M, 9/0t is spacelike (g,, > 0) and d/0r is timelike (g, < 0).
What does it mean for r to “change in character from a spacelike coordinate to
a timelike one™? The explorer in his jet-powered spaceship prior to arrival at r = 2M
always has the option to turn on his jets and change his motion from decreasing

7 (infall) to increasing r (escape). Quite the contrary is the situation when he has
once allowed himself to fall inside » = 2M. Then the further decrease of r represents

the passage of time. No command that the traveler can give to his jet engine will

turn back time. That unseen power of the world which drags everyone forward

willy-nilly from age twenty to forty and from forty to eighty also drags the rocket

in from time coordinate r = 2M to the later value of the time coordinate r = 0.

No human act of will, no engine, no rocket, no force (see exercise 31.3) can make
time stand still. As surely as cells die, as surely as the traveler’s watch ticks away

“the unforgiving minutes,” with equal certainty, and with never one halt along the
way, r drops from 2M to 0.

Atr = 2M, where r and ¢ exchange roles as space and time coordinates, g,, vanishes
while g,, is infinite. The vanishing of g,, suggests that the surface r = 2M, which




(2) the region r = 2M,
—o0 < t< 4+ is
two-dimensional rather
than three

(3) radial geodesics reveal

that the regions r = 2M,

= oo are “finite”
parts of spacetime
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appears to be three-dimensional in the Schwarzschild coordinate system (—oo < t <
+00, 0< 0 <7 0< ¢ < 27m) has zero volume and thus is actually only two-di-
mensional, or else is null; thus,

f |81: 80680l 2 dt db do = 0;
M

r=2

)

(r = 2M,t = const)

(31.8)
18008 4s"/2 db dp = 4m(2M)2.

The divergence of g,, at r = 2M does not mean that r = 2M is infinitely far from
all other regions of spacetime. On the contrary, the proper distance from r = 2M
to a point with arbitrary r is

[Hr — 2M)]V2 4 2MIn |(r/2M — 1)V2 4 (r/2M)V/2|

. R when r > 2M,
f Ig"|l/2 dr = (319)
oM —2Mcot™[rV/2/2M — V2] — [rQM — r)]V2

when r < 2M,

which is finite for all 0 < r < co.

Just how the region » < 2M is physically connected to the region r > 2M can
be discovered by examining the radial geodesics of the Schwarzschild metric. Focus
attention, for concreteness, on the trajectory of a test particle that gets ejected from

* _ the singularity at » = 0, flies radially outward through r = 2M, reaches a maximum

radius r,. (“top of orbit”) at proper time 7 = 0 and coordinate time ¢ = 0, and
then falls back down through r = 2M to r = 0. The solution of the geodesic equation
for such an orbit was derived in §25.5 and described in Figure 25.3. It has the “cycloid
form” (with the parameter 1 running from —= to +m),

r=—Tna(l + cosn), (31.10a)

N|»—-

T = (Fmax/8M)Y2(n + siny), (31.10b)
(rmax/zM — 1)V2 4 tan n/2)
("max/2M — 1)1/2 — tan (n/2)

() o+ () 0]

=2MIn

(31.10¢)

Figure 31.1 plots this orbit in the r, r-coordinate plane (curve F-F’-F"’), along with
several other types of radial geodesics.

Every radial geodesic except a “set of geodesics of measure zero” crosses the
gravitational radius at = 4 oo (or at t = — o0, or both), according to Figure 31.1

and the calculations behind that figure (exercises for the student! See Chapter 25).
One therefore suspects that all the physics at » = 2M is consigned to t = oo by

reason of some unhappiness in the choice of the Schwarzschild coordinates. A better

coordinate system, one begins to believe, will take these two “points at infinity” and
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Figure 31.1.
Typical radial geodesics of the Schwarzschild geometry, as charted in Schwarzschild coordinates (sche-
matic). FF'F" [see equations (31.10)] is the timelike geodesic of a test particle that starts at restat r = 5.2M

and falls straight in, arriving in a finite p proper time at the singularity r = 0 (zig-zag marking). The

unhappiness of the Schwarzschild coordinate system shows in two ways: (1) in the fact that ¢ goes to =

oo partway through the motion; and (2) in the fact that 7 thereafter decreases as v (not shown) continues
to increase. The course of the same trajectory prior to ¢ = 0 may be constructed by reflecting the diagram
in_the horizontal axis (“time inversion”). The time-reversed image of F"" marks the ejection of the test
ﬂ_[tlcie from the singularity. A4’4” is a timelike geodesic which comes in from r = +o0. BB’B” is the
null geodesic travelled by a photon that falls straight in (no summit; never at rest!). DD’D" is a spacelike
radial geodesic. So is CC’, but £'E” is timelike. Neither of the latter two ever succeed in crossing r = 2M.
(Unanswered questions about these geodesics will answer themselves in Figure 31.4, where the same
world lines are charted in a “Kruskal-Szekeres diagram™).

Described mathematically via equation (31.10), the geodesic F”| ... F';
at

FF'F" starts with ejection

1/2 r(ax T rax:‘ 1/2
=0atr=— = 1), e L
(r=has 2”M(zM '), (4M+ ) J Z(ZM)

it flies outward with increasing proper time . but decreasing coordinate time. /., until it reaches the
gravitational radiu$

P 3\1/2 4M 2M 1/2
r=2Matt= —o0, ‘r=—( “’“) cos“( —l)—rmu(l— ) ;
SM rmax rmu
it then continues to fly on outward, but with coordinate time now increasing from’r = — oo, until it

reaches its maximum radius
wr=rpnatt =0, 7 =0(event Fin diagram);
it then falls inward, with ¢ continuing to increase, until it crosses the gravitational radius again

T 34\1/2 aM IM\V/2
r=2Matt= +oo, T=+(r""“) cos“(———l)+rmu(l— )
8M r

max "'max

(event F’ in diagram);

and it finally falls on in with decreasing ¢ (but, of course, still increasing 7) to

r‘ 0 5 1/'.’r T r“B 1/2
o el . -5
CARR (3 - ) r77) a1

(event F” in diagram).
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variables 1 and v in which the line element has the form

| gl
(6.187) ‘ ds? = f2(u,0) (dv? — du®) — r*(d6* + sin® 0 de?) [

By the same procedure as above we find the radial coordinate veloeity
of light to be unity everywhere
RESE te g O B P PR

L du\* _
(6.188) (71?) =1

so long as f* has no zeros.  Thus in the , v coordinates no natural bound-
ary to light propagation can occur.

It is a simple task to obtain from (6.187) differential equations which
load to a transformation from r, ¢ to w, v coordinates and a nonzero
function f. The angular coordinates § and ¢ will not be changed, The
fundamental transformation equation for tho metric tensor,

at+ aL”
3 18C it
(6.189) gas dr® drf

and the line elements (6.53) and (6.187) lead to the following differential
equations to be solved

et 2m " o \? Ju \?
() -]
6.190)  — (1 . ‘-’)ﬂ)" _pe [(fl:) _ (%)] i

Note that the signs of » and v are not determined by these equations. To
simplify we introduce a new radial parameter £ and a function F(£) b\

WW{) £ =1+ 2mlog :7 J Q
/ 1 —2m/r

6.191 F(p) = —
v o
We have here assumed that a function f may be found which depends

only on r; this is a eritical point since an infinite number of transforma-
tl()n\ could lead fo the metrie Torm_(6.187), and only this assumption
lml to the IX form and also removes the coordinate singularity
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at r = 2m. The relations (6.190) now simplify to

av \? ou \* )
3199 ZEN L EZEY — BE
(6.192a) (61“) <6.r°) F(§)
ar\? du\?
3 109 o — it = -—WfE
(6.192b) (65) (35) F(&)

o du du dv dv
(6.192¢) 30 3E = 320 32

[f we add Egs. (6.192a) and (6.192b) and alternately add or subtract
twice (6.192¢), we obtain

i N DA du | du\?
I} —— Tl = \ as0 9t
(6.193a) (aIO + ()E) (6_{0 w0 af)

‘ i I\ 2 ou  ou\*
Y10 e e = — T s
(6.193b) (6.1’" ag) (017“ ()E)

Using a relative plus sign for the roots of (6.193a) and a relative minus
sign for the roots of (6.193b), we then obtain two equations (if we were

to use the same sign, the Jacobian of the transformation would vanish): ?/
s

* e

v Jdu <0 du

6.1¢ bl P Y = 2
(6.194) S = 5
which lead to

d*u ou R 9%
6.195 = = ey — =
(6.195) oz’ gg 0 9" gg? 0

Thus both w and v satisfy the wave equation in z° and ¢ [If we had
chosen the opposite roots in«(6.193), the same equation (6.195) would
have resulted.]

The general solution of the wave equation is an arbitrary twice-
differentiable function of £ 4+ £ Thus the solutions to (6.194) and
(6.195) are casily seen to be

v = h(&+ 2% + g(t — 29)
u = h(t+ 2% — g(¢ — 29

(6.196) |

where h and-g are to be determined. Now we substitute « and v from
(6.196) back into Eqgs. (6.192); Ea. (6.192¢) is antomatieallv caticfiad
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while (6.192a) and (6.192b) are equivalent and lead to
(6.197) —4h' (£ + 29¢ (¢ — 2°) = F(¥)

where a prime indicates differentiation with respect to the argument.
This is a remarkable equation that will lead to solutions for 4, g, and F
that are unique up to unimportant constants.

So far we have made no restrictions on the range of r in our trans-

formation. Now we must specify whether r is greater than or less than

2m, since in the two regions we shall have different transformation func-
tions which must be patched together at the boundary. We first con-
sider » > 2m, in which case F is positive from (6.191). To solve (6.197)
we differentiate with respect to £ and z° to obtain

Fo _ WG+ g"(E— o)
(6.198a) FGE) ~ RETF o) + 7 — 29
_h'(E+ ) ' =)
(6198b) 0= h/(E + xo) g'(s — Io)
Thus
(6.199) llog F(§)]" = 2[log h{t + %]’

We may treat £ and y = ¢ + z° as independent variables, which implies
that the two sides of (6.199) are functions of two independent variables
and must both be equal to some constant n. Thus from (6.199) and
(6.198b) we see that A, g, and F are exponential functions. We therefore
write the solution to (6.197) as

(6.200) h(y) = 4emv  g(y) = —3em  F(§) = n’e™*
where the arbitrary additive constants are chosen to be zero and the
multiplicative constants to be } for convenience. Note that the relative

sign of d g is negative, as dictated by F > 0. Now from (6.191),
(6.196), (6.200) we have the transformation

g ( * _ 1)™er cosh na?
U=z ) e cosh nx v Y= 2w
(6.201) v = (2— - 1) e sinh 7x° ,f: @{‘(4"'\7"

r l— lmq
2m‘
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It remains only to choose the arbitrary parameter n; to do this we

demand that f? have no zero or singularity at » = 2m, which requires

that 3 = 1/4m. (Then ds* will vanish only on the light cone.) The
“transformation is thus, finally,

0

r T
U= [z —1e'* cosh —
\/2m 4m

.

(6.202) v = «|—— — 1 e/4m sinh z
- 2m ' 4m
5 R T /
A 32m3e_r’,2m o a ,Z (/5% VoV T

r

The region of the wv plane defined by (6.202) for r > 2m is w > |v],
which is labeled O in Fig. 6.3.  Some special lines are of interest; for any
finite #° the boundary line r = 2m in the rt plane corresponds to the
point u = v = 0in the uv plane. Also we note that #* — « corresponds
tow = v and £ — — « corresponds to u = —v for any value of » > 2m.
For other points in O we invert the transformation (6.202)

0

v z
— 1) e/t — = tanh —
U 4m

.
6.203 ut — v =

( ) 2m
Thus lines of constant » and lines of constant z° form a mesh of inter-
secting hyperbolas and rays in O as shown in Fig. 6.3. As r approaches

Fig. 6.3

Kruskal coordinates with several lines of constant r
and ¢ shown. The regions O and O’ correspond to

r > 2m, while I and I’ correspond to r < 2m.

X°= 0 N X°= -0

2m si on veut que f soit régulier il faut prendre eta = 4m et on joue alors
«propriété» zéro puissance zéro =1l



Novikov coordinates:

(1) how constructed

(2) line element
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spread them out into a line in a New (7. fhew)-plane; and will squeeze the “line”
(r=2M, t from —o0 to +00) into a single point in the (7,qy. /pew)-plane. One is
the more prepared to accept this tentative conclusion and act on it because one has
already seen (equation 31.8) that the region covering the (6, ¢) 2-sphere at r = 2 M,
and extending from 1 = —o0 to 1 = + o0, has zero proper volume. What timelier

indication could one want that the “line” » = 2M, —o0 < 1 < o0, is actually a point?

§31.4. SEVERAL WELL-BEHAVED COORDINATE SYSTEMS

The well-behaved coordinate system that is easiest to visualize is one in which the
radially moving test particles of equations (31.10) remain always at rest (“comoving
coordinates”). Such coordinates were first used by Novikov (1963). Novikov attaches
a specific value of his radial coordinate, R*, to each test particle as it emerges from
the singularity of infinite tidal forces at » = 0, and insists that'the particle carry that
value of R* throughout its “cycloidal life”—up through r = 2M to r = r,,,, then
back down through r = 2M to r = 0. For definiteness, Novikov expresses the R*
value for each particle in terms of the peak point on its trajectory by

R* = (r,./2M — 1)1/2, (1.11)

As a time coordinate, Novikov uses proper time 7 of the test particles, normalized
so 7 = 0 at the peak of the orbit. Every particle in the swarm is ejected in such
a manner that it arrives at the summit of its trajectory (r = r,,,,, 7 = 0) at one and
the same value of the Schwarzschild coordinate time; namely, at t = 0.

Simple though they may be conceptually, the Novikov coordinates are related
to the original Schwarzschild coordinates by a very complicated transformation: (1)

combine equations (31.10b) and (31.11) to obtain n(r, R*); (2) combine n(r, R*) with
(31.10a) and (31.11) to obtain r(r, R*); (3) combine n(r, R*) with (31.10¢) and (31.11)
to obtain (7, R*). The resulting coordinate transformation, when applied to the
Schwarzschild metric (31.1), yields the line element

ds? = —dr? + (%)( P )2 dR* + r(d6? + sinf d¢?). (31.12a)

(“Schwarzschild geometry in Novikov coordinates™.) Here r is no longer a radial

coordinate; it is now a metric function #(r, R*) given implicitly by

L—+(R'2+1)

- [ r (r/2M)? ]1/2

2M ~ R*2 4+ 1

* = I'/2M 1/2
+ (R*? 4+ 1)¥2 cos 1[(—R‘2 " l) ]

(31.12b)

Figure 31.2 shows the locations of several key regions of Schwarzschild spacetime
in this coordinate system. The existence of two distinct regions with r = 0 (singulari-
ties) and two distinct regions with » —- oo (asymptotically flat regions; recall that
47r? = surface area!) will be discussed in §31.5.



Figure 31.2.

The Novikov coordinate system for Schwarzschild
spacetime (schematic). The dashed curves are curves of
constant r (recall: 47r* = surface area about center of
symmetry). The region shaded gray is not part of
spacetime: it corresponds to » < 0, a region that cannot
be reached because of the singularity of spacetime at
r=0. Notice that the “line” (r=2M, —ow <
t < + o) of the Schwarzschild coordinate diagram
(Figure 31.1) has been compressed into a point here,
in accordance with the discussion at the end of §31.3.

Although Novikov’s coordinate system is very simple conceptually, the mathe-
matical expressions for the metric components in it are rather unwieldy. Simpler,
more usable expressions have been obtained in a different coordinate system
(“Kruskal-Szekeres coordinates”) by Kruskal (1960), and independently by Szekeres
(1960).

Kruskal and Szekeres use a dimensionless radial coordinate u and a dimensionless
time coordinate v related to the Schwarzschild » and 7 by

u=(r/2M — 1)/2¢"/4M cosh (1/4M)
" when r > 2M, 31.13
v = (r/2M — )27 sinh (i/apy | ¥ T @1.13a)
u= (1 = r/2M)2e"/ 4 sinh (1/4M)
. 31.13b
b= (1 = 1/IM)V2er R ooch rrangy | TR T < 2M ( )

(Motivation for introducing such coordinates is given in Box 31.2.) By making’this
change of coordinates in the Schwarzschild metric (31.1), one obtains the following
line element: ;

ds? = 32M3/r)e ™ M(—dv? + du?) + r3(df? + sin%0 dp?) (31.14a)

(“Schwarzschild geometry in Kruskal-Szekeres coordinates™). Here r is to be regarded
as a function of v and v defined implicitly by

(r/2M — 1)e™2M — 32 _ 2 (31.14b)

[cf. equations (31.13)].
(continued on page 833)

Kruskal-Szekeres coordinates

| / '

"'\Vr\_/n D" / ~1

I/,
',/‘_,LI,\. ,.r( 0 (
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Box 31.2 MOTIVATION FOR KRUSKAL-SZEKERES COORDINATES"

A. EDDINGTON-FINKELSTEIN COORDINATES

The motivation for the Kruskal-Szekeres system begins by introducing a different
coordinate system, first devised by Eddington (1924).and rediscovered by Finkelstein
(1958). Eddington and Finkelstein use as the foundation of their coordinate system,
not freely falling particles as did Novikov, but freely falling photons. More par-
ticularly, they introduce coordinates U and ¥, which are labels for outgoing and
ingoing, radial, null geodesics. The geodesics are given by

ds? =0 = —(1 —2M/r)d* + (1 — 2M/r)~' dr2. .
Equivalently, outgoing geodesics are given by U = const, where
U=t-r% (la)
and ingoing geodesics are given by ¥ = const, where
T (1b)
Here r* is the “tortoise coordinate™ of §25.5 and Figure 25.4:

rr=r+2Mn|r/2M - 1|. (lc)
alias la coordonnée E dans Adler Schiffer Bazin equation 6.191

Ingoing Eddington-Finkelstein Coordinates—Adopt r and V as
coordinates in place of r and ¢
mais le détail du calcul n'est pas donné

The Schwarzschild metric becomes. /

ds? = —(1 — 2M/r)dV? + 2 dVdr + r2dR>2 (2)
The radial light cone, ds? = 0, has one leg
dV/dr =0, (3a)
and the other leg

dv _ p

& ST e

From this, and this alone, one can infer all features of the drawing.

*This box is based on Misner (1969a).

— _/
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r=2M is world line
of outgoing photons

Light cone

Ingoing Eddington-Finkelstein coordinates (one rotational degree of freedom
is suppressed: i.e.,  is set equal to 7/2). Surfaces of constant ¥, being ingoing
null surfaces, are plotted on a 45-degree slant, just as they would be in flat
spacetime. Equivalently, surfaces of constant

I=V—r=1t+2Mln|r/2M - 1|

are plotted as horizontal surfaces.

Outgoing Eddington-Finkelstein Coordinates—Adopt r and U as
coordinates in place of r and ¢

The Schwarzschild metric becomes

ds? = —(1 —2M/r)dU? — 2dUdr + r? d22. 4)
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Box 31.2 (continued)

The radial light cone, ds? = 0, has one leg

dU/dr = 0, (5)
and the other leg .
du 2
= — 2 < 5b
dr 1 —2M/r ©0)

From this, and this alone, one can infer all features of the drawing.

r=2M is world line &
of infalling photons

Outgoing Eddington-Finkelstein coordinates (one rotational degree of free-
dom is suppressed). (Surfaces of constant U, being outgoing null surfaces,
are plotted on a 45-degree slant, just as they would be in flat spacetime.)

\_ _J
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~

Notice that both Eddington-Finkelstein coordinate systems are better behaved at
the gravitational radius than is the Schwarzschild coordinate system; but they are
not fully well-behaved. The outgoing coordinates (U, r,0,¢) describe in a non-
pathological manner the ejection of particles outward from r = 0 through r = 2M;
but their description of infall through r = 2M has the same pathology as the de-
scription given by Schwarzschild coordinates (Figure 31.1). Similarly, the ingoing
coordinates (¥, r, 8, ¢) describe well the infall of a particle through r = 2M, but they
give a pathological description of outgoing trajectories. Moreover, the contrast
between the two diagrams seems paradoxical: in one the gravitational radius is made
up of world lines of outgoing photons; in the other it is made up of world lines
of ingoing photons! To resolve the paradox, one must seek another, better-behaved
coordinate system. [But note: because the ingoin ddington-Finklestein coordinates
describe infall so well, they are used extensivély in discussions of gravitational
collapse (Chapter 32) and black holes (Chapters 33 and 34).]

B. TRANSITION FROM EDDINGTON-FINKELSTEIN
TO KRUSKAL-SZEKERES

Perhaps one would obtain a fully well-behaved coordinate system by dropping
r from view and using U, ¥, as the two coordinates in the radial-time plane. The
resulting coordinate system is related to Schwarzschild coordinates by [see equations
(O]

+

2r', (6a)
2t (6b)

~ 2
QY

I

and the line element in terms of the new coordinates reads
ds? = —(1 — 2M/r)dU dV + r¥(df* + sin®6 dg?). (7

Contrary to one’s hopes, this coordinate system is pathological at r = 2M.

Second thoughts about the construction reveal the trouble: the surfaces U =
constant (outgoing null surfaces) used in constructing it are geometrically well-
defined, as are the surfaces V = constant (ingoing null surfaces); but the way of
labeling them is not. Any relabelihg.?t = F(U)and @ = G(V), will leave the surfaces
unchanged physically. What one needs is a relabeling that will get rid of the singular
factor 1 — 2M/r in the line element (7). A successful relabeling is suggested by the
equation

exp [(V — U)/4M] = exp (r*/2M) = (r/2M — 1) exp (r/2M), (8)

_/



~ ™

Box 31.2 (continued)

which follows from equations (6a) and (Ic). Experimenting with this relation quickly
reveals that the relabeling
_e—ﬁ/u{ = —(r/2M — 1)1/2er/4ue—t/4u, (9a)

et VM — (r/2M — 1)1/ 27/ 4Mpl/ 4 (9b)

o=l
If

will remove the offending 1 — 2M/r from the metric coefficients. In terms of these
new coordinates, the line element reads

ds® = —(32M3/r)e™"/?M dT dii + r*(df? + sin®f do?). (10a)

Here r is still defined by 4772 = surface area, but it must be regarded as a function
of ¥ and u: .

(r/2M — 1)e¥ = —77. (10b)

One can readily verify that this equation determines r uniquely (recall: » > 0!) in
terms of the product % [details in Misner (1969a)].

The coordinates, %, D, which label the ingoing and outgoing null surfaces, are null
coordinates; i.e.,

a/aﬁ'a/a‘ﬁ:gggzo, a/aﬁ'a/aﬁzgggzo
[see equation (10a)]. If one is not accustomed to working with null coordinates, it

is helpful to replace # and T by spacelike and timelike coordinates, u and v (Kruskal-
Szekeres coordinates!) defined by

W= (D= W) = (/2M — 1)V cosh (1/4M), (11a)
v= % (T + ) = (r/2M — 1)/2e"/¥ sinh (1/4M), (11b)

so that
dv? — du? = dv du. (12)

In terms of these coordinates, the line element has the Kruskal form (31.14), which
is fully well-behaved at the gravitational radius.

Although the Kruskal-Szekeres line element is well behaved at r = 2M, the
transformation (11) from Schwarzschild to Kruskal-Szekeres is not; it becomes
meaningless (¥ and v “imaginary”) when one moves from r > 2M to r < 2M. Of
course, this is a manifestation of the pathologies of Schwarzschild coordinates. By
trial and error, one readily finds a new transformation, to replace (11) at r < 2M,
leading from Schwarzschild to Kruskal-Szekeres coordinates:

u= (1 —r/2M)¥2e"/*¥ ginh (1/4 M), (11¢)
v= (1 —r/2M)Y2e"/*M cosh (1/4M). (11d)
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§31.5. RELATIONSHIP BETWEEN KRUSKAL-SZEKERES
¢ COORDINATES AND SCHWARZSCHILD COORDINATE?}

In the Kruskal-Szekeres coordinate system, the singularity » = 0 is located at Kruskal-Szekeres coordinates

v2 — u? = 1. Thus there are actually two singularities, not one; both reveal that Schwarzschild
spacetime has two “r = 0

singularities”” and two
v=+(1+u®)"2and v = —(1 + u?)/2 correspond to r = 0! (31.15) "'r — oo exterior regions’’

This is not the only surprise that lies hidden in the Kruskal-Szekeres line element
(31.14). Notice also that r > 2M (the region of spacetime far outside the gravitational
radius) is given by u? > v® Thus there are actually two exterior regions*; both

u> +|v| and u € —|v| correspond to r > 2M! (31.16)

How can this be? When the geometry is charted in Schwarzschild coordinates,
it contains one singularity and one exterior region; but when expressed in Kruskal-
Szekeres coordinates, it shows two of each. The answer must be that the Schwarzs-
child coordinates cover only part of the spacetime manifold; they must be only a
local coordinate patch on the full manifold. Somehow, by means of the coordinate
transformation that leads to Kruskal-Szekeres coordinates, one has analytically
extended the limited Schwarzschild solution for the metric to cover all (or more
nearly all) of the manifold.

To understand this covering more clearly, transform back from Kruskal-Szekeres
coordinates to Schwarzschild coordinates (see Figure 31.3). The transformation
equations, as written down in (31.13) were valid only for the quadrants u > [v]
[equation (31.13a)] and v > |u| [equation (31.13b)] of Kruskal coordinates. Denote
these quadrants by the numerals I and II; and denote the other quadrants by III
and IV (see Figure 31.3). In the other quadrants, one can also transform the Kruskal-
Szekeres line element (31.14) into the Schwarzschild line element (31.1); but slightly
different transformation equations are needed. One easily verifies that the following
sets of transformations work:

M u=(r/2M — 1)V2e"/4M cosh (1/4M) (31.17a) Transformation between
; , LG L.17a)  Schwarzschild coordinates
- — 1)1/ 2p7/4M

v=(r/2M 1)7%er"*¥ sinh (1/4M) and Kruskal-Szekeres
u= (1 — r/2M)2e" ¥ sinh (1/4M) coordinates

(I1) { - : (31.17b)
v=(1—r/2M)"2¢"/*¥ cosh (1/4M)
u= —(@r/2M — 1)V2e"/ M cosh (1/4M B

(111) ( ) 5 . « ), (31.17¢)
v = —(r/2M — 1)Y/2¢"/4M sinh (t/4M)
u= —(1 —r/2M)Y/2e"/4M ginh (t/4M

(1v) e e iy (31.17d)
v=—(1—r/2M)V2e"*¥ cosh (1/4M)

*The global structure of the Schwarzschild geometry, including the existence of two singularities and
two exterior regions, was first discovered by Synge (1950). See Box 31.1.
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Figure 31.3.

The transformation of the Schwarzschild vacuum geometry between Schwarzschild and Kruskal-Szekeres
coordinates. Two Schwarzschild coordinate patches 1, II. and II1, IV (illustrated in the upper and lower
portions of Figure 31.5.a) are required to cover the complete Schwarzschild geometry, whereas a single
Kruskal-Szekeres coordinate system suffices. The Schwarzschild geometry consists of four regions I, 11,
111, V. Regions I and III represent two distinct, but identical, asymptotically flat universes in which
r > 2M: while regions Il and IV are two identical, but time-reversed, regions in which physical singulari-
ties (» = 0) evolve. The transformation laws that relate the Schwarzschild and Kruskal-Szekeres coordi-
nate systems to each other are given by equations (31.17) and (31.18). In the Kruskal-Szekeres u,v-plane,
curves of constant r are hyperbolae with asymptotes u = v, while curves of constant ¢ are straight
lines through the origin.

The inverse transformations are

(r/2M — 1)e™2¥ = 2 — v? in 1, 11, 111, IV; (31.18a)

4M tanh~Y(v/u) in I and III,

= 31.1
4M tanh~Y(u/v) in II and IV. (31.18b)

t

These coordinate transformations are exhibited graphically in Figure 31.3. Notice
that two Schwarzschild coordinate patches, I, 11, and III, 1V, are required to cover
the entire Schwarzschild geometry; but a single Kruskal coordinate system suffices.
Schwarzschild patch I, 11, is divided into two regions—region I, which is outside
the gravitational radius (r > 2M), and region II, which is inside the gravitational
radius (r < 2M). Similarly, Schwarzschild patch III, IV, consists of an exterior
region (III) and an interior region (IV).
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Figure 31.4.

(a) Typical radial timelike (4, E, F), lightlike (B), and spacelike (C, D) geodesics of the Schwarzschild
geometry, as seen in the Schwarzschild coordinate system (schematic only). This is a reproduction of
Figure 31.1.

(b) The same geodesics, as seen in the Kruskal-Szekeres coordinate system, and as extended either to
infinite length or to the singularity of infinite curvature at r = 0 (schematic only).

Equations (31.18) reveal that the regions of constant » (constant surface area) are
hyperbolae with asymptotes u = v in the Kruskal-Szekeres diagram, and that
regions of constant ¢ are straight lines through the origin. '

Several radial geodesics of the complete Schwarzschild geometry are depicted in
the Kruskal-Szekeres coordinate system in Figure 31.4. Notice how much more
reasonable the geodesic curves look in Kruskal-Szekeres coordinates than in
Schwarzschild coordinates. Notice also that radial, lightlike geodesics (paths of radial
light rays) are 45-degree lines in the Kruskal-Szekeres coordinate system. This can
be seen from the Kruskal-Szekeres line element (31.14), for which du = *+dv guar-
antees ds = 0. Because of this 45-degree property, the radial light cone in a
Kruskal-Szekeres diagram has the same form as in the space-time diagram of special
relativity. Any radial curve that points “generally upward™ (i.e., makes an angle of
less than 45 degrees with the vertical, v, axis) is timelike; and curves that point
“generally outward” are spacelike. This property enables a Kruskal-Szekeres diagram
to exhibit easily the causality relation between one event in spacetime and another
(see exercises 31.2 to 31.4).

Properties of the
Kruskal-Szekeres coordinate
system
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EXERCISES

Exercise 31.2. NONRADIAL LIGHT CONES

Show that the world line of a photon traveling nonradially makes an angle less than 45
degrees with the vertical v-axis of a Kruskal-Szekeres coordinate diagram. From this, infer
that particles with finite rest mass, traveling nonradially or radially, must always move
“generally upward” (angle less than 45 degrees with vertical v-axis).

Exercise 31.3. THE CRACK OF DOOM
Use a Kruskal diagram to show the following-

(a) If a man allows himself to fall through the gravitational radius r = 2M, there is no
way whatsoever for him to avoid hitting (and being killed in) the singularity at » = 0.

(b) Once a man has fallen inward through r = 2M, there is no way whatsoever that he
can send messages out to his friends at » > 2M, but he can still receive messages from them
(e.g., by radio waves, or laser beam, or infalling “CARE packages™).

Exercise 31.4. HOW LONG TO LIVE? .

Show that once a man falling inward reaches the gravitational radius, no matter what he
does subsequently (no matter in what.directions, how long, and how hard he blasts his rocket
engines), he will be pulled into the singularity and killed in a proper time of

7T < Tpax = ™M = 1.54 X 1073(M /M) seconds. (31.19)

[Hint: The trajectory of longest proper time lapse must be a geodesic. Use the mathematical
tools of Chapter 25 to show that the geodesic of longest proper time lapse between r = 2M
and r = 0 is the radial geodesic (31.10a), with r_, = 2M, for which the time lapse is 7M.]

Exercise 31.5. EDDINGTON-FINKELSTEIN AND KRUSKAL-SZEKERES COMPARED
Use coordinate diagrams to compare the ingoing and outgoing Eddington-Finkelstein coor-
dinates of Box 31.2 with the Kruskal-Szekeres coordinates. Pattern the comparison after that
between Schwarzschild and Kruskal-Szekeres in Figures 31.3 and 314.

Exercise 31.6. ANOTHER COORDINATE SYSTEM

Construct a coordinate diagram for the U, 7, 4, ¢ coordinate system of Box 31.2 [equations
(6) and (7)]. Show such features as (1) the relationship to Schwarzschild and to Kruskal-
Szekeres coordinates; (2) the location of r = 2M; and (3) radial geodesics.

§31.6. DYNAMICS OF THE SCHWARZSCHILD GEOMETRY

What does the Schwarzschild geometry look like? This question is most readily
answered by means of embedding diagrams analogous to those for an equilibrium
star (§23.8; Figure 23.1; and end of Box 23.2) and for Friedmann universes of
positive and negative spatial curvature [equations (27.23) and (27.24) and Box 27.2].

Examine, first, the geometry of the spacelike hypersurface v = 0, which extends
from u = +00 (r = ) into u =0 (r = 2M) and then out to u = —o0 (r = ).
In Schwarzschild coordinates this surface is a slice of constant time, / = 0 [see
equation (31.18b)]; it is precisely the surface for which an embedding diagram was
calculated in equation (23.34b). The embedded surface, with one degree of rotational
freedom suppressed, is described by the paraboloid of revolution

r=2M+ z2/8M (31.20)



Ny

(a)

=

Figure 31.5.

(a) The Schwarzschild space geometry at the “moment of time” 1 = v = 0, with one degree of rotational
freedom suppressed (¢ = 7/2). To restore that rotational freedom and obtain the full Schwarzschild
3-geometry, one mentally replaces the circles of constant 7 = (¥* + 72)!/? with spherical surfaces of area
4772, Note that the resultant 3-geometry becomes flat (Euclidean) far from the throat of the bridge in
both directions (both ‘“‘universes™).

(b) An embedding of the Schwarzschild space geometry at “time” ¢ = v = 0, which is géometrically
identical to the embedding (a), but which is topologically different. Einstein’s field equations fix the
local geometry of spacetime, but they do not fix its topology; see the discussion at end of Box 27.2.
Here the Schwarzschild “wormhole” connects two distant regions of a single, asymptotically flat universe.
For a discussion of issues of causality associated with this choice of topology, see Fuller and Wheeler
(1962). :

in the flat Euclidean space with metric
do? = dF? + dz% + F? do>. (3121)

(See Figure 31.5.)
Notice from the embedding diagram of Figure 31.5,a, that the Schwarzschild




The 3-surface v =t =0 is a
“‘wormhole’’ connecting two
asymptotically flat universes,
or two different regions of
one universe

Schwarzschild geometry is
dynamic in regions r < 2M

Time evolution of the
wormhole: creation;
expansion; recontraction; and
pinch-off

Communication through the
wormhole is impossible: it
pinches off too fast
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geometry on the spacelike hypersurface r = const consists of a bridge or “wormhole”
connecting two distinct, but identical, asymptotically flat universes. This bridge is
sometimes called the “Einstein-Rosen bridge™” and sometimes the “Schwarzschild
throat” or the “Schwarzschild wormhole.” If one so wishes, one can change the
topology of the Schwarzschild geometry by connecting the two asymptotically flat
universes together in a region distant from the Schwarzschild throat [Fuller and
Wheeler (1962); Fig. 31.5b]. The single, unique universe then becomes multiply
connected, with the Schwarzschild throat providing one spacelike path from point
& to point 4, and the nearly flat universe providing another. For concreteness, focus
attention on the interpretation of the Schwarzschild geometry, not in terms of
Wheeler’s multiply connected single universe, but rather in terms of the Einstein-
Rosen double universe of Figure 31.5.a.

One is usually accustomed to think of the Schwarzschild geometry as static.
However, the static “time translations,” t —- ¢ + Az, which leave the Schwarzschild

‘geometry unchanged, are time translations in the strict sense of the words only in

regions 1 and III of the Schwarzschild geometry. In regions II and IV,
t — ( 4+ At is a spacelike motion, not a timelike motion (see Fig. 31.3). Conse-
quently, a spacelike hypersurface, such as the surface 1 = const of Figure 31.5.a,
which extends from region I through u = v = 0 into region II, is nor static. As
this spacelike hypersurface is pushed forward in time (in the +v direction of the
Kruskal diagram), it enters region II, and its geometry begins to change.

In order to examine the time-development of the Schwarzschild geometry, one
needs a sequence of embedding diagrams, each corresponding to the geometry of
a spacelike hypersurface to the future of the preceding one. But how are the hyper-
surfaces to be chosen? In Newtonian theory or special relativity, one chooses hyper-
surfaces of constant time. But in dynamic regions of curved spacetime, no naturally
preferred time coordinate exists. This situation forces one to make a totally arbitrary
choice of hypersurfaces to use in visualizing the time-development of geometry, and
to keep in mind how very arbitrary that choice was.

Figure 31.6 uses two very different choices of hypersurfaces to depict the time-
development of the Schwarzschild geometry. (Still other choices are shown in Figure
21.4.) Notice that the precise geometry of the evolving bridge depends on the
arbitrary choice of spacelike hypersurfaces, but that the qualitative nature of the
evolution is independent of the choice of hypersurfaces. Qualitatively speaking, the
two asymptotically flat universes begin disconnected, with each one containing a
singularity of infinite curvature (r = 0). As the two universes evolve in time, their
singularities join each other and form a nonsingular bridge. The bridge enlarges.
until it reaches a maximum radius at the throat of » = 2M (maximum circumference
of 47 M; maximum surface area of 167 M?). It then contracts and pinches off, leaving
the two universes disconnected and containing singularities (» = 0) once again. The
formation, expansion, and collapse of the bridge occur so rapidly, that no particle
or light ray can pass across the bridge from the faraway region of the one universe .
to the faraway region of the other without getting caught and crushed in the throat
as it pinches off. (To verify this, examine the Kruskal-Szekeres diagram of Figure
31.3, where radial light rays move along 45-degree lines.) ‘
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Figure 31.6.

Dynamical evolution of the Einstein-Rosen bridge of the vacuum Schwarzschild geometry (schematic).
Shown here are two sequences of embedding diagrams corresponding to two different ways of viewing
the evolution of the bridge—History A-B-C-D-E-F-G, and History A-W-X-D-Y-Z-G. The embedding
diagrams are skeletonized in that each diagram must be rotated about the appropriate vertical axis in
order to become two-dimensional surfaces analogous to Figure 31.5.a. [Notice that the hypersurfaces
of which embedding diagrams are given intersect the singularity only tangentially. Hypersurfaces that
intersect the singularity at a finite angle in the u,v-plane are not shown because they cannot be embedded
in a Euclidean space. Instead, a Minkowski space (indefinite metric) must be used, at least near r = 0.
For an example of an embedding in Minkowski space, see the discussion of a universe with constant
negative spatial curvature in equations (27.23) and (27.24) and Box 27.2C.] Figure 21.4 exhibits embed-
ding diagrams for other spacelike slices in the Schwarzschild geometry.

From the Kruskal-Szekeres diagram and the 45-degree nature of its radial light
rays, one sees that any particle that ever finds itself in region IV of spacetime must
have been “created” in the earlier singularity: and any particle that ever falls into
region II is doomed to be crushed in the later singularity. Only particles that stay
forever in one of the asymptotically flat universes I or III, outside the gravitational
radius (r > 2M), are forever safe from the singularities.

Some investigators, disturbed by the singularities at » = 0 or by the “double-uni-
verse” nature of the Schwarzschild geometry, have proposed modifications of its
topology. One proposal is that the earlier and later singularities be identified with
each other, so that a particle which falls into the singularity of region II, instead
of being destroyed, will suddenly reemerge, being ejected, from the singularity of
region IV. One cannot overstate the objections to this viewpoint: the region r = 0
is a physical singularity of infinite tidal gravitation forces and infinite Riemann
curvature. Any particle that falls into that singularity must be destroyed by those

Creation and destruction in
the singularities

Nonviable proposals for
modifying the topology of
Schwarzschild spacetime
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forces. Any attempt to extrapolate its fate through the singularity using Einstein’s
field equations must fail; the equations lose their predictive power in the face of
infinite curvature. Consequently, to postulate that the particle reemerges from the
earlier singularity is to make up an ad hoc mathematical rule, one unrelated to
physics. It is conceivable, but few believe it true, that any object of finite mass will
modify the geometry of the singularity as it approaches » = 0 to such an extent
thatit can pass through and reemerge. However, whether such a speculation is correct
must be answered not by ad hoc rules, but by concrete, difficult computations within
the framework of general relativity theory (see Chapter 34).

A second proposal for modifying the topology of the Schwarzschild geometry is
this: one should avoid the existence of two different asymptotically flat universes
by. identifying each point (v, u,f,$) with its opposite point (—v, —u, 0, $) in the
Kruskal-Szekeres coordinate system. Two objections to this proposal are: (1) it pro-
duces a sort of “conical” singularity (absence of local Lorentz frames) at (v, u) =
(0,0), ie., at the neck of the bridge at its moment of maximum expansion; and
(2) it leads to causality violations in which a man can meet himself going backward
in time.

One good way for the reader to become conversant with the basic features of
the Schwarzschild geometry is to reread §§31.1-31.4 carefully, reinterpreting every-
thing said there in terms of the Kruskal-Szekeres diagram.

EXERCISES

Exercise 31.7. SCHWARZSCHILD METRIC
IN ISOTROPIC COORDINATES

(a) Show that, rewritten in the isotropic coordinates of Exercise 23.1, the Schwarzschild metric
reads

o I—M/zf)z 2 ( M)‘ 52 L T2 4 <in20 de?)]-
ds? = (] T M2 drt + (1 + 5= [dr? + F3(df? + sin® dgp?)]; (31.22)
and derive the transformation

r=r(l + M/2F)? (31.23)

between the two radial coordinates.

(b) Which regions of spacetime (I, II, III, IV; see Figure 31.3) are covered by the isotropic
coordinate patch, and which are not?

(c) Calculate and construct an embedding diagram for the spacelike hypersurface 1 = 0,
0 <7< oo.

(d) Find a coordinate transformation that interchanges the region near 7= 0 with the
region near ¥ = oo, while leaving the metric coefficients in their original form.

Exercise 31.8. REISSNER-NORDSTR®M GEOMETRY
(a) Solve the Einstein field equations for a spherically symmetric, static gravitational field

ds? = —e2® di2 4 24 gr2 4 r2(dh? + sin20 dep?),
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with no matter present, but with a radial electric field B = 0, E = f(r)e; in the static
orthonormal frame

wi = e’ dr, w’ = et dr, w? = rd, w? = rsin 6 do.
Use as a source in the Einstein field equations the stress-energy of the electric field. [Answer:

E = (Q/re;, (31.24a)

2 24—1
g% = — (1 _ ZTM " %) e + (1 _ _Z.rﬂ + ?_2) dr® + ri(d8® + sin® do?). (3124b)

This is called the “Reissner (1916)-Nordstrem (1918) metric”.]

(b) Show that the constant Q is the total charge as measured by a distant observer (r > 2M
and r > Q), who uses a Gaussian flux integral, or who studies the coulomb-force-dominated
orbits of test charges with charge-to-mass ratio e/ > M/Q. What is the charge-to-mass ratio,
in dimensionless units, for an electron? Show that the constant M is the total mass as measured
by a distant observer using the Keplerian orbits of electrically neutral particles.

(c) Show that for Q > M, the Reissner-Nordstrem coordinate system is well-behaved from
r = oo down to r = 0, where there is a physical singularity and infinite tidal forces.

(d) Explore the nature of the spacetime geometry for Q < M, using all the techniques
of this chapter (coordinate transformations, Kruskal-like coordinates, studies of particle
orbits, embedding diagrams, etc.).

[Solution: see Graves and Brill (1960); also Fig. 34.4 of this book.]

(e) Similarly explore the spacetime geometry for Q = M. [Solution:-see Carter (1966b).]

(f) For the case of a large ratio of charge to mass [Q > M as in part (c)], show that the
region near r = 0 is unphysical. More precisely, show that any spherically symmetric distri-
bution of charged stressed matter that gives rise to the fields (31.24) outside its boundary
must modify these fields for r < r, = Q2/2M. [Hint: Study the quantity m(r) defined in
equations (23.18) and (32.22h), noting its values deduced from equation (31.24), on the one
hand, and from the appropriate Einstein equation within the matter distribution, on the other
hand. See Figure 26 of Misner (1969a) for a similar argument.]
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