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reasonable restriction p = O for all p > 0] The pomnt at which the pressure reaches

zero is the star's surface: the value of # there is the star’s radius, R: and the value

of s there is the star's total mass-energy. M. Having reached the surfuce, renormalize

@ by adding a constant to 1t everywhere, so that it obeys the boundary condition
(23.28¢). The result is a relauvistic stellar model whose structure functions @, m.
p. poonosatisly the equations ol structure,

Notice that for any fixed choice of the equations of state p = plre), ¢ = plal the
stellar models form a one-parameter sequence (parameter po). Once the central
pressure has been specified. the model is determined uniguely.

The next chapter describes a variety of realistic stellar models constructed numer-

ically by the above prescription. For an idealized stellar model constructed analyu-

. see Box 23.2.

Calculate the structures of uniform-density confivu

Exercise 23.8. NEWTONIAN STARS OF UNIFORM DENSITY EXERCISE

rations in Newtonan theory, Show that

s relativistic configurations of Box 23 2 become wdentical o the Newtonman configurations

i the weak-vravity lmit Also show that there are no mass or radius limits i Newtonian

theory.,
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Box 23.2 RELATIVISTIC MODEL STAR OF UNIFORM DENSITY

For realistic equations of state (see next chapter), the equations of stellar structure
(23.28) cannot be integrated analytically; numerical integration is necessary. How-
ever, analytic solutions exist for various idealized and ad hoc equations of state. One
of the most useful analytic solutions [Karl Schwarzschild (1916b)] describes a star
of uniform density, :

p = p, = constant for all p. ' ()

It is not necessary to indulge in the fiction of “an incompressible fluid” to accept
this model as interesting. Incompressibility would imply a speed of sound,
v = (dp/dp)'/*, of unlimited magnitude, therefore in excess of the speed of light,
Mre in contradiction with a central principle of special relativity (“principle _
of caus ality”) that no physical effect can be propagated ataspeed v > 1. (If a source
‘could cause an effect so qulckly in one local Lorentz frame, then there would exist
another local Lorentz frame in which the effect would occur before the source had
“acted!) However, that the part of the fluid in the region of high pressure has the
same density as the part of the fluid in the region of low pressure is an idea easy
to admit, if only one thinks of the fluid having a composition that varies from one
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Box 23.2 (continued)

r value to another (“hand-tailored”). Whether one thinks along this line, or simply
has in mind a globe of water limited in size to a small fraction of the dimensions
of the earth, one has in Schwarzschild’s model an instructive example of hydrostatics
done in the framework of Einstein’s theory.

The mass equation (23.28a) gives immediately

[(4'.7;'3);»(,;“" for r < R]
m= . i (2)
M = (4m/3)pyR® for r > R
from which follows the ]énglh-correclion factor in the metric
d distance
L] i OB ed =[1 = 2m(r)/r]7 V2 ) (3)

dr

When for ease of visualization the space geometry (r, ¢) of an equatorial slice through
the star is viewed as embedded in a Euclidean 3-geometry (z, r, ¢) [see §23.8], the -
“lift” out of the plane z =0 is

. |(R-'*/2M)“2[1 — (1 —2Mr?/R3V2]  forr < R,
) =

(R32M)V2[1 — (1 — 2M/R)?] + [BM(r — 2M)]/2 — [BM(R — 2M)]/?
for r > R. 4)

The knluwledge of m(r) from (2) allows the equation of hydrostatic equilibrium
(23.28b) to be integrated to give the pressure:

_ [ (1 —2Mr?3/R3)V? — (1 — 2M/R)"*
P = Pao 3(] =" 2“‘/]:"‘R)1/2 A (I == ZM!"";’R"‘)"“J

] for r < R. (5)

The pressure in turn leads via (23.28¢) to the time-correction factor in the metric.

. 3( 2!\/{)”2 1 ( 21\-1:‘2)"'*'
o G L)
d(prop:]ar time) ” 5 R 3 1 2 for r < R ®
t
(1 =2M/r)"/2 forr > R

Several features of these uniform-density configurations are noteworthy. (1) For
fixed energy density. p,. the central pressure

I — (1 — 2M/R)\/? ]

31 — 2M/R)E — 1 )

Pe= Pn‘
increases monotonically as the radius, R, increases—and, hence, also as the mass,

M = (4m/3)p,R?, and the ratio (“strength of gravity™)

2M/R = (87/3)p,R? ’ (®)
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increase. This is natural, since, as more and more matter is added to the star. a

greater and greater pressure is required to support it. (2) The central pressure
bemmes infinite when M, R dncl ZMfR reach the llmtung values

— O/M, . = B2, 9)
f (2M"/.R)lim = 8/9. é’_r— - (10)

No star of uniform density can have a mass and radius exceeding these limits. These
limits are purely relativistic phenomena; no such limits oceur in Newtonian theory.
(3) Inside the star the space geometry (geometry of a hypersurface = constant)
is that of a three-dimensional spherical surface with radius of curvature

I[m

a = (3/8wp,)V2. (11)

[See equation (4), above.] Outside the star the (Schwarzschild) space geometry
is that of ‘a three-dimensional paraboloid of revolution. The interior and exterior
geometries join together smoothly. All these details are shown in the following three
diagrams. There all quantities are given in the following geometric units (to convert
mass in g or density in g/cm? into mass in em or density in em~2, multiply by
0.742 X 10728 cm/g): lengths, in units (3/87p,)"/%; pressure, in units p,: mass, in
units (3/327p,)"2 ) ed .7 — I; -5[[/ /
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