
	 1	

Foundations	of	the	black	hole	model	
	

J.P.	Petit	&	H.	Zejli	

__________________________________________________________________________________________________	

Keywords	:	 black	 hole,	 neutron	 star,	 geometrical	 criticality,	 physical	 criticality,	 inner	
Schwarzschild	 line	 element,	 Schwarzschild's	 interior	metric,	 Schwarzschild’s	 radius,	 signature	
change	

__________________________________________________________________________________________________	

Abstract	:	We	review	the	different	steps	that	led	to	the	birth	of	the	black	hole	model	by	showing	
its	foundations	based	on	the	arbitrary	choice	of	the	absence	of	a	cross	term	in	dr	dt	in	the	metric,	
as	well	as	the	ignorance	of	a	physical	criticality	phenomenon	reported	by	Karl	Schwarzschild	in	
his	second	article	in	February	1916	:	An	infinite	pressure	at	the	center	of	a	neutron	star	when	it	
exceeds	the	TOV	limit.	
__________________________________________________________________________________________________	

1	-	An	"obvious"	change	of	variable	with	serious	consequences	
	
					Today	the	model	of	the	black	hole	is	entirely	based	on	what	is	the	outer	metric	found	by	the	
mathematician	Karl	Schwarzschild	 in	 January	1916	and	where	 the	variable	r	 is	presented	as	a	
radial	coordinate.	
	

1                                       ds! = 1−
Rs
r dt! −

dr!

1− !"
!

− r! dθ! + sin!θdφ! 	

					But	 is	 this	 solution	 of	 the	 Einstein	 equation	 without	 a	 second	 term	 really	 the	 spherically	
symmetric	solution	published	by	Schwarzschild	[1]?	
	
				Let’s	detail	his	approach.		
	
				It’s	important	to	keep	in	mind	the	variation	he	proposes	to	use:	
	
(2)																																																															δ ds = 0											

with	:		

(3)																																													ds = g!"dx!dx!   𝑤𝑖𝑡ℎ  µ, ν = {1,2,3,4}				

					Where	indices	x!, x!, x! refer	to	space	variables,	x!being	its	time	variable.	Its	initial	variables	
are	therefore	{t,	x,	y,	z}.	Immediately	he	moves	to	coordinates	that	will	allow	him	to	express	the	
symmetry	of	the	solution:	
	

(4)																																		x! = r cosθ    x! = r sinθ cosφ    x! = r sinθ sinφ    x! = l 																										

(5)													 	 	 								r = x! + y! + z! ≥ 0																																																							

					He	then	presents	what	he	considers	to	be	the	most	general	form	of	this	solution	:	
	
(6)		 										                 ds! =  F dt! − (G+ H r!) dr! − G r! dθ! + sin!θdφ!   		
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F,	G	and	H	being	functions	of	r.	It	introduces	the	new	variables:	

7                                        x! =
r!

3      x! = −cosθ   x! = φ   x! = t	

					The	line	element	becomes	:		

8                                        ds! =  f! dx!! − f! dx!! − f!
dx!!

1− x!!
−  f! dx! 

! (1− x!!)	

				An	integration	constant	α	appears	(the	“Schwarzschild	length	Rs”).	We	get	:	
	

9                                         f! =
(3x! + α!)!!/!

1− α(3x! + α!)!!/!
=

(r! + α!)!!/!

1− α(r! + α!)!!/!	

10                                       f! = (3x! + α!)!/! = (r! + α!)!/! = f!	

11                                       f! = 1− α(3x! + α!)!!/! = 1− α(r! + α!)!!/!	

	
			By	 introducing	 these	 elements	 in	 (8)	 and	 by	 reappearing	 the	 space	 variables	θ 	and	ϕ ,	 this	
give	us	:	

12     ds! =
(r! + α!)!/! − α
(r! + α!)!/!

dt! −
r!

r! + α! r! + α!
!
! − α

dr! − r! + α!
!
! dθ! + sin!θdφ!  

				This	 expression,	 exempt	 from	 any	 singularity,	 is	 defined	 for	 all	 the	 possible	 values	 of	 the	
variables.	 When	 r	 takes	 its	 minimum	 value	 0	 the	 coefficients	g!! and	g!!	

are	 zero,	 as	 is	 the	
determinant	 g	 of	 the	metric.	 It	 is	 therefore	 not	 possible	 in	 this	 region	 of	 the	 hypersurface	 to	
define	 a	 coordinate	 system	 and	 a	 spatio-temporal	 orientation.	Moreover,	 this	 hypersurface	 is	
non-contractile.	If	we	fix	the	coordinates	r	and	t	and	if	we	consider	the	sphere	described	by	the	
coordinates	θ and	ϕ ,	its	area	is	defined	by	:	
	

(13)							 	 								A = g!!g!! dθdφ = 4 π (r! + α!)!/!																															

					The	 minimal	 hypersurface	 of	 the	 metric	 for	 x,	 y,	 z,	 t	 =	 0	 stops	 at	 a	 throat	 sphere	 with	 a	
minimal	area	of	4 π α2,	which	is	non-orientable	because	Gaussian	coordinates	cannot	be	defined	
on	it.	We	can	calculate	the	non-zero	and	zero	geodesics	by	setting:	
	

14                                                t =
dt
ds    r =

dr
ds     θ =

dθ
ds     φ =

dφ
ds  

and	starting	from	equation	(2)	:	
	

15   δ
(r! + α!)!/! − α
(r! + α!)!/!

t! −
r!

r! + α! r! + α!
!
! − α

r! − r! + α!
!
! θ! + sin!θφ! ds = 0 

					We	can	deduce	the	exact	solution	which	gives	the	plane	geodesics	as	derived	from	the	
Schwarzschild’s	solution	of	the	Einstein’s	equation:	
	



	 3	

16                              φ = φ! +
(r! + α!)!!/!dr

!!!!
!!
+ α(r! + α!)!!/! − (r! + α!)

!"

!"
 

						Some	geodesics	avoid	the	point	r	=	0.	For	a	distant	observer,	some	trajectories,	according	to	
the	 values	 of	 the	 parameters,	 derived	 from	 ellipses,	 account	 for	 the	 phenomenon	 of	 the	
precession	of	Mercury's	perihelion.	Others	evoke	hyperbolic	or	parabolic	trajectories.	
	
						But	what	about	geodesics	that	converge	to	the	point	(r=0)?			
	
				This	 metric	 describes	 the	 geometry	 outside	 the	 masses.	 If	 we	 couple	 this	 solution	 with	 an	
interior	 metric,	 according	 to	 the	 solution	 derived	 by	 Schwarzschild	 in	 his	 second	 article	
published	on	February	1916	[2],	and	the	radius	of	the	star	is	greater	than	α,	the	"Schwarzschild	
radius",	this	problem	does	not	arise.	
	
						A	physical	phenomenon	cannot	be	conceived	without	an	observer.	To	get	a	mental	image	of	
the	phenomenon,	we	imbed	it	in	an	Euclidean	representation	space.		The	line	element	becomes	
Lorentzian	at	infinity.	It	tends	towards:	
	
(17)													 	 										ds! = dt! −  dr! − r! dθ! + sin!θdφ! 																																	

				Is	the	solution	that	serves	as	the	basis	for	the	black	hole	model	identical	to	the	one	constructed	
by	 Schwarzschild	 mentioned	 in	 (12)?	 Not	 exactly.	 One	 of	 the	 first	 to	 independently	 use	 this	
solution	in	1916	was	the	mathematician	David	Hilbert	[3].	The	problem	is	that	he	presents	it	in	a	
completely	different	way.	At	no	point	does	he	start	from	a	length.	To	make	a	comparison,	we	will	
convert	 the	 formulas	 as	 they	 appear	 in	 Hilbert's	 article	 by	 adapting	 them	 to	 Schwarzschild's	
notations.	Thus,	instead	of	writing	(6),	he	presents	the	bilinear	form:	
	
(18)					                                    F r dt2 + G(r) dθ2 + sin2θdφ2 +H(r) dr2 		

Then,	Hilbert	introduces	a	function	G(r)	=	r∗!	and	removes	the	asterisk,	leading	to	the	following	
expression	:	

(19)                                     M r dr! + r!dθ! + r!sin!θdφ! +W(r) dl!   

					It	 is	 from	 this	 form	 and	 these	 four	 variables	 { r, θ,φ, l}	 that	 Hilbert	 then	 conducts	 his	
calculation	of	the	Christoffel	symbols	and	the	components	of	the	Ricci	tensor.		
	
					Thus,	he	writes	(in	English	translation):	

	

The	first	step	in	this	derivation	is	the	differential	equations	for	geodesics	lines	by	
the	variation	of	the	integral	

δ M
dr
dp

!

+ r!
dθ
dp

!

+ r!sin!θ
dφ
dp

!

+W
dl
dp

!

dp	

	
As	Lagrange	equations	we	obtain,	etc	…	

	

			Hilbert	writes	the	variation:	
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20                              δ M
dr
dp

!

+ r!
dθ
dp

!

+ r!sin!θ
dφ
dp

!

+W
dl
dp

!

dp = 0	

	
				So	it	no	longer	optimizes	the	length	along	the	geodesic	but	the	square	of	this	length	:	
	
(21)																																	 																														δ ds! = 0																										

					While	Schwarzschild	starts	from:	
	
(22)																																																																	δ ds = 0											

						It	 turns	out	 that	 these	two	variations	 lead	to	 the	same	Lagrange	equations,	but	 they	do	not	
refer	totally	to	the	same	objects.	These	are	not	subject	to	the	same	constraints	with	respect	to	
the	domain	of	definition	of	the	hypersurface.	
	
						Moreover,	Hilbert	eliminates	the	problem	posed	by	the	sign	of	its	bilinear	form,	let	us	call	it	
Φ 1	:	

23                                Φ = M(r)
dr
dp

!

+ r!
dθ
dp

!

+ r!sin!θ
dφ
dp

!

+W(r)
dl
dp

!

 

	
					At	 the	 end	 of	 his	 calculation,	 Hilbert	 presents	what	 he	 considers	 to	 be	 the	metric	 solution	
obtained	by	Schwarzschild	in	1916.	Two	errors	will	be	noted,	both	in	the	original	document	in	
German	[3]	and	in	its	English	translation	[5]:	
	

	

Figure	1	:	Typographic	bugs.	
	

						Neither	of	these	two	expressions	are	correct.	In	fact,	you	should	write:	
	

24                   G dr, dθ, dφ, dl =
r

r− α dr! + r!dθ! + r!sin!θdφ! +
r− α
r dl!	

																																																								
1 In	his	article	he	names	it	G. 
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					And,	with	the	hypothesis	thanks	to	which	Hilbert	recovers	hyperbolic	geometry:	
	
(25)																																																																										l	=	it		

26                   G dr, dθ, dφ, dt =
r

r− α dr! + r!dθ! + r!sin!θdφ! −
r− α
r dt!	

					But	this	is	only	typographic	bugs.	

					In	 1934,	 the	works	 of	 Schwarzschild,	 in	German,	 are	 little	 known	 to	English	 speakers,	with	
rare	exceptions	 including	R.	Oppenheimer	and	R.	Tolman.	 In	1934	 the	 latter	published	a	500-
page	 book,	 very	 well	 supported	 mathematically	 and	 physically,	 where	 he	 reflected	 Hilbert's	
error2.	
					Why	does	Hilbert	obtain	 this	 result	 (26)	and	not	 the	expression	 (12).	This	 follows	 from	his	
“simplifying”	assumption	corresponding	to	equation	(19),	where	the	function	G(r)	is	taken	equal	
to	 r2 .	
	
						Equation	 (12)	 produced	 a	 foliation	 by	 spheres	 in	 which	 these	 had	 a	minimum	 area	 equal	
to 4 π α2.	Hilbert	defines	two	kinds	of	lengths,	both	positive.		
	
				Let's	quote	it:	
	

• When	 Φ > 0 on	a	portion	of	curve,	we	will	designate	this	one	as	a	segment	and	we	will	
say	that	the	integral:	

(27)																												 	 																	λ = Φ dp																																											

															represents	the	length	of	this	segment.	
	

• When	 Φ < 0 	on	a	portion	of	curve,	we	will	designate	it	as	a	timelike	line,	and	we	will	say	
that	the	integral:	

	
(28)																			 	 	 																τ = −Φ dp																																												

																represents	the	proper	time,	measured	on	it.			
	

• Finally	portions	of	curve	such	as	Φ = 0	will	be	called	portions	of	“zero	geodesics”.	
	

2-	The	signature	change.	
		
				In	doing	so,	Hilbert	initiates	a	change	in	signature.	Previously,	everything	had	a	clear	physical	
meaning.	The	metric	is	being	brought	into	its	normal	form:	
	
(29)																						 	 											ds! = g!!(dx!)!																														

					The	succession	of	the	signs	of	the	terms	represented	the	signature	of	the	metric.	When	these	
signs	 were	 all	 the	 same	 it	 was	 a	 pseudo-Euclidean	 space.	When	 they	 differed,	 we	 were	 then	

																																																								
2	He	 is	 the	 only	 one	 to	 mention	 that	 the	 most	 general	 stationary	 solution	 with	 spherical	
symmetry	contains	a	cross	term	in	dr	dt.	Unfortunately,	it	immediately	eliminates	it	by	a	simple	
change	of	variable.	
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dealing	 with	 a	 hyperbolic	 space.	 In	 pre-WWII	 cosmology	 articles	 all	 articles	 refer	 to	 the	
signature:	
	
(30)																																																										 ( + − − − ) 	3	or		 ( − − − + ) 	4	

					In	1934,	R.	Tolman	[4]	writes	the	metric	of	space-time,	exterior	as	interior	like	this	:	
	
(31)								 	 	ds! = e!dt! −  e!dr! − e! dθ! + sin!θdφ! 																																			

					If	we	are	in	the	real	world,	the	fact	of	having	expressed	the	functions	of	r	in	this	exponential	
form	guarantees,	within	the	domain	of	definition	(of	the	variables)	of	the	object	of	study	which	is	
the	hypersurface,	the	invariance	of	the	signature.	If	this	is	altered,	it	implies	that	we	are	outside	
the	hypersurface,	as	one	or	more	of	the	functions	become	purely	imaginary	quantities.	Being	in	
the	hypersurface	amounts	is	possible	according	to	this	simple	condition:	
		

(32)																																																																							ds! ≥ 0	

					With	his	article,	Hilbert	caused	confusion	among	all	those	who	were	interested	in	cosmology,	
and	it	can	be	considered	that	he	was	the	one	who	caused	the	reversal	of	the	signature,	which	is	
still	 in	 use	 today	not	 only	 in	 cosmology	but	 also	 in	 relativistic	 physics	 in	 general.	 There	 is	 no	
post-WWII	article	that	justifies	reversing	this	signature	and	provides	the	rationale	for	it.	
	

3	–	Consequences	of	another	“simplification”.	
	
				In	 1939,	 Oppenheimer	 and	 Snyder	 signed	 the	 birth	 certificate	 of	 the	 black	 hole	 [6]	 by	
suggesting	 the	 final	 and	 limitless	 implosion	 of	 a	 massive	 stole	 at	 the	 end	 of	 its	 life.	 By	
considering	that	the	variable	t	is	identified	with	the	proper	time	of	a	distant	observer,	it	creates	
this	 "freeze	 frame"	 pattern	 such	 as	 a	 collapse	 phenomenon	 whose	 duration,	 in	 proper	 time,	
measured	in	days,	seems	for	a	distant	observer	to	unfold	in	infinite	time.	This	makes	it	possible	
to	 use	 a	 stationary	 solution	 to	 describe	 a	 highly	 unsteady	 phenomenon.	 But	 this	 is	 only	 the	
consequence	of	the	simplification	introduced	by	Tolman,	by	removing	the	crossed	term	in	dr	dt.	
This	 question	 will	 only	 be	 reexamined	 in	 2021	 by	 the	 mathematician	 P.	 Koiran	 [7].	 The	
transformation	 of	 the	 Schwarzschild	 solution	 that	 includes	 the	 cross	 term	 can	be	 obtained	by	
using	 the	change	of	variables	 introduced	 in	1925	by	A.	Eddington,	which	 incidentally	removes	
the	coordinate	singularity	for	r = α	[8]	:	
	
33                                                     t! = t+  !

!
 ln !

!
− 1 																								

					The	line	element	presented	by	Tolman,	Oppenheimer	and	their	successors	then	becomes:	
	

34            ds! =  1−
α
r c!dt′! − 1+

α
r dr! −

2αc
r dr dt′− r! dθ! + sin!θdφ!

						Under	these	conditions,	while	its	escape	time	is	always	infinite,	the	free	fall	time	of	a	witness	
particle	becomes	finite	and	is	of	the	order	of	proper	time.	The	interpretation	based	on	the	freeze	
frame	no	longer	holds.	
	

4	–	Neglecting	the	physical	criticality	identified	by	Schwarzschild	

																																																								
3	Einstein,	Schwarzschild	and	many	others	
4	R.	Tolman,	1934.	
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					In	the	development	of	the	Oppenheimer	and	Snyder’s	 idea,	there	was	no	longer	any	need	to	
refer	 to	 the	 interior	metric	published	by	Schwarzschild	 in	his	second	article	of	February	1916	
[2].	In	1934,	Tolman	provides	a	precise	statement	of	it	by	giving	the	following:	
	

35           ds! = −
dr!

1− !!

!!

− r! dθ! + sin!θdφ! +
3
2 1−

R!!

R!
−
1
2 1−

r!

R!

!

dt! 	

						Note	 that	 it	 formulates	 the	 order	 of	 the	 terms,	 in	 the	 metric,	 according	 to	 the	 signature	

 ( − − − + ) 	but	 retains	 the	 signs	 of	 the	 respective	 terms.	 Then	 he	 takes	 up	 what	 had	 been	
established	by	Schwarzschild,	namely	the	equation	of	state	giving	the	pressure:	
	

36                                         p =
1
24π

1− !!

!!
− 1− !!!

!!

3 1− !!!

!!
− 1− !!

!!

	

					Without	noting	that	at	the	center	of	the	sphere	(r	=	0),	this	pressure	becomes	infinite	for:	
	

37                                                     R!" = R
8
9 = 0,981 R	

					Which	R"	 is	 a	 constant	which	meets	 the	 constant	 volume	density	of	 the	 star.	 So	he	 contents	
himself	 with	 noting	 that	 the	 (geometric)	 criticality	 refers	 to	 objects	 which	 go	 beyond	 the	
framework	of	astronomical	observations	without	noting	 this	point,	as	Schwarzschild	had	done	
as	early	as	1916.	Indeed,	at	the	time	when	quantum	mechanics	went	from	success	in	success	and	
where	 the	neutron	has	only	 just	been	discovered	 two	years	earlier,	 it	 takes	a	visionary	 like	F.	
Zwicky,	 after	having	been	 the	 first	 to	propose	 the	model	 of	 the	 end	of	 life	 of	massive	 stars	 in	
supernovae,	to	imagine	that	there	may	exist	nuclei	of	atoms	with	a	radius	of	15	km.	
	
					After	the	war,	led	by	J.A.	Wheeler,	theorists	summarized	the	source	of	the	field	as	the	presence	
of	a	"central	singularity".	 In	 the	post-war	period,	a	number	of	books	devoted	to	 the	black	hole	
were	 published	 ([9],[10],[11],	 etc.),	 but	 none	 of	 them	 mentioned	 the	 existence	 of	 a	
Schwarzschild’s	 interior	 solution.	 However,	 several	 situations	 resulting	 from	 astronomical	
observations	pose	problems	that	theoreticians	must	model.	These	are	the	collapse	of	a	massive	
star	at	the	end	of	its	life	on	its	iron	core,	the	merger	of	two	neutron	stars,	and	the	capture	by	a	
neutron	 star	 of	 material	 emanating	 from	 a	 companion,	 nearby	 and	 emissive	 star.	 This	 last	
phenomenon	 being	 sufficiently	 progressive	 can	 be	 approached	 starting	 from	 a	 stationary	
solution	with	spherical	symmetry,	connecting	with	an	external	metric	solution.	By	assimilating	a	
neutron	star	 to	a	sphere	of	constant	density,	Schwarzschild	 identifies	 two	critical	states	of	 the	
star	in	his	second	article	:	
	

• A	physical	criticality	observed	as	we	approach	the	center	of	the	star,	where	the	pressure	
increases	continuously	until	 it	becomes	 infinite	when	the	mass	reaches	a	critical	value.	
This	criticality	is	reached	when	the	star's	radius	Rn	exceeds	the	critical	radius	of	√(8/9)	
R"	:	
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Figure	2	:	Identification	of	the	physical	criticality	

	
Indeed,	 the	 pressure	 variable	 ρo+p	 (with	 ρo	 being	 the	 constant	 density	 of	 the	 star)	
increases	proportionally	 to	 the	 speed	of	 light	 as	we	approach	 the	 center	of	 the	 sphere	
(χ=0),	where	the	speed	of	light	and	pressure	become	infinite	for	cos(χa)	=	1/3	:	
	

	
Figure	3	:	Excerpt	from	K.	Schwarzschild's	second	article	[2]	

	
The	 pressure	 and	 the	 speed	 of	 light	 within	 the	 sphere	 are	 given	 by	 the	 following	
expressions:	
	

38                              ρ!!p = ρ!
2 cos(χ!)

3 cos(χ!)− cos(χ)

!

       v =
2

3 cos(χ!)− cos(χ)
	

	
The	speed	of	 light	varies	 from	1/cos(χa)	at	 the	surface	 (χ=χa)	 to	2/(3cos(χa)-1)	at	 the	
center	 of	 the	 sphere	 (χ=0),	 and	 the	 pressure	 varies	 from	 ρo	 at	 the	 surface	 (χ=χa)	 to	
[2cos(χa)/(3cos(χa) − 1)]!	at	 the	 center	 of	 the	 sphere	 (χ=0).	 To	 prevent	 the	 pressure	
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from	 exploding	 to	 infinity	 at	 the	 center	 of	 the	 star,	 it	 is	 necessary	 for	 cos(χa)	 >	 1/3.	
Therefore,	its	radius	Rn	must	satisfy	the	following	condition:	
	

39                             cos(χ!) = 1−
R!!

R!
≥
1
3   −>  R! < R

8
9 =

8
9

3c!

8πGρ!
 

	
• A	geometric	criticality	occurs	when	the	radius	of	the	star	becomes	equal	to	both	R8	and	

the	 Schwarzschild	 radius	 Rs,	which	 is	 significant	 in	 the	 case	 of	 neutron	 stars.	We	 can	
illustrate	 the	 topological	 construction	 established	 by	 Schwarzschild,	 connecting	 the	
interior	and	exterior	geometries	of	the	star	before	the	criticality	occurs	:	

	 	 				 	 	
	 	 Figure	4	:	Topological	representation	of	a	sub-critical	neutron	star	
	
Several	 neutron	 stars	 can	 have	 their	mass	 fueled	 by	 stellar	 winds	 from	 nearby,	more	
massive	 stars	 and	 increase	 in	 size	 while	 maintaining	 a	 constant	 density	 (constant	 R5)	
until	 reaching	 their	 critical	point	 (2,5	 solar	masses).	We	 can	 illustrate	 the	 evolution	of	
their	topology	up	to	the	double	geometric	criticality	:	
	

	
Figure	5	:	Evolution	of	the	topology	of	a	neutron	star	until	criticality	

	
We	 can	 observe	 that	 Rs	 increases	 faster	 than	 the	 radius	 of	 the	 star.	 This	 is	 because	 it	
grows	with	mass,	which	 is	 proportional	 to	 the	 cube	 of	 the	 star's	 radius,	 following	 the	
following	relationship:	
	

40                                        Rs =
2GM
c! =

2G
c!  

4
3πR

!ρ! =
8πGρ!
3c! R! =

R!

R!
	

	
				Tolman	only	sees	the	source	of	 irregularity	 in	this	 interior	metric	as	the	situation	where	the	
radius	of	the	star	reaches	a	value	that	depends	only	on	the	volumetric	mass	density.	In	the	years	
following	the	genesis	of	the	black	hole	model,	the	fact	that	this	geometric	criticality	is	preceded	
by	a	physical	criticality	has	either	been	completely	ignored	([9],[10],[11],	etc.),	or	mentioned	as	
being	"close	to	the	critical	geometric	radius"	[12].	

				Most	 cosmologists	 in	 the	 post-war	 did	 not	 consider	 a	 topological	 interpretation	 of	 the	
solutions	of	Einstein's	field	equation.	They	remained	focused	on	the	supposed	contractibility	of	
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space	 at	 every	 point,	 extending	 the	 Schwarzschild	 exterior	 solution	 into	 the	 complex	 domain	
through	algebraic	calculations.	In	fact,	the	integration	of	length	along	an	extended	geodesic	until	
r	=	0	yields	a	real	value,	but	it	becomes	purely	imaginary	within	the	considered	spacetime	region	
(r	<	Rs).	

	

Conclusion	

					The	 arguments	 presented	 in	 this	 article	 demonstrate	 that	 the	 elements	 that	 served	 as	 the	
foundations	for	the	black	hole	model	come	on	one	hand,	from	an	arbitrary	choice	of	coordinates,	
with	 the	 absence	 of	 a	 cross	 term	 in	 dr	 dt.	 On	 the	 other	 hand,	 they	 stem	 from	 the	 failure	 to	
consider	a	physical	criticality	phenomenon,	which	was	already	indicated	by	Karl	Schwarzschild	
in	his	second	article	in	February	1916.	Therefore,	it	seems	important	to	examine	it	from	a	new	
perspective	 and	 reconsider	 the	 complete	 topology	 construction	 of	 a	 star,	 involving	 the	
compression	of	its	iron	core	in	supernovae	events,	the	accretion	of	matter	forming	neutron	stars	
in	conjunction	with	a	more	massive	emitting	star,	or	the	fusion	of	sub-critical	neutron	stars.	
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