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Abstract:	We	derive	 the	 two	 field	equations	of	 the	Cosmological	 Janus	model	of	an	action.	
We	then	construct	an	unsteady	solution	describing	a	homogeneous	and	isotropic	situation.	
Stationary	 solutions	 with	 spherical	 symmetry	 are	 considered.	 It	 is	 shown,	 in	 the	 state	 of	
research,	 that	 these	 make	 it	 possible	 to	 describe	 systems	 close	 to	 their	 Newtonian	
approximation.	We	 then	 review	 the	 agreement	 between	 the	model	 and	 the	 observational	
data,	 including	 those	 where	 there	 is	 a	 disagreement	 between	 what	 the	 standard	 ΛCDM	
model	provides	and	these	data,	when	the	latter	fails	to	provide	their	modeling.	The	link	with	
dynamic	group	theory	is	presented.	

_________________________________________________________________________________________________	

1	 - Introduction	 :	The	standard	ΛCDM	cosmological	model	 is	based	on	 the	assumption	of	
the	 existence	 of	 two	 entities	 considered	 to	 be	 independent:	 dark	matter	 and	dark	 energy.	
Years	have	passed	and	despite	increasing	budgets	for	attempts	to	highlight	particles	of	dark	
matter,	in	mines	or	tunnels,	no	tangible	results	have	appeared	to	date.	For	dark	energy	the	
situation	is	even	more	critical	in	the	sense	that	to	date	there	is	no	model	claiming	to	describe	
it.	 It	 is	 therefore	 quite	 legitimate	 and	 beneficial	 to	 consider	 an	 alternative	 to	 the	 ΛCDM	
model,	based	on	the	principle	of	Occam's	razor.	With	this	in	mind,	an	alternative	cosmology	
should	account	for	all	the	observational	aspects	taken	to	date	by	the	current	model,	offer	a	
more	 coherent	 vision	 and,	 to	 hold	 the	 attention	 of	 the	 scientific	 community,	 account	 for	
phenomena	 for	 which	 the	 standard	 model	 does	 not	 provide	 no	 convincing	 modeling,	 or	
provide	none.	
	

2	– The	introduction	into	the	model	of	masses	and	negative	energies.			
	
					This	has	been	tried	for	a	long	time	[1].	But	this	attempt	by	Herman	Bondi	resulted	in	the	
violation	of	the	fundamental	principles	of	physics,	which	are	the	principle	of	action-reaction	
and	 the	principle	 of	 equivalence.	 Conclusion:	 it	 is	 impossible	 to	 integrate	negative	masses	
into	the	model	of	general	relativity,	based	on	Einstein's	equation.	We	will	therefore	consider	
a	necessary	extension	of	the	geometric	context.	
	
				General	 relativity	has	a	metric	

 
gµν 	

as	 its	 solution.	From	this,	we	can	build	 the	geodesics,	
curves	which	must	be	followed	indifferently	by	the	positive	or	negative	masses	and,	 in	the	
case	 of	 geodesics	 of	 zero	 length,	 by	 photons	 of	 positive	 energy	 or	 negative	 energy.	 It	 is	
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because	 of	 this	 that	 the	 principles	 of	 action	 and	 reaction	 and	 equivalence	 of	 physics	 are	
violated.	It	will	therefore	be	considered	that	the	masses	and	the	photons	of	positive	energy	
follow	 the	 geodesics	 constructed	 from	a	metric	 field 

gµν
(+ ) 	and	 that	 the	negative	masses	 and	

photons	of	negative	energy	follow	the	geodesics	resulting	from	a	second	metric	field	 
gµν

(− ) .	We	
therefore	consider	a	geometric	structure	composed	of	two	sheets,	or	branes	F(+)	and	F(-).	The	
points	of	these	hypersurfaces,	or	branes,	are	coupled	two	by	two	by	the	fact	that	the	terms	of	
the	metric	are	calculated	from	the	same	set	of	four	coordinates:		
	
(1)																																																																

 
x0 , ξ1, ξ2 , ξ3{ } 		

					x°	is	the	chronological	variable,	and	
 

ξ1, ξ2 , ξ3{ } the	space	variables.	The	metrics	are	both	
assumed	to	be	Riemanian,	of	signature	(+	-	-	-).	We	can	then	define	two	different	observers,	
one	consisting	of	positive	mass	and	the	other	of	negative	mass.	Both	perceive	phenomena	in	
their	 own	 brane	 through	 their	 own	 sets	 of	 coordinates	

 
t(+ ) , x(+ ) , y(+ ) , z(+ ){ } and	

 
t(− ) , x(− ) , y(− ) , z(− ){ } .	We	introduce	two	scale	factors	 a (+ ) and a

(− ) as	well	as	two	different	speeds	

of	light	 c
(+ ) and	 c

(− ) 	a	priori	different.	The	Lorentzian	metrics,	tangents,	being	:	
	

	(2a)																																						
 
ds(+ )2 = dx°2 − a(+ )2 ( dξ1 )2 + ( dξ2 )2 + ( dξ3 )2⎡⎣ ⎤⎦ 		

(2b)																																						
 
ds(− )2 = dx°2 − a(− )2 ( dξ1 )2 + ( dξ2 )2 + ( dξ3 )2⎡⎣ ⎤⎦ 		

					The	coordinates	by	which	observers	interpret	the	phenomena	taking	place	in	their	own	
brane	are:		
 

(3)																																

 

t(+ ) = x° / c(+ )

x(+ ) = a(+ )ξ1

y(+ ) = a(+ )ξ2

z(+ ) = a(+ )ξ3

⎧

⎨

⎪
⎪

⎩

⎪
⎪

t(− ) = εx° / c(− )

x(− ) = εa(− )ξ1

y(− ) = εa(− )ξ2

z(− ) = εa(− )ξ3

⎧

⎨

⎪
⎪

⎩

⎪
⎪

			

				We	 will	 choose	 the	 value	 ε = −1 	so	 as	 to	 introduce	 a	 PT-symmetry.	 Subsequently,	 by	
adding	 a	 fifth	 space-like	 dimension,	 the	 two	 geometric	 entities	 will	 be	 linked	 by	 a	 CPT-
symmetry.	
	

3	– Derivation	of	the	system	of	two	coupled	field	equations	from	an	action.	
 
    Consider	the	action:		
 

(4)											
 
S = 1

2χ
R(+ ) + L(+ ) +L(− ,+ )⎛

⎝⎜
⎞
⎠⎟D4∫ g(+ ) d4x + κ

2χ
R(− ) + L(− ) +L(+ ,− )⎛

⎝⎜
⎞
⎠⎟D4∫ g(− ) d4x 		

   	With  κ = ± 1. After	having	operated	the	variation	of	the	action,	one	poses:	
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(5a)																																

 

Tµν
(+ ) = − 2

g(+ )

δ ( g(+ ) LM
(+ ) )

δg(+ )µν = −2
δLM

(+ )

δg(+ )µν + g(+ )

µν LM
(+ ) 	

(5b)																																

 

Tµν
(− ) = − 2

g(− )

δ ( g(− ) LM
(− ) )

δg(− )µν = −2
δLM

(− )

δg(− )µν + g(− )

µν LM
(− ) 	

(6)																																																		

 

Tµν
(− ,+ ) = − 2

g(− )

δ ( g(+ ) LM
(− ,+ ) )

δg(+ )µν 	

(7)																																																			

 

Tµν
(+ ,− ) = − 2

g(+ )

δ ( g(− ) LM
(+ ,− ) )

δg(− )µν 	

				We	then	obtain	the	system	of	the	two	coupled	field	equations:	
	

	(8a)																																						
 
R µν

(+ ) − 1
2

R (+ )g µν
(+ ) = χ T µν

(+ ) + g(− )

g(+ ) T µν
(− ,+ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

(8b)																																				
 
R µν

(− ) − 1
2

R (− )g µν
(− ) = κ χ g(+ )

g(− ) T µν
(+ ,− ) + T µν

(− )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

					Let	us	write	this	system	of	equations	in	its	mixed	form:	
 

	(9a)																																									
 
R µ

(+ )ν − 1
2

R(+ )δµ
ν = χ T µ

(+ )ν+ g(− )

g(+ )
T µ

(− ,+ )ν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		

(9b)																																									
 
R µ

(− )ν − 1
2

R(− )δµ
ν = κ χ T µ

(− )ν+ g(+ )

g(− )
T µ

(+ ,− )ν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		

					We	will	designate	the	tensors	 
T µ

(− ,+ )ν

 
and	 

T µ
(+ ,− )ν

 
under	the	name	of	 interaction	tensors.	If	

the	two	fluids,	of	matter	of	positive	mass	and	of	matter	of	negative	mass,	are	assimilated	to	
perfect	fluids	we	can	put	the	tensors	

 
T µ

(+ )ν  and	
 
T µ

(− )ν  in	the	form:	
		

(10)									

 

T µ
(+ )ν =

ρ( + )c(+ )2 0 0 0

0 −p(+ ) 0 0
0 0 −p(+ ) 0
0 0 0 −p(+ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T µ
(− )ν =

ρ( − )c(− )2 0 0 0

0 −p(− ) 0 0
0 0 −p(− ) 0
0 0 0 −p(− )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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				In	Newtonian	approximation:		

(11)																					

  

T µ
(+ )ν !

ρ( + )c(+ )2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T µ
(− )ν !

ρ( − )c(− )2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

					The	whole	difficulty,	at	this	stage,	consists	in	giving	to	the	metrics	and	and	to	the	tensors	

 
Tµν

(− ,+ ) and	 
Tµν

(+ ,− ) an	adequate	form	so	that	the	conditions	of	Bianchi	are	satisfied,	that	is	to	say	
that:  
(12)																																																						 

∇(+ )νTµν
(− ,+ ) = ∇(− )νTµν

(+ ,− ) = 0 	

	

4	- Derivation	of	interaction	laws.	
	

    We	will	assume	that	in	the	Newtonian	approximation	we	also	have:	
	

(13)																

  

T µ
(+ , − )ν !

ρ( + )c(+ )2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T µ
(+ , − )ν !

ρ( − )c(− )2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

				Let	us	first	consider	a	portion	of	the	universe	where	only	positive	masses	are	found.	The	
system	becomes:	

(13a)																																										
 
R µ

(+ )ν − 1
2

R(+ )δµ
ν = χ T µ

(+ )ν 		

(13b)																																									
 
R µ

(− )ν − 1
2

R(− )δµ
ν = κ χ g(+ )

g(− )
T µ

(+ ,− )ν 		

				The	 first	 equation	 is	 then	 identified	 with	 Einstein's	 equation,	 without	 its	 cosmological	
constant.	 The	 second	 equation	will	 translate	what	we	will	 designate	 by	 induced	geometry.	
That	is	to	say	the	impact	of	the	presence	of	a	positive	mass	on	the	geometry	of	the	sheet	F(-).					
In	the	Newtonian	approximation	it	comes,	from	the	first	equation	(13a)	the	law:	
	
- Positive	masses	attract	each	other	according	to	Newton's	law.					

	

					In	the	second	equation	(13b)	the	term	
 

g(+ )

g(− )

 

implies	that	the	action	of	a	positive	mass	on	

a	negative	mass	has	an	effect	of	apparent	mass,	that	is	to	say	that	these	positive	masses	act	
on	the	negative	masses.	

	(14)																																																												
 
m(+ ) = κ g(+ )

g(− )
m(+ ) 	
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					Let	 us	 now	 consider	 a	 region	 of	 space	where	 it	 is	 this	 time	 the	 negative	masses	which	
dominate.	The	system	becomes:	

	(15a)																																									
 
R µ

(+ )ν − 1
2

R(+ )δµ
ν = χ g(− )

g(+ )
T µ

(− ,+ )ν 		

(15b)																																									
 
R µ

(− )ν − 1
2

R(− )δµ
ν = κ χ T µ

(− )ν 		

				The	apparent	mass	effect	will	 this	 time	affect	 the	negative	masses,	acting	on	 the	positive	
masses.	

(16)																																																														
 
m(− ) = g(− )

g(+ )
m(− ) 	

						If	 we	 opt	 for κ = +1 	we	 fall	 back	 on	 the	 runaway	 effect.	 The	 choice	 κ = −1 therefore	
constitutes	 a	 way	 of	 reconstituting	 at	 the	 same	 time	 the	 principle	 of	 action-reaction	 and	
equivalence,	the	system,	which	becomes	the	cosmological	 Janus	model,	being	written	in	 its	
covariant	form:	

(17a)																																						
 
R µν

(+ ) − 1
2

R (+ )g µν
(+ ) = χ T µν

(+ ) + g(− )

g(+ ) T µν
(− ,+ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

(17b)																																				
 
R µν

(− ) − 1
2

R (− )g µν
(− ) = −χ g(+ )

g(− ) T µν
(+ ,− ) + T µν

(− )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		

The	interaction	laws	therefore	correspond	to	the	diagram	below:	
	

-	Masses	of	the	same	sign	attract	each	other	according	to	Newton's	law		
	
-	Masses	of	opposite	signs	repel	each	other	according	to	anti-Newton	

	

5	– Solution	existence	condition. 
 
				We	can	only	build	exact	solutions	of	Einstein's	equation	in	the	following	three	cases:		
	
-	 Unsteady	 solutions	 with	 assumption	 of	 isotropy	 and	 homogeneity.	 (FLRW	 metric)	 	 -	
Stationary	solutions	with	O(3)	symmetry	(	Schwarzschild	metrics	)			
	
- Stationary	solutions	with	O(2)	symmetry	(	Kerr	metric	)				

	
		In	this	extension	of	general	relativity,	we	will	not	consider	other	types	of	symmetries.	
	

       5a	– Time-dependent	solutions,	with	symmetry	and	homogeneity.	
 
				These	solutions	correspond	to	FLRW	metrics:	

	(18a)																														
 
gµν

(+ ) = dx°2 − a(+ )2

1− k(+ )
du2 + u2dθ2 + u2 sin2 θdϕ2⎡⎣ ⎤⎦ 	
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(18b)																														
 
gµν

(− ) = dx°2 − a(− )2

1− k(− )
du2 + u2dθ2 + u2 sin2 θdϕ2⎡⎣ ⎤⎦ 	

				We	get	:		

(19)																																	 g
(+ ) = − a(+ )6 sin2 θ g(− ) = − a(− )6 sin2 θ 		

				The	system	becomes:		

(20a)																																									
 

R µ
(+ )ν − 1

2
R(+ )δµ

ν = χ T µ
(+ )ν+ a(− )

a (+ )

⎛
⎝⎜

⎞
⎠⎟

3

T µ
(− ,+ )ν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		

(20b)																																									
 
R µ

(− )ν − 1
2

R(− )δµ
ν = κ χ T µ

(− )ν+ g(+ )

g(− )
T µ

(+ ,− )ν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		

	We	can	then	give	the	tensors	 
T µ

(− ,+ )ν

 
and	 

T µ
(+ ,− )ν

 
the	form	(10).	We	will	then	take:	

	
	(21)																																												 

T µ
(+ ,− )ν = T(+ )

µ
ν T µ

(− ,+ )ν = T(− )
µ
ν 	

				An	exact	solution	can	then	be	constructed	[2].	The	compatibility	between	the	two	metric	
solutions	then	results	in	the	relations:	
 
				Dust	universe	:		

(22)																																																				 ρ
(+ )c(+ )2a (+ )3 + ρ(− )c(− )2a (− )3 = E = Cst 		

					Radiation	dominated	universe:		

(23)																																																				 ρ
(+ )c(+ )2a (+ )4 + ρ(− )c(− )2a (− )4 = E = Cst 	

				Relations	 which	 express	 a	 generalized	 conservation	 of	 energy.	 We	 will	 express	 the	
solutions	with	respect	to	an	observer	of	positive	mass,	i.e.	measured	using	the	time	variable	
	t	=	t(+)	=	x°/c(+)	=	x°/c	.	He	comes,	for	the	universe	of	dust:	
	

	(24a)																																																						
 
a (+ )2 d2a(+ )2

dt2 = − 4πG
c4 E 		

(24b)																																																						
 
a (− )2 d2a(− )2

dt2 = 4πG
c4 E 		

	

				At	 this	 stage	 the	model	 accounts	 for	 a	 first	 type	 of	 observation,	 i.e.	 the	 acceleration	 of	
cosmic	expansion.	([3],	[4],	[5]).	This	leads	us	to	conclude	that	the	energy	volume	density	E	
is	 negative.	 The	 exploitation	 of	 the	 solution	 leads	 to	 an	 excellent	 agreement	 with	 the	
observational	data	[6].	
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Fig.1	:	Hubble	diagram	:	magnitude	versus	redshift	z.	

Continuous	line:	JCM.	dashed	line: ΛCDM 
	

				In	what	follows	we	will	only	address	the	problem	of	spherical	symmetry.	
	

        5b – Stationary	solutions,	with	O(3) symmetry	
 
				Numerical	simulations	integrating	these	interaction	laws,	which	will	be	discussed	later	(in	
section	 6),	 show	 that	 these	 types	 of	masses	 are	mutually	 exclusive.	 It	 is	 therefore	 licit	 to	
consider	only	 solutions	where	a	 single	 type	of	matter	 is	present.	 	Let	us	 first	 consider	 the	
metric	solutions	in	the	vacuum	surrounding	either	a	mass	M,	positive	or	negative.	
	

	(24a)																						

 

ds(+ )2 = 1− 2G M
c(+ )2r

⎛
⎝⎜

⎞
⎠⎟

c(+ )2dt2 − dr2

1− 2G M
c(+ )2r

− r2 ( dθ2 + sin2 θdϕ2 ) 	

(24b)																						

 

ds(− )2 = 1+ 2G M
c(+ )2r

⎛
⎝⎜

⎞
⎠⎟

c(+ )2dt2 − dr2

1+ 2G M
c(+ )2r

− r2 ( dθ2 + sin2 θdϕ2 ) 	

				As	 for	 the	 interior	metrics,	we	will	 take	 inspiration	 from	 the	 classic	 interior	 solution	 of	
Schwarzschild	 [7].	We	will	 then	 consider	 describing	 the	 geometries	 corresponding	 to	 the	
interior	of	a	sphere	filled	with	an	incompressible	material	of	positive	or	negative	mass.	
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(24a)																															
 
ds(+ )2 = eν (+ )

c(+ )2dt2 − eλ (+ )

dr2 + r2( dθ2 + sin2 θdϕ2 )⎡
⎣

⎤
⎦ 								 																								

(24b)																															
 
ds(− )2 = eν (− )

c(− )2dt2 − eλ (− )

dr2 + r2( dθ2 + sin2 θdϕ2 )⎡
⎣

⎤
⎦ 	

				Let's	try	to	renew	the	hypothesis:	
 

	(25)																																														 
T µ

(+ ,− )ν = T(+ )
µ
ν T µ

(− ,+ )ν = T(− )
µ
ν

	

				Consider	the	case	of	a	sphere	of	radius	rn,	filled	with	matter	of	positive	mass,	of	constant	
density	.					The	system	of	equations	corresponds	to	the	following	system:	
	

	(26a)																																										
 
R µ

(+ )ν − 1
2

R(+ )δµ
ν = χ T µ

(+ )ν 		

(26b)																																									
 
R µ

(− )ν − 1
2

R(− )δµ
ν = κ χ g(+ )

g(− )
T µ

(+ ,− )ν 		

					Explained,	the	metric	 
gµν

(+ )

 
is	written:	

	(27)		

 

ds (+ )2 = 3
2

1−
8πGρ(+ ) rn

2

3c(+ )2 − 1
2

1− 8πGρ(+ ) r 2

3c(+ )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

c(+ )2dt2 − dr2

1− 8πGρ(+ ) r 2

3c(+ )2

− r2dθ2 − r2 sin2 θdϕ

	

				The	equations	giving	this	interior	metric	solution	lead	to	the	classic	equation	called	“TOV”.	
	

(28)																													
 

dp(+ )

dr
= − G( ρ(+ ) + p(+ ) / c(+ )2 )( m(+ ) + 4πG p(+ ) r3 / c(+ )2 )

r ( r − 2G m(+ ) / c(+ )2 )
		

(29)																																																																
 
m(+ ) = 4π r3ρ(+ )

3
		

				The	function	m(+)	represents	the	fraction	of	the	mass	contained	inside	a	sphere	of	radius	
	r	<	rn.					When	we	continue	the	calculation	with	the	negative	metric	we	obtain	this:	
	

	(30)
																											 

dp(+ )

dr
= G ( ρ(+ ) − p(+ ) / c(+ )2 )( m(+ ) − 4πG p(+ ) r3 / c(+ )4 )

r ( r + 2G m(+ ) / c(+ )2 )
	

				This	 is	 a	 result	 that	 contradicts	 the	 previous	 result,	 and	 reflects	 the	 non-existence	 of	 a	
solution.	 	If	we	consider	equation	(26b),	the	only	constraint	we	have	is	the	maintenance	of	
spherical	 symmetry.	 From	 this	 perspective,	 hypothesis	 (25)	 is	 not	 suitable.	 It	 will	 be	
necessary	to	replace	this	choice	by	another	which	leads	to	an	equation	identical	to	equation	
(28)	 	 	 	 	One	can	for	example	add	a	cross	term	in	dr	dr	 in	the	metric	 

gµν
(− ) .	We	have	a	 larger	
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number	of	free	parameters	for	the	interaction	tensor	 
T(− , + )

µ
ν ,	with	the	constraint	that	when	

we	use	the	Newtonian	approximation	the	interaction	tensor	becomes:	
	

	(31)																																														

 

T(+ , − )

µ
ν →

ρ(+ )c(+ )2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

				This	makes	it	possible	to	fit	with	the	laws	of	interaction.				Let	us	reverse	the	sign	of	the	
pressure	terms:	
 

	(32)																																												

 

T(+ , − )

µ
ν =

ρ(+ )c(+ )2 0 0 0

0 p(+ ) 0 0
0 0 p(+ ) 0
0 0 0 p(+ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

				The	équation	(30)	becomes	:	

(33)																													
 

dp(+ )

dr
= − G( ρ(+ ) − p(+ ) / c(+ )2 )( m(+ ) − 4πG p(+ ) r3 / c(+ )4 )

r ( r + 2G m(+ ) / c(+ )2 )
	

				This	solution,	if	it	does	not	satisfy	the	mathematician,	will	satisfy	the	physicist.		The	
conditions	of	the	Newtonian	approximation	are	:	
 

	(34)																																														
 
p(+ ) = ρ(+ ) < V2 >

3
<< ρ(+ ) c2 → V << c 			

(35)																																								
 
r >> 2G m(r)

c2 = 8πGρ(+ )r3

3c2 → r << 3c2

8πGρ(+ ) 		

	

				Relations	 (32)	 and	 (33)	 are	 then	 identified	with	 Euler's	 equation	 reflecting	 the	 balance	
between	the	force	of	pressure	and	the	force	of	gravity.			This	approximation	fits	with	the	vast	
majority	of	objects	in	the	cosmos,	where	the	speeds	of	thermal	agitation	are	low	compared	
to	the	speed	of	light	and	where	the	curvature	generated	by	the	masses	is	low.			At	the	stage	
we	 are	 at,	 it	 will	 be	 necessary	 to	 examine	 whether	 additional	 adjustments	 made	 in	 the	
induced	metric	and	in	the	interaction	tensor	can	make	it	possible	to	bring	out	an	exact,	non-
linear	 solution.	 If	 this	 proves	 impossible,	 then	 the	 proposed	 field	 equations	 will	 present	
themselves	as	an	approximate	version	of	a	more	sophisticated	and	more	precise	model,	to	be	
built.	
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6-	Observational	confirmations	of	the	JCM	model	
	
				Numerical	 simulations	 [8],	 exploiting	 one	 of	 the	 essential	 properties	 of	 the	 model:	 its	
profound	asymmetry,	 immediately	produce	a	 large-scale	 lacunar	structure,	 for	the	positive	
mass.	The	Jeans	times	of	the	two	populations	are:	
	

	(36)																																								

 

tJ
(+ ) = 1

4π G ρ(+ )
tJ

(− ) = 1

4π G ρ(− ) 		

						Endowed	with	a	shorter	accretion	time,	the	negative	mass,	at	the	end	of	the	decoupling,	
gives	rise	to	a	regular	distribution	of	spheroidal	conglomerates.	It	then	confines	the	positive	
mass	in	the	residual	space,	giving	it	a	structure	comparable	to	contiguous	soap	bubbles.	
	

	

Fig.2	:		Very	Large	Structure.	.	

				The	 matter	 then	 appears	 in	 the	 form	 of	 thin	 membranes	 sandwiched	 between	
conglomerates	 of	 adjacent	 negative	 mass	 which,	 exerting	 a	 strong	 retrocompression	 on	
them,	 heat	 these	 plates	 of	 positive	 mass.	 But	 this	 geometry	 allows	 very	 rapid	 radiative	
cooling,	which	favors	the	immediate	formation	of	stars	and	galaxies,	in	the	form	and	with	the	
masses	that	we	know	of	them,	in	the	first	hundred	million	years.	
 

	

Fig.3	:	Early	formation	of	galaxies	
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(a)	Compression	and	heating	of	the	positive	mass.		
(b)	This	one	cools	very	quickly	by	radiative	losses	
(c)	What	favors	the	very	early	formation	of	galaxies	and	stars					

	
				This	aspect	constitutes	one	of	the	arguments	in	favor	of	the	present	model,	insofar	as	the	
standard	model	is	incapable	of	accounting	for	the	observation	by	the	James	Webb	telescope	
of	spiral	galaxies,	massive,	endowed	with	their	thin	disk	of	gas	when	the	universe	is	only	500	
million	years	old.					This	model	is	also	the	only	one	to	provide	a	coherent	explanation	of	the	
Repeller	dipole	phenomenon	[10].	
	

la	 	

Figure	4	:	The	Dipole	Repeller	

	

					This	 structure	offers	 the	possibility	 of	 confirming	or	 invalidating	 the	model.	 Indeed	 the	
light	 emitted	by	 sources	 located	 in	 the	background	of	 the	 repeller	dipole	will	 undergo,	 by	
negative	gravitational	lensing	effect,	a	decrease	in	their	luminosity.	This	effect	should	make	
it	 possible	 to	 determine	 the	 diameter	 of	 the	 object	 located	 in	 the	 center	 of	 this	 cell.	 It	 is	
invisible	 because	 the	 negative	 energy	 photons	 it	 emits	 cannot	 be	 picked	 up	 by	 our	
telescopes.	Remember	that	sources	with	a	redshift	greater	than	7	 led	specialists	 to	believe	
that	the	first	galaxies	to	form	would	be	dwarfs.	In	fact,	the	galaxies	immediately	acquire	their	
normal	masses	and	sizes.	 It	 is	this	gravitational	 lensing	effect	that	makes	them	appear	 like	
this.	 The	 JWST	 observations	 are	 worth	 this	 prediction.	 As	 soon	 as	 they	 are	 formed,	 the	
negative	mass	 invades	 the	 space	between	 the	galaxies.	This	 confines	 them	and	gives	 their	
rotation	curves	that	flat	shape,	on	the	periphery,	that	we	know	from	them.	
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Fig.5:	Confinement	of	galaxies.	
	

				These	gaps	 in	 the	negative	mass	are	 the	source	of	a	positive	gravitational	 lensing	effect,	
which	 is	 calculated	 by	 considering	 that	 this	 gap	 is	 equivalent	 to	 the	 superposition	 of	 a	
uniform	distribution	of	negative	mass	and	an	equivalent	distribution	of	positive	mass.	This	
same	phenomenon	of	confinement	manifests	itself	 in	the	same	way	for	clusters	of	galaxies.	
As	a	general	rule,	the	negative	mass	distribution	accounts	for	all	the	phenomena	for	which	it	
was	 necessary	 to	 resort	 to	 the	 sober	 matter-dark	 energy	 couple.	 The	 diagram	 below	
summarizes	this	change	of	model:	
		

	

Fig.6		:	Compared	contents	of	the	two	models.	.		

	

					It	 is	 interesting	 to	continue	 to	 identify	 the	 interpretations	of	phenomena	that	are	 to	 the	
advantage	of	the	Janus	model,	compared	to	the	ΛCDM	model.	In	the	standard	approach,	we	
do	 not	 have	 the	 mechanisms	 allowing	 the	 spiral	 structures	 to	 form	 and	 persist.	 Some	
formations	have	suggested	that	these	structures	resulted	from	encounters	between	galaxies.	
But	 when	 you	 introduce	 these	 spiral	 formations	 as	 initial	 conditions,	 they	 dissipate	 very	
quickly,	 in	 little	 more	 than	 one	 turn.	 In	 addition,	 many	 galaxies	 exhibit	 spiral	 structures,	
although	 the	 portion	 of	 space	 in	which	 they	 reside	makes	 it	 difficult	 to	 believe	 that	 these	
structures	are	the	result	of	an	encounter.	The	Janus	model	shows	that	this	spiral	structure	
translates	 the	 way	 in	 which	 the	 mass	 point	 systems	 constituting	 the	 galaxies	 transfer	



	 13	

angular	momentum	to	their	negative	mass	environment	through	density	waves	which	have	
their	 counterpart	 in	 the	 negative	 mass.	 Numerical	 simulations	 [11]	 indicated	 how	 these	
structures	were	formed,	which	could	persist	for	more	than	30	laps.	
	

	

Fig.7:	Barred	spiral	structure,	simulation.		
On	the	right	the	loss	of	angular	momentum.	

	

					This	 interpretation	 explains	 why	 the	 spiral	 structures	 introduced	 as	 initial	 conditions	
dissipate	 so	 quickly.	 It	 is	 as	 if	 people	 were	 trying	 to	 understand	 the	 formation	 and	
persistence	 of	 sea	 waves,	 forgetting	 what	 creates	 them:	 the	 wind.	 	 In	 the	 first	 hundred	
million	years	more	or	less	massive	galaxies	are	formed.	All	behave	like	a	kind	of	oven,	their	
young	 stars	 heating	 the	 residual	 gas	 thanks	 to	 the	UV	 radiation	 they	 emit.	 Two	 scenarios	
then	arise.	If	the	galaxy	is	sufficiently	massive,	the	gas	acquires	a	temperature	such	that	the	
speed	of	agitation	of	the	atoms	that	compose	it	exceeds	the	speed	of	release.	This	gas	is	then	
ejected	out	of	the	galaxy	and	dissipates	into	intergalactic	space.	A	lighter	galaxy	will	create	a	
gas	halo.	At	 this	 time	 the	young	galaxies	are	still	 very	close	 to	each	other.	The	encounters	
that	occur	translate	a	redistribution	of	kinetic	energy	into	angular	momentum.	This	transfer	
benefits	the	gas	halo,	not	the	set	of	globular	clusters	whose	stars	created	the	formation	and	
expansion	of	the	halo.	The	expansion	pushes	the	galaxies	away	from	each	other.	The	gas	is	
cooled	by	radiation.	Retaining	the	angular	momentum	acquired	during	the	encounters,	 the	
gas	halo	turns	into	a	flat	disc.	The	spiral	structure	forms	immediately,	whose	density	waves	
will	 cause	 the	 birth	 of	 second-generation	 stars.	 These,	 accelerated	 by	 the	 slingshot	 effect	
during	 encounters	with	 packets	 of	 gas,	 then	migrate	 out	 of	 the	 disc.	 This	 spiral	 structure,	
maintained	by	this	dynamic	friction	with	the	surrounding	negative	mass,	will	then	continue	
without	time	limit.	
	
					At	 the	 same	 time	 fusion	 phenomena	 will	 enrich	 these	 formations.	 These	 capture	
phenomena	 remain	 non-collisional.	 Thus	 a	 small	 galaxy,	 falling	 into	 this	 potential	 well	
constituted	 by	 the	 galaxy	 which	 absorbs	 it,	 will	 modify	 the	 local	 distribution	 of	 the	
gravitational	 field.	 The	 Janus	 Cosmological	 Model	 (JCM)	 offers	 possibilities	 for	 many	
developments.	 The	 mechanism	 of	 the	 gravitational	 instability	 of	 Jeans	 must	 then	 be	
integrated	 into	 a	 scheme	 of	 joint	 gravitational	 instabilities	 [11].	 JCM	 also	 offers	 the	 first	
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mathematical	 model	 of	 galaxies	 as	 a	 self-gravitating	 point-mass	 system	 described	 by	 a	
system	of	 two	Vlasov	equations,	coupled	by	the	Poisson	equation	([12],[13],[27]).	The	two	
entities	are	 then	described	by	an	elliptical	solution	of	 the	Vlasov	equation,	an	extension	of	
the	 classic	Maxwell-Boltzmann	 solution	 and	 an	 extension	 of	 the	work	 of	 S.Chandrasekhar	
[14].	 This	 theoretical	 description	 is	 then	 the	 only	 one	 that	 accounts	 for	 the	 existence	 of	 a	
velocity	 ellipsoid	within	 the	 galaxy,	whose	major	 axis	 points,	 in	 systems	obeying	 the	O(2)	
symmetry,	towards	the	center	of	the	system.	
	

7	–	JCM	and	dynamic	groups.	
 
					The	theory	of	dynamic	groups	was	presented	and	developed	by	the	French	mathematician	
Jean-Marie	Souriau	[15].	The	isometry	group,	of	Minkowski	space,	the	Poincaré	group,	is	the	
dynamic	 group	 associated	 with	 it.	 The	 action	 of	 the	 group	 on	 the	 dual	 of	 its	 Lie	 algebra	
makes	 it	possible	 to	 reveal	 the	 classical	objects	of	 relativistic	physics,	 energy,	momentum,	
spin,	 as	 components	 of	 the	 space	 of	 the	 moment.	 The	 Janus	 model	 is	 presented	 as	 an	
extension	of	this	group	structure	by	integrating	the	antichronal	components	of	the	Poincaré	
group.	This	then	generates	the	movements	of	masses	and	particles	of	negative	energy.	The	
Janus	 group	 ([16],	 [2],	 [18])	 achieves	 a	 further	 extension	 with	 the	 addition	 of	 a	 fifth	
dimension.	 The	 additional	 scalar	 arising	 from	 E.	 Noether's	 theorem	 is	 the	 electric	 charge	
[19].	This	group	translates	the	CPT	symmetry	of	the	model.	
 

	(37)																																		

 

λµ 0 φ
0 λ Lo C

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

with
λ = ±1
µ = ±1

	

					Lo	 is	 the	element	of	 the	orthochrone	subgroup	of	 the	Lorentz	group.	C	 is	 the	space-time	
translation	vector.	The	action	of	the	group	on	the	dual	of	its	Lie	algebra	is:	
	
	(38)																																																																	 q = λµq ' 	

(39)																																							 M = Lo M'Lo
t + λC P'Lo

t − λLo P ' Ct 											

(40)																																																															 P' = λLo P 							

					P	 is	 the	 momentum-energy	 4-vector.	 M	 is	 an	 antisymmetric	 matrix	 including	 the	 spin	
vector.	Here	is	the	classification	of	the	components	according	to	their	movements:	
	

-	 ( λ = −1 ; µ = 1) results	 in	a	PT-symmetry	plus	a	C-symmetry	 .	One	 thus	obtains	
the	movement	of	a	particle	of	negative	mass.		

-	 ( λ = 1 ; µ = −1) operates	 a	 C-symmetry.	 The	 movement	 obtained	 is	 that	 of	 an	
antiparticle	in	the	sense	of	Dirac,	of	positive	mass.		

																		-	 ( λ − = 1 ; µ = −1) represents	 a	 PT-symmetry.	 The	motion	 is	 that	 of	 an	
antiparticle	of	negative	mass	(antiparticle	in	the	sense	of	Feynmann).	

	



	 15	

					This	structure	includes	the	matter-antimatter	duality	in	the	negative	mass	sector.	So	there	
are	 two	antimatters.	This	 study	concludes	 that	 the	antimatter,	of	positive	mass,	 created	 in	
the	experiments	carried	out	at	CERN	will	react	like	ordinary	matter	under	the	action	of	the	
Earth's	gravitational	field,	which	seems	to	confirm	the	first	experimental	results.	
	

8	–	JCM	and	the	paradox	of	primordial	antimatter.	
 
					The	 Russian	 Andréi	 Sakharov	 is	 the	 only	 one	 to	 have	 proposed	 an	 explanation	 for	 the	
absence	of	observation	of	primordial	antimatter	and	locating	it	in	a	Twin	universe,	linked	to	
our	 own	 universe	 sheet	 by	 a	 CPT-symmetry.	 The	 Janus	model	 concretizes	 his	 idea.	 ([20]	
,[21],	[22]).	In	this	view	the	mass	and	negative	energy	side	contains	antimatter	of	negative	
mass,	 an	 excess	of	quarks	of	negative	 energy	 in	 a	 ratio	of	3	 to	1,	 and	photons	of	negative	
energy	resulting	from	the	primordial	annihilation	in	the	world.	negative.	
	

9	–	JCM	and	the	nature	of	the	invisible	components	of	the	universe.					
	
					This	antimatter	consists	of	negative	mass	antihydrogen	and	antihelium.	These	atoms	are	
gathered	 in	 immense	 spheroidal	 conglomerates.	Their	 cooling	 time	being	greater	 than	 the	
age	of	the	universe,	they	do	not	evolve	and	do	not	generate	galaxies,	stars	or	planets.	Life	is	
absent	 from	this	negative	sector.	The	 Janus	model	 is	 the	only	one	 to	offer	an	accurate	and	
detailed	description	of	 the	 invisible	components	of	 the	universe.	 	10	–	The	 JCM	model	and	
quantum	mechanics.	 	 	 	 	Since	its	appearance,	quantum	field	theory	[23]	has	been	based	on	
the	 supposed	 non-existence	 of	 negative	 energy	 states	 by	 opting	 for	 a	 priori	 choices	
concerning	 the	nature	of	 the	essential	operators	P	and	T.	P	has	 thus	been	considered	as	a	
linear	 and	 unitary	 operator,	 whereas	 the	 time	 inversion	 operator	 T	 was	 on	 the	 contrary	
endowed	 with	 the	 qualifiers	 of	 antiunitary	 and	 antilinear.	 The	 acceleration	 of	 cosmic	
expansion	 involves	 the	 action	of	 negative	pressure.	A	pressure	being	 a	 volumic	density	 of	
energy,	 this	 discovery	 imposes	 a	 return	 on	 these	 hypotheses,	 introduced	 to	 oppose	 the	
emergence	of	states	of	negative	energy.	The	mathematician	Nathalie	Debergh	([24],[25])	has	
shown	 that	 the	 equations	 of	 Dirac	 and	 Schrödinger	 generate	 states	 of	 negative	 energy	
provided	 that	 we	 remove	 this	 constraint	 posed	 a	 priori,	 concerning	 the	 nature	 of	 the	
operator	T.		
 
					In	 addition,	 we	 think	 that	 the	 integration	 of	 negative	 masses	 could	 be	 the	 key	 to	 the	
quantification	of	gravitation.			
	
	
11	–	JCM	and	the	homogeneity	of	the	primitive	universe.			
	
			Since	1988	([26],	[2])	a	representation	of	cosmic	evolution	with	a	set	of	variable	constants,	
associated	 with	 scale	 and	 time	 factors	 has	 provided	 an	 alternative	 interpretation	 to	 the	
theory	of	inflation,	concerning	the	homogeneity	of	the	primitive	universe.	This	approach	has	
been	extended	 to	 a	bimetric	 structure	 (28).	These	 regimes	with	variable	 constants	 end	as	
soon	 as	 the	 average	 distance	 between	 the	 masses	 becomes	 greater	 than	 their	 Compton	
length,	i.e.	upstream	of	the	evolutions	corresponding	to	entities	dominated	by	radiation.	
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12	–	JCM	and	CMB	fluctuations.			
	
					The	 JCM	provides	 its	own	 interpretation	of	 the	CMB	 fluctuations	by	attributing	 them	 to	
the	response	of	the	positive	world	to	the	density	fluctuations	of	the	adjacent	universe	cells,	
related	 to	 the	 gravitational	 instability	 that	 manifests	 within	 them.	 The	 analysis	 of	 these	
fluctuations	 is	presented	as	a	means	of	 evaluating	 the	 ratio	of	 the	 scale	 factors	of	 the	 two	
entities.	We	find	that	a(+)/a(-)	is	of	the	order	of	100.	We	deduce	that	c(-)/c(+)	would	be	of	the	
order	of	10.	The	overall	effect	would	be	to	reduce	the	time	interstellar	travel	by	a	thousand	
factor,	for	vehicles	managing	to	invert	their	mass	to	be	able	to	travel	by	using	the	geodesics	
resulting	from	the	metric	

 
g

µ ν

(− ) .	
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Appendix	

	

1	–	Building	the	dynamical	group.		

				Since	 the	work	 of	 the	 French	mathematician	 Jean-Marie	 Souriau	 [24]	we	 know	 that	 the	
dynamic	groups	of	physics	make	it	possible	to	construct	the	parameters	which	characterize	
the	 contents	 as	 objects	 of	 pure	 geometry.	 If	we	 start	with	 special	 relativity,	 its	 dynamical	
group	 is	 the	 isometry	 group	 of	 Minkowski	 space.	 This	 is	 defined	 by	 its	 metric	 matrix,	 a	
Gramm	matrix:	
 

	(1)																																																							

 

G =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

		

					The	Lorentz	group,	of	dimension	6,	is	then	axiomatically	defined	by:	
 

	(2)																																																																				 L
t G L = G 		

					C	being	the	space-time	translation	four-vector:	
 

	(3)																																																																			

 

C =

Δt
Δx
Δy
Δz

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

		

							The	isometry	group	is	the		Poincaré	group:		

(4)																																																																								
 

L C
0 1

⎛

⎝⎜
⎞

⎠⎟
		

					What	 lives	 in	Minkowski	space	are	movements.	The	elements	of	 the	group	allow	you	 to	
pass	 from	 one	 movement	 to	 another	 movement.	 But,	 from	 then	 on,	 a	 singular	 situation	
emerges.	The	Lorentz	group	is	composed	of	four	connected	components.	
 

à   L n  , neutral	component,	does	not	invert	space	or	time.	
 

à		 L s 	,	inverts	space:	P-symmetry.	

à L t 	,	inverts	time,	but	no	space:	T-	symmetry	

à	
 
L st 	inverts	both	space	and	time:	PT-	symmetry	

			We	combine	the	first	two	components	to	form	the	subgroup	(30)	
 



	 19	

 Lo = Ln , Ls{ } 	
	

called	“orthochron”,	or	restricted	Lorentz	group.	The	last	two	components	constitute	the	
antichron	set,	whose	components	reverse	time	
.		
(5)	

 
La = Lt , Lst{ } 	

				Noting	that:	
 
	(6)	

 
Lt = − Ls{ } Lst = − Ln{ } 	

we	see	that	we	can	reconstitute	the	whole	group	by	writing:	
	(7)	

  L = λ Lo with λ = ±1	

including	 set	 of	 time-reversing	 components.	 We	 could	 thus,	 in	 the	 same	 way,	 write	 the	
complete	Poincaré	group:	
	(8)	

  
a =

λLo C

0 1

⎛

⎝
⎜

⎞

⎠
⎟ with λ = ±1 	

	

					Since	 1970	 the	 mathematician	 J-M	 Souriau	 has	 shown	 how	 the	 action	 of	 this	 dynamic	
group	on	the	dual	of	its	Lie	algebra	made	it	possible	to	reveal	the	relativistic	components	of	
movements	[24].	This	action	on	the	space	of	moments	is	given	in	equations	(13.107):	
	

 

(13.107)
M' ≡ L M Lt + CPtLt − L PCt

P ' ≡ L P
		

	

			The	 result	 corresponds	 to	 equations	 (14.67)	 where	 Is	 and	 It	 represent	 the	 spatial	 and	
temporal	inversions:	
	

																																																																							

 

(14.67)
Is : l→ l , g →−g , p→−p, E → E

It : l→ l , g →−g , p→ p, E →− E

⎧
⎨
⎪

⎩⎪
		

	

				In	remark	(14.71)	we	read	
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Equation	 (14.67)	 shows	 that	 time	 reversal	 	 changes	 the	 sign	 of	 energy	 and	
thus	 the	 signe	 of	 the	 mass.	 Consequently	 it	 transforms	 	 every	 motion	 of	 a	
particle	of	mass	m	into	a	motion	of	particle	–m.		

	

					In	the	Janus	model,	particles	of	negative	mass	and	photons	of	negative	energy	are	given	a	
physical	 meaning,	 which	 is	 equivalent	 to	 associating	 Minkowski	 space	 with	 its	 complete	
isometry	group.	
	
	
2	–	Extended	group.	Antimatter	and	geometry.		
	

				We	are	going	to	make	the	group	act	on	a	five-dimensional	Kaluza	space,	by	adding	a	fifth	
dimension	ζ ,	 of	 the	 space	 type.	This	action	 is	 limited	 to	a	 translation	of	 a	quantity	φ 	.	We	
could,	without	doing	any	calculation,	say	straight	away,	according	to	Noether's	theorem,	that	
this	new	symmetry	entails	the	conservation	of	a	scalar,	which	will	be	the	electric	charge	q.	
Let	us	introduce	this	extension	of	the	group	in	the	following	form:	
	

(9)

																																																	  

a =
λµ 0 φ
0 λ Lo C

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

with
λ = ±1
µ = ±1

	

							For	convenience	of	calculation	we	will	carry	out	this	one	with		

(10)

																																																		  

a =
λµ 0 φ
0 L C
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

with
λ = ±1
µ = ±1

	

					The		element	of	its	Lie	algebra	is	then:		

(11)																																																												

	 

Z ≡
0 0 ε
0 δL γ
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

				The	group	 is	differentiated	 in	 the	vicinity	of	 its	neutral	 element.	Under	 these	 conditions	

 δ Lcan	 be	 put	 in	 the	 form	 Gωwhere	 G	 is	 the	 Gramm	matrix	 and	 	ω 	an	 antisymmetric	
matrix	

(12)																																																													

 

Z =
0 0 ρ
0 Gω γ
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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				For	 computational	 convenience,	 we	 write	 the	 action	 of	 the	 group	 on	 its	 Lie	 algebra	

 Z' = a−1 Z a 	instead	of		 Z' = a Z a−1 ,	which	is	equivalent	to	computing	the	action	of	the	inverse	
of	the	element	of	the	group	on	the	element	of	its	Lie	algebra,	but	the	result	will	be	equivalent	
since	the	set	of	inverses	also	represents	the	group.	It	comes	:		

	

(13)																																		

 

0 0 ε '
0 Gω ' γ '
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 0 λµε
0 G LtωL γGLtG + GLt ωG
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

which	gives	:		
(14)	

 

ε ' = λµε

ω ' = LtωL

γ ' = G LtG γ + GLtωC

		

	
				We	are	looking	for	the	dual	of	the	group's	action	on	its	Lie	algebra.	The	element	of	this	Lie	
algebra	depends	on	11	parameters.		
	
(15)

																												 
Z = ωsx ,ωsy ,ωsz ,ω fx ,ω fy ,ω fz , γ t , γ x , γ y , γ z , ε{ } 	

				The	moment	space	of	the	group	will	thus	be	a	vector	space	of	dimension	11.	It	can	be	put	
in	 the	 form	of	an	antisymmetric	matrix	M	of	 format	 (4,4),	depending	on	six	parameters,	 a	
quadrivector	P	and	a	scalar	q.	The	duality	can	thus	be	ensured	by	the	constancy	of	the	scalar:	

(16)
																																																				 

1
2

Tr ( M ω ) + Pt G γ + q ε 	

				which	gives:	

(17)								
	 
1
2

Tr ( M ω ) + Pt G γ + qε = 1
2

Tr ( M ' LtωL) + P' t G (G Lt ωC + G Lt G γ ) + q 'λµε 	

					It	comes	immediately:		

(18)																																																																			 q = λµq ' 	

	(45)																																																				 P
t = P't Lt → P = L P' 	

	
				We	know	that	we	can	perform	a	circular	permutation	in	the	trace:		
	
(19)																																											 Tr ( M 'LtωL) = Tr( L M'Ltω ) 	
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				The	identification	on	the	 ω 	terms	gives	
	

(20)																																							
 

1
2

Tr ( Mω ) = 1
2

Tr ( L M'Lt ω ) + Pt Lt ωC 		

				The	term	 P
t Lt ωC 	is	the	scalar	product	of	the	row	vector	 P

t by	the	column	vector	 L
t ωC .	

We	can	therefore	write,	after	having	performed	a	circular	permutation	in	the	trace	

	(21)																																																 P
t Lt ωC = Tr( Lω C tP ) = Tr( C PtLt ω ) 	

				By	making	a	circular	permutation	in	the	trace.	Thus	the	equation	(48)	provides:		

(22)																																																										 M = L M' tLt + 2C P't Lt
	

				But		

(23)																																							
	 
C Pt Lt = 1

2
sym(C Pt Lt ) + antisym C Pt Lt( )⎡
⎣

⎤
⎦ 	

				Knowing	that	the	trace	of	the	product	of	a	symmetrical	matrix	by	an	antisymmetrical	
matrix	is	equal	to	zero:		

(24)																																																	 
Tr (C PT Lt + L PCt )×ω⎡⎣ ⎤⎦ = 0 	

				It	remains:		

(25)																			
	 
1
2

Tr ( Mω ) = 1
2

Tr ( L M'Ltω ) + 1
2

Tr (C Pt Lt − L PCt )×ω⎡⎣ ⎤⎦ 	

				Which	provides	the	last	equation	of	the	group's	action	on	its	moment:	

(26)																																													 M = L M'Lt + C P'Lt − L P'Ct 	

			We	make	the	inversion	parameter	reappear	by	 L = λLo 	and	group	the	results	together	

	(27)																																																																	 q = λµq ' 	

(28)																																							 M = Lo M'Lo
t + λC P'Lo

t − λLo P ' Ct 											

(29)																																																															 P' = λLo P 							

				P	is	the	energy-impulsions	4-vector	:		

(30)																																																											

  

P =

E
px

p y

pz

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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				Equations	(54),(55),(56)	represent	an	extension	of	equations	13.107	of	reference	[27].	The	
relation	(57)	makes	it	possible	to	find	Souriau's	relation	([24]	page	190,	equations	14.67	).	
The	inversion	of	time	 ( λ = −1) 	leads	to	the	inversion	of	energy	and	of	the	impulse	vector	  

!p 	.															
The	matrix	M	depending	on	six	parameters	can	be	decomposed	into	two	vectors.	The	vector	
f	is	what	Souriau	calls	the	passage	and	s	is	the	spin.	

	(31)

																																														 

M =

0 −sz sy fx

sz 0 −sx fy

−sy sx 0 fz

−fx −fy −fz 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

	

				The	passage	 f	 is	not	an	 intrinsic	attribute	of	 the	motion	because	 it	can	be	cancelled	by	a	
change	 of	 variable	 accompanying	 the	 particle.	 Only	 the	 spin	 remains,	 of	 which	 Souriau	
demonstrated	in	1970	its	geometrical	nature.	By	cancelling	the	spatio-temporal	translation	C	
the	relation	(53),	where	λ 		then	does	not	appear,	shows	that	the	inversion	of	time	does	not	
modify	the	spin	vector.	With	this	way	of	carrying	out	the	calculation	one	obtains	the	result	of	
the	 action	 of	 the	 group	 on	 a	 movement,	 characterized	 by	 the	 quantities	  E' , !p' , !s'{ }gives	
another	movement	  E , !p , !s{ } .	It	is	the	relation	(54)	which	informs	on	the	fact	that	starting	
from	a	motion	representing	that	of	a	particle	of	matter	:		

	

-	 ( λ = −1 ; µ = 1) results	 in	a	PT-symmetry	plus	a	C-symmetry	 .	One	 thus	obtains	 the	
movement	of	a	particle	of	negative	mass.		

	

-	  ( λ = 1 ; µ = −1) operates	 a	 C-symmetry.	 The	 movement	 obtained	 is	 that	 of	 an	
antiparticle	in	the	sense	of	Dirac,	of	positive	mass.		

	

-	 ( λ − = 1 ; µ = −1) represents	a	PT-symmetry.	The	motion	is	that	of	an	antiparticle	of	
negative	mass	(antiparticle	in	the	sense	of	Feynmann).		

				As	is	known	experiments	were	conducted	at	CERN	aimed	at	determining	the	behavior	of	
antimatter	particles	in	the	gravitational	field	of	the	Earth.	In	accordance	with	what	has	just	
been	exposed,	the	antimatter	produced	in	the	laboratory	has	a	positive	mass	and	behaves,	in	
the	gravitational	field	of	the	Earth,	like	ordinary	masses.	Indeed	this	is	what	emerged	from	
the	experiments.  
 
	
	
3	–	Could	the	Janus	model	be	just	part	of	a	higher	dimensional	space? 
 
					From	 a	 geometrical	 context	 which	 is	 the	 Minkowski	 space	 it	 was	 possible	 to	 build	
contents	of	mass	and	positive	and	negative	energy.	 	One	can	consider	 that	 this	Minkowski	
space	 	 to	 be	only	 a	 sub-space	of	 the	 complex	 structure	 that	 is	Hermite's	 space.	 	 In	 such	 a	
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space,	 in	 the	 scalar	 product	 the	 adjoints	 of	 vectors	 and	 complex	 matrices	 replace	 the	
transposes.	Hence	the	length: 
	
(32)																																																										 < X , X > = X*G X 	
	
				and	the	line	element:		
(33)																																									 ds2 = (dX°)* dX° − (dX1)* dX1 − (dX2 )* dX2 − (dX3)* dX3 	
	
				The	corresponding	isometry	group	is	built	in	a	similar	way,	and	is	built	from	the	complex	
Lotentz	group,	as	defined	by	:	
	(34)	

 
L * G L =G 	

	

				From	which	we	form	the	“complex	Poincaré	group”:			
(35)	

 

L C
0 1

⎛

⎝⎜
⎞

⎠⎟
	

We	form	the	element	of	its	Lie	algebra	
	(36)	

 
Z ≡ δL δC

0 1

⎛

⎝
⎜

⎞

⎠
⎟ =

GΩ Γ
0 1

⎛

⎝
⎜

⎞

⎠
⎟
	

				It	 is	easy	to	show	that	Ω is	an	antihermitian	matrix.	As	 in	 the	real	case	we	will	 form	the	
action	of	the	group	on	its	Lie	algebra:	
(37)																																																																 Z' = A−1 Z A 		

	
				where	A	is	the	(complex)	element	of	the	group.		The	inverse	of	the	complex	matrix		L	is	:		
	
(38)																																																																	 L

−1= G L *G 	
				We	get:		
	(39)																																																																				 Ω ' = L *Ω L 		

	
(40)																																																											 Γ ' = G L *ΩC + G L *G Γ 	

			Hereafter	 are	 the	 (complex)	 components	 of	 the	 Lie	 algebra,	 in	 the	 same	 number	 as	 the	
dimension	of	the	group:	24.	
	(41)	

 
Z = Ωsx ,Ωsy ,Ωsz ,Ωfx ,Ωfy ,Ωfz , Γ t , Γx , Γ y , Γz , iω11 , iω22 , iω33 , iω44{ } 	

	

				The	first	sixteen	components,	six	complexes	and	four	pure	imaginaries	:		
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Ωsx ,Ωsy ,Ωsz ,Ωfx ,Ωfy ,Ωfz , iω11 , iω22 , iω33 , iω44{ } 	

can	be	arranged,		forming	following	the	anti-Hermitian	matrix:	
	(42)	

 

Ω =

iω11 Ω12 Ω13 Ω14

−Ω12 iω 22 Ω23 Ω24

−Ω13 −Ω23 iω33 Ω34

−Ω14 −Ω24 −Ω34 iω 44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

	

				By	introducing	the	complex	spin	S,	the	complex	passage	F,	the	complex	momentum	P,	the	
moment	becomes:	
	(43)	

	  
µ = Sx , Sy , Sz , Fx , Fy , Fz , E , Px , Py , Pz , iθ11 , iθ22 , iθ33 , iθ44{ } 	

	
					All	these	components	are	complex	(the	last	four,	composing	the	quadrivector	Θ 	are	pure	
imaginary).	As	 I	will	 later	use	 the	 capital	 letter	P	 to	designate	 the	energy	 (complex)	pulse	
vector	I	will	use	the	italic	capital	letter	P	to	designate	the	complex	pulse	vector:	
	
(44)	

  

P =

Px

Py

Pz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

				So	I	have	four	objects.	Three	are	complex.	The	spin	S,	complex,	is:	
	(45)		

 
S = Sx , Sy , Sz{ } = s + iσ

	
				Write	:	
(46)	

 
s = sx , sy , sz{ } σ = σ x , σ y , σ z{ } 	

	
				The	complex	vector	F	is	:		
(47)	

 
F = Fx , Fy , Fz{ } = f + iϕ

	
				Write:		
(48)	

 
f = fx , fy , fz{ } ϕ = ϕx , ϕy , ϕz{ } 	

				To	 this	 must	 be	 added	 a	 new	 object	Θ ,	 typical	 of	 this	 extension	 to	 complexes,	 pure	
imaginary.	
	(49)			
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Θ =

iθxx

iθyy

iθzz

iθt t

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
	

Introducing	the	complex	impulsion	P	:	
(50)	

  
P = Px , Py , Pz{ } = p + iπ

	
(51)	

 
p = px , py , pz{ } π = π x , π y , π z{ } 	

	
and	complex	energy	E	:	
(79)	

 E = e + iε
		

	We	get	the	energy-impulsion	four-vector:		
(52)	

  

P =

E
Px

Py

Pz

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
	

				Let	us	use	the	six	(complex)	components	forming	the	(complex)	3-vectors	S	and	F	to	form	
the	antihermitic	matrix.	
	(53)	

 

M =

iθxx −Sz Sy Fx

Sz iθyy −Sx Fy

−Sy Sx iθzz Fz

−Fx −Fy −Fz iθt t

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟
	

	

				To	sum	up,	the	complex	moment	can	be	represented	by	the	antihermitic	matrix:	
	
(54)																																			

	

  moment ≡ M , P{ } avec M* = −M ; P ∈!4 	
	

					We	then	form	the	quantity:  M  	
(55)	

  
M(Z) = 1

2
Tr ( M Ω) + P * G Γ 	

					Let’s	express	duality:		
(56)	
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1
2

Tr ( M Ω) + P * G Γ = Tr ( M 'Ω ' ) + P'* G Γ ' 	

			We	get:		

 

1
2

Tr ( M Ω) + P * G Γ = 1
2

Tr ( M ' L *ΩL) + P'* L *ΩC + P'* L *G Γ
	

																																																							
The	identification	on	the	 terms	gives:	
	
(57)																																																									 P

* = P'* L * → P = L P' 		

				Following	Souriau,	we	can	permute	the	terms	with	’	and	without	’	(we	would	just	have	to	
write	the	relations	differently	from	the	start)	and	we	obtain	the	first	relation	translating	the	
action	of	the	group	on	its	moment:	
	
(58)	

 
P ' = L P 	

				From	this	first	result	we	deduce	the	first	invariant	(Casimir	number):	This	relation	entails	
the	conservation	of	the	modulus	of	P.	This	modulus	is	P*	G	P	.	
	
(59)	
	

 P '*G P' = ( L P)*G ( L P) = P* ( L
*

G L)P = P*G P 	
:	
(60)	

  
P = E

P
⎛

⎝⎜
⎞

⎠⎟
P *G P = E , P( )G E

P
⎛

⎝⎜
⎞

⎠⎟
= E E − P P 	

					Energy	and	momentum	are	complex.	They	therefore	both	have	a	real	component	and	a	
pure	imaginary	component.	
	
																																																														  E = e + i ε P = p + iπ 		
(61)																			

  
P

2
= p2 + π2 avec p2 = px

2 + py
2 + pz

2 et π2 = πx
2 + πy

2 + πz
2 	

	
(62)																																									

  
E

2
− P

2
= e2 + ε2( ) − p2 + π2( ) = Cst 	

	

				We	will	link	this	geometric	description	to	the	movements	of	particles	in	a	complex	space.	
In	 this	 space	we	will	 have	 a	 real	 plane	 and	 an	 imaginary	 plane.	We	 had	 defined	 complex	
coordinates:	
	(63)	

γ
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X =

X°
X1

X2

X3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

					We	may	write:		
(64)																																																																			 X° = t + iτ 		

(65)

																																																																			 

X1 = x1 + iξ1

X2 = x2 + iξ2

X3 = x3 + iξ3

	

					The	real	plane	corresponds	to	:		
(66)																																																																			 ξ

1 = ξ2 = ξ3 = 0 	
	

			The	imaginary	plane	to	:		à		
(67)																																																																	 x

1 = x2 = x3 = 0 	
	

				All	configurations	are	possible.	
	
				We	can	imagine	particles	whose	movements	are	belong	to	the	real	plane.	These	will	then	
correspond	 to	 the	 movements	 of	 real	 masses	 m.	 As	 I	 used	 the	 letter	 M	 to	 describe	 a	
component	 of	 the	 moment	 I	 will	 have	 to	 use	 another	 character	 M ,	 italic,	 to	 describe	 a	
complex	mass,	with	the	idea	that	uppercase	characters	correspond	to	complex	quantities:	
:		
(68)																																																																						  M = m + iµ 	

				We	will	have	“real	masses	m”	whose	movements	are	part	of	the	real	plane	and	which	“live”	
at	 the	 rate	 of	 time	 t.	 And	 “Imaginary	 masses	 µ  ”	 whose	 movements	 are	 part	 of	 the	
imaginary	plane	and	which	live	with	imaginary	time	 τ .			
	
				And	“complex	masses	  M = m + iµ ” whose	movements	are	part	of	the	complex	space	

 X = x + iξ  and	which	“live”	with	a	complex	time	  T = t + i τ .			
	
				Finally	we	can	imagine	semi-complex	movements,	where	the	movement	is	managed	in:	
	
(69)																																																																										 x ,τ{ } 	

	
					Combination	of	real	space	and	imaginary	time.	Or		a	combination	of	imaginary	space	and	
real	time	:		
	
(70)																																																																										 ξ , t{ } 	
	
			Now	we	have	to	build:		 	
	

 M → M' 	



	 29	

				We	have	:		

(71)																																							
	 
1
2

Tr ( M Ω) = 1
2

Tr ( M ' L *ΩL) + P'* L *ΓC 	

					Like	Souriau,	we	begin	by	operating	a	circular	permutation	in	the	first	term	of	the	second	
member:	
	(72)																																																		 Tr ( M 'L *ΩL) = Tr( L M'L *Ω) 																																						

			
Whiche	gives:		

(73)																																							
 

1
2

Tr ( MΩ ) = 1
2

Tr ( L M'L *Ω ) + P'* L * ΩC 		

	
				The	term				 P

* L *Ω C 			is	formed	by	the	product	of	two	complex	vectors,	the	line	vector	 P
*
	,	

and	the	column	vector	 L
*Ω C 	

	
				So	that	we	can	write	:		
(74)																																												 P

* L *Ω C = Tr( L *Ω C P * ) 	
	

And	still	operate	another	circular	permutation;	
	
(75)																																																				 P

* L *Ω C = Tr( C P *L *Ω ) 	
	

				Which	gives:		

(76)																																			
 

1
2

Tr ( MΩ ) = 1
2

Tr ( L M'L *Ω ) + Tr( C P'*L * Ω ) 	

				Inverting	the		‘	:		
(77)																																			 Tr ( M 'Ω ) = Tr( L M L *Ω ) + 2Tr ( C P *L * Ω ) 	
	
	
(78)																																			

 
Tr ( M '− L M L * − 2C P *L * )Ω⎡⎣ ⎤⎦ = 0

	
		

				We	thus	finally	obtain	the	equivalent,	in	complexes,	of	the	relations	established	by	Souriau	
	

	(79)																																																												
 

M '= L M L * + 2C P *L *

P ' = L P 	

	

	

	

	


