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Geometrical Quantum Gravity (GQG). Quantization in Phase Space with Discrete 
Volume Elements 
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Abstract 

We propose a geometrical approach to quantum gravity based on a covariant formulation in 
phase space. In this framework, mass is no longer associated with point particles but with a 
probabilistic distribution function 𝑓"𝑥! , 𝑢!&	over a six-dimensional phase space, where 𝑥" 	are 
spatial coordinates and 𝑢" 	are velocity components. The field equations are derived from a 
variational principle involving an action built from a quantized volume element. This yields a 
quantized description of the gravitational field, free from classical singularities and ultraviolet 
divergences. The vacuum is modeled as a structured medium filled with mass dipoles of 
opposite signs(+𝑚,−𝑚), generating a gravitational polarization analogous to Debye screening 
in plasma physics. This leads to the emergence of a characteristic screening length, comparable 
to the Jeans length, regularizing the self-energy of the gravitational field. The uncertainty 
principle emerges naturally as a topological constraint on the phase-space volume element. This 
framework, which we refer to as Geometrical Quantum Gravity (GQG), offers an alternative to 
quantization via field operators and provides a new foundation for a quantum theory of gravity 
grounded in statistical geometry. 
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1. Introduction 

The reconciliation of general relativity and quantum mechanics remains one of the deepest 
challenges in theoretical physics. While general relativity is formulated on smooth manifolds 
governed by differential geometry, quantum mechanics introduces intrinsic discreteness and 
probabilistic behavior. A central difficulty lies in the fact that general relativity describes matter 
through continuous stress-energy tensors, whereas quantum theory assigns probabilistic, 
operator-based properties to discrete states. 

This article proposes a geometric and statistical reformulation of gravitation based on an 
extended six-dimensional phase space, where positions and velocities (or momenta) are treated 
on equal footing. Matter is described not by point masses but by a distribution function 
𝑓"𝑥" , 𝑢"&, encoding the probability of presence of mass at each phase-space point. This 
reformulation avoids singularities by replacing delta-function sources with smeared, 
normalized densities. 

Furthermore, we introduce a geometric quantization principle on the volume elements of phase 
space, leading to a reinterpretation of the uncertainty principle as a topological constraint. The 
curvature of spacetime becomes a statistical response to this distributed matter, resulting in 
modified field equations. In the weak-field limit, the model yields a Poisson equation where the 
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density source is integrated over velocities, and exhibits gravitational screening similar to 
Debye shielding in plasma physics. 

The framework naturally accommodates a structured vacuum composed of mass dipoles 
(+𝑚	, −𝑚), as proposed in Janus-type cosmologies. The action functional can be generalized 
to include a covariant formulation, which opens the path to a nonperturbative quantum theory 
of gravitation—here referred to as Quantum Gravito-Dynamics (QGD). 

 

2. Distribution Function and Probabilistic Matter Description 

We define a distribution function over the 6D phase space 𝑓"𝑥" , 𝑢"& ∈ 	 [0,1], where 𝑥" 	are 
spatial coordinates and 𝑢" 	are velocity components. This function represents the probability 
density of the presence of matter (of mass 𝑚) at each phase-space point. The local mass density 
is obtained by integrating over velocities: 

𝜌"𝑥"& = 	4𝑚	𝑓"𝑥" , 𝑢"&	𝑑#𝑢 

In this framework, the gravitational field is no longer sourced by a singular distribution such as 
a delta function, but by a continuous density reflecting the spatial and kinematic dispersion of 
matter. This probabilistic approach provides a natural smoothing of sources, avoiding 
divergence in the field equations. The function 𝑓"𝑥" , 𝑢"&	thus plays a dual role: it serves as both 
a statistical representation of matter and a dynamical quantity constrained by the geometry of 
phase space. 

This probabilistic matter description aligns with the statistical interpretation of quantum 
mechanics and is particularly suited to cosmological models in which structure formation 
emerges from fluctuations in an initially homogeneous medium. 

 

3. Modified Gravitational Field Equations 

We now formulate the gravitational field equations based on the probabilistic distribution 
𝑓"𝑥" , 𝑢"&. Instead of sourcing curvature through a classical stress-energy tensor 𝑇!$(𝑥), we 
replace this by a velocity-averaged energy-momentum density derived from the distribution 
function. In the covariant formulation, the Einstein field equations become: 

𝐺!$(𝑥) = 8𝜋𝐺	 ∫ 𝑓(𝑥, 𝑢)	𝑚	𝑢!,𝑢$ 	𝑑%𝑢 

This generalizes the classical coupling between matter and curvature by integrating over the 
velocity degrees of freedom, treating matter as a statistical ensemble. 

In the Newtonian limit, where the metric reduces to a scalar potential and velocities are non-
relativistic, this reduces to a generalized Poisson equation: 



 3 

∇&Φ(𝑥) = 4𝜋𝐺	4𝑚 	𝑓(𝑥, 𝑢)𝑑#𝑢 = 	4𝜋𝐺	𝜌(𝑥) 

This equation governs the gravitational field created by a continuous distribution of mass in 
phase space, and avoids the singular behavior of classical point masses. The resulting potential 
can also exhibit screening effects due to the structure of the vacuum, especially if the 
background consists of a mixture of positive and negative mass elements. 

This modification sets the stage for describing gravitational polarization phenomena analogous 
to those found in electromagnetism, and leads naturally to the concepts discussed in the next 
section. 

 

4. Newtonian Limit and Screening 

In the non-relativistic regime, where the spacetime metric is weakly perturbed and particle 
velocities are small compared to the speed of light, the covariant formulation reduces to a scalar 
theory governed by a modified Poisson equation. The gravitational potential Φ(𝑥)satisfies: 

∇&Φ(𝑥) = 4𝜋𝐺	4𝑚 	𝑓(𝑥, 𝑢)𝑑#𝑢 = 	4𝜋𝐺	𝜌(𝑥) 

This formulation ensures that the gravitational field reflects the phase-averaged mass 
distribution rather than idealized point sources. Furthermore, when the vacuum is considered 
as a medium filled with virtual mass dipoles (analogous to electric dipoles in a dielectric), this 
equation supports screened solutions. 

For instance, in the presence of a structured vacuum with opposing mass signs, the effective 
gravitational potential may exhibit an oscillatory or exponentially damped form, such as: 

Φ(𝑟) 	∝ 	
1
𝑟 	𝑐𝑜𝑠 C

𝑟
𝜆'
E 

where 𝜆'	is the Jeans length associated with the background mass distribution. These 
expressions mirror known behaviors from plasma physics and condensed matter, where similar 
screening effects regularize interaction potentials. In cosmological contexts, this screening may 
help resolve issues related to singularities and long-range divergence of Newtonian gravity. 

This completes the foundation for a deeper formulation of gravitational quantization and 
prepares the ground for geometric quantization principles in the following sections. 

 

5. Quantization as a Topological Constraint 

The formulation of gravity within phase space naturally leads to a reinterpretation of quantum 
principles as emerging from geometric constraints. In particular, we postulate that phase space 
is endowed with a minimal volume element, such that the product of position and velocity (or 
momentum) uncertainties is bounded below. This yields a generalized quantization condition: 
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F|det 𝑔|· Δx · Δy · Δz · Δu · Δv · Δw ≥ ℏ³ 

This condition implies that the volume of a six-dimensional cell in phase space cannot fall 
below Planck's constant cubed, aligning with the uncertainty principle of quantum mechanics. 
In the one-dimensional case, this reduces to: 

Δx · Δu  ≥  ℏ 

This phase space quantization is not imposed by operators or commutation relations, but rather 
emerges from the topology and metric structure of the fibered manifold. In this sense, quantum 
behavior is interpreted as a consequence of a granular geometry. The discreteness of 
observables such as energy or mass arises from the admissible phase space configurations 
respecting the minimal cell volume. 

This interpretation offers a unification between quantum principles and classical geometry, 
suggesting that quantization is a global topological effect rather than a local operator algebra. 

 

6. Gravitational Screening and Jeans Stability 

To assess the stability of the gravitational potential under small perturbations in a medium 
described by the distribution function f (x,u)f, we linearize the generalized Poisson equation 
around a uniform background. In analogy with the Jeans instability analysis in classical 
astrophysics, we consider small perturbations δf and δΦ and derive a dispersion relation for the 
evolution of these fluctuations. 

The resulting equation reveals the existence of a characteristic length scale λJ , the Jeans length, 
beyond which gravitational collapse can occur. In the quantized phase-space framework, this 
scale is modified by the intrinsic granular structure and the polarization response of the vacuum. 
The effective potential due to perturbations exhibits a damped or oscillatory behavior: 

Φ(𝑟) ∝ 𝑐𝑜𝑠 C
𝑟
𝜆'
E 

These solutions demonstrate the presence of gravitational screening, akin to Debye shielding in 
plasma physics. This mechanism prevents divergence of the potential at large distances and 
regulates the growth of perturbations, thereby introducing a natural cutoff to gravitational 
interaction scales. 

This screening is not imposed phenomenologically but arises from the structure of the vacuum 
itself, shaped by the statistical distribution of virtual dipoles and the geometric quantization of 
phase space. It provides an elegant resolution to long-standing issues of divergence in 
Newtonian and relativistic gravity, while offering new insight into early-universe structure 
formation and the cosmic microwave background. 
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Appendix A. On the Physical Meaning of Renormalization 

In standard quantum field theory, divergences often arise from treating particles as point-like 
objects interacting in a vacuum devoid of structure. Renormalization counteracts these 
divergences by redefining parameters such as mass and charge in terms of observed quantities. 
In this model, divergences are naturally avoided by replacing singular sources with smooth 
distributions in phase space, and by considering the vacuum as a medium composed of virtual 
dipolar structures. This perspective suggests that renormalization may have a physical rather 
than merely computational basis: it reflects the response of a structured vacuum to external 
sources, analogous to screening effects in electromagnetism. 

 

Appendix B. Vacuum Structure in Janus Cosmology and Gravitational 
Quantization 

In Janus cosmology, the universe is modeled as a two-sheeted structure with opposite time and 
mass orientation, connected via a compact projective manifold. Each “sheet” hosts matter of a 
given mass sign, and both evolve with independent but correlated metrics. The structured 
vacuum proposed in this paper is a natural extension of this idea: fluctuations in one sheet may 
polarize the vacuum, thereby influencing the other sheet. Gravitational quantization in this 
context emerges from geometric constraints on this dual structure, where mass dipoles and 
curvature distributions encode non-local interactions between the sheets. 

 

Appendix C. Toward a Theory of Quantum Gravito-Dynamics (QGD) 

The framework presented opens a path toward a new theory of gravity rooted in quantum 
principles without relying on the graviton. Quantum Gravito-Dynamics (QGD) seeks to 
describe gravity as an emergent property of a geometrically quantized, statistically structured 
phase space. 

In this setting, the vacuum is conceived as a polarizable medium filled with virtual dipoles of 
mass ±m. When a real mass is introduced, it induces a polarization analogous to that observed 
in dielectric media, leading to a modified potential and effective screening of the gravitational 
field. This approach regularizes the gravitational self-energy and aligns with expectations from 
quantum field theory where the vacuum responds dynamically to fields. 

Moreover, the discrete nature of mass and other conserved quantities can be interpreted as 
arising from topological constraints on admissible configurations in the phase space. 
Quantization emerges not from operator algebra but from the underlying geometry and 
symmetry group of the manifold. 

This suggests that the curvature of spacetime, rather than being a classical geometric object, is 
itself a statistical field, defined as the averaged response of a quantized structure. This statistical 
curvature couples to a probability distribution function that plays the role of the gravitational 
source, eliminating the need for point singularities. 



 6 

QGD thus departs from traditional quantization schemes by building a theory directly on 
geometric and statistical principles. The combination of phase space quantization, vacuum 
polarization, and probabilistic sources offers a coherent, divergence-free alternative to the 
graviton-based approach. 

 

Appendix D. Variational Formulation in Quantized Phase Space 

To facilitate comparison with conventional field theory, we present a variational principle 
consistent with our statistical-geometric framework. Let f (x,u) be a normalized distribution 
function in the six-dimensional phase space, and let Φ(x) be the gravitational potential. We 
define the action: 

𝑆[	𝑓, Φ	] = 	4𝑑#𝑥	𝑑#𝑢	 O	𝑓(𝑥, 𝑢) P	
1
2𝑚𝑢

& +𝑚Φ(x)	S + 18	𝜋𝐺∇&Φ	T	 

The first term represents the kinetic and potential energy of the matter distribution, while the 
second is the field energy. The equations of motion are derived by extremizing S with respect 
to variations in Φ and f, under the constraint: 

∫ 𝑓(𝑥, 𝑢)𝑑#𝑢	 = 	𝜚(𝑥)         ∫𝜌(𝑥)𝑑# 𝑥 = 𝑀 

Variation with respect to Φ yields the Poisson equation: 

∇&Φ = 4πG4𝑚	𝑓(𝑥, 𝑢)𝑑# 𝑢 = 4𝜋𝐺	𝜌(𝑥) 

This action principle provides a field-theoretic backbone to the statistical formulation. It allows 
for the application of standard techniques such as path integrals (over distribution functions), 
perturbation theory, and symmetry analysis, within the phase-space framework. 

 

Appendix E. Toward a Quantum Evolution Equation in Phase Space 

A natural question in the context of this statistical-geometric framework is whether a quantum 
dynamical equation—analogous to Schrödinger or Dirac—can be formulated within the 
extended phase space. We propose that the dynamics of a complex-valued wavefunction 𝜓, 
defined over the six-dimensional phase space, obeys a generalized Schrödinger-type equation: 

𝑖	ℏ∂Ψ/∂t=	 \−	 ℏ
!

&)
	∇*& +𝑚	Φ(𝑥)]Ψ	(	𝑥	, 𝑢	, 𝑡	) 

This equation describes the evolution of the probability amplitude for finding a mass at position 
with velocity u, under the influence of the gravitational potential Φ(𝑥), sourced by the 
distribution function 𝑓	(𝑥, 𝑢). Unlike canonical quantization, the operator ∇*& 	acts on the fiber 
of velocities, reflecting the geometry of the tangent bundle. 

This evolution equation admits stationary solutions of the form: 
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Ψ	(	𝑥	, 𝑢	, 𝑡	) = 	𝜓	(𝑥, 𝑢)	𝑒+	
-.
ℏ 	 

suggesting the existence of bound states in a gravitationally structured vacuum. In the classical 
limit, the modulus squared of Ψ converges to the probability density 𝑓	(𝑥, 𝑢). 

This formulation provides a bridge between the classical distribution function and a quantized 
wave description, aligning the QGD framework with conventional quantum mechanics while 
retaining its geometric origin. 
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