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Abstract
Classical attempts to construct a galaxy model, in a stationary and axisymmetric situation, consist of giving a gravitational
field and injecting it into the collisionless Boltzmann equation to deduce the solution distribution function f. We will do
exactly the opposite, by assimilating the galaxy to a self-gravitating point-mass system. The velocity distribution function
is then the solution of an integrodifferential equation. Taking into account the Newtonian character of the potential, we can
replace it with the system consisting of the Vlasov equation, written in terms of residual velocity, and the Poisson equation.
We then give ln(f ) the form of a polynomial of degree 2, such that one of the axes of the velocity ellipsoid points towards
the center of the system. This single constraint gives the evolution of the axes in space, these being equal to the center of the
galaxy (Maxwell-Boltzmann distribution). Moving away from the center, the axis pointing in this direction remains constant
while the transverse axes tend to zero at infinity. We then construct the macroscopic velocity field by excluding any vortex
structure. This field then tends towards a solid body rotation at the center. The velocity tends towards a remote plateau, which
is then consistent with the observational data.

Keywords Galactic dynamics · Ellipsoid of velocities · Vlasov equation · Elliptical solution · Evolution of the velocity at
the periphery · Confinement · Dark halo · Janus cosmological model

1 Introduction

Today, there is an approach to dynamics that can be con-
sidered classic. It can be found in Chap. 4 of J. Binney and
S. Tremaine’s basic work “galactic dynamics” (Binney and
Tremaine, 2008). Galaxies, considered as self-gravitating
mass-point systems, are modeled using a velocity distribu-
tion function:

f (t, x, y, z,u, v,w) ≡ f (t, r,v) (1)

which is not negative, continuous, differentiable and defined
in ℝ×ℝ

3 ×ℝ
3 where:

r ≡
⎛
⎝

x

y

z

⎞
⎠ and v ≡

⎛
⎝

u

v

w

⎞
⎠

A function f is then assumed to obey the collisionless Boltz-
mann equation, which is written:

∂f

∂t
+ v.

∂f

∂r
− ∂Ψ

∂r
.
∂f

∂v
= 0 (2)

where Ψ(r) in an arbitrarily given potential field corre-
sponding to the problem.

The approach then focuses on Jeans’ theorem:

Steady-state solutions of the Boltzmann collisionless
equation depends on the phase space only through in-
tegrals of motion in a given potential, and any function
of the integrals yields in a steady state solution of the
collisionless Boltzmann equation.

Thus, the distribution function associated with the sim-
plest model, that of the isothermal sphere, is presented as
a special case of a polytropic model. In the treatment of
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this problem by S. Chandrasekhar (Chandrasekhar, 1941),
the approach is radically different, in the sense that this dis-
tribution function, spherically symmetric in velocity space,
is presented as a special case of an elliptic function. In fact,
the collisionless Boltzmann equation can be written in terms
other than absolute velocity components:

v =
⎛
⎝

u

v

w

⎞
⎠ (3)

We’ll refer to ourselves as C, the residual velocity:

C =
⎛
⎝

U

V

W

⎞
⎠ (4)

It’s a velocity that kinetic gas theorists refer to as the “ther-
mal agitation velocity”. It’s important to be clear about the
notations we’re going to use. Thus, the letter n designates
the number of mass points per unit volume, deduced from
the distribution function f by:

n(r) =
∫︂

f (r,v) d3v (5)

Which differs from ref. Binney and Tremaine (2008). Mul-
tiplying by the mass m of the components gives the mass
density ρ = nm. The macroscopic velocity is:

c0 = 1

n(r)

∫︂
vf d3v ≡ < v > (6)

And residual velocity is defined by:

C = v − c0 (7)

We will follow the approach chosen by S. Chandrasekhar in
his book. Unfortunately, he never uses vector notation. So
his collisionless Boltzmann equation becomes, by adopting
our notations:

∂f

∂t
+u

∂f

∂x
+v

∂f

∂y
+w

∂f

∂z
− ∂Ψ

∂x
∂f

∂u
− ∂Ψ

∂y
∂f

∂v
− ∂Ψ

∂z
∂f

∂w
= 0

(8)

We can write it in a more compact way:

∂f

∂t
+ v.

∂f

∂r
− ∂Ψ

∂r
.
∂f

∂v
= 0 (9)

Chandrasekhar then decided to concentrate on elliptic func-
tions where ln(f ) is in the form of a polynomial of degree
3 according to the components U , V , W of the residual ve-
locity. And he writes (with his notations):

ln(f ) = aU2 + bV 2 + cW 2 + 2dV W + 2gWU + 2hUV

− 2Δ1U − 2Δ2V − 2Δ3W − χ (10)

He therefore has ten unknown functions to determine. He
then writes the Boltzmann collisionless equation in terms of
the velocity of agitation (U,V,W). He then obtains a third-
degree polynomial containing twenty terms. Since this equa-
tion must be independent of these residual velocity compo-
nents, this leads him to a system of twenty second-order dif-
ferential equations, the simple writing of which takes several
pages. To this he adds the Poisson equation of the Newtonian
gravitational potential:

ΔΨ = 4πGρ (11)

The construction of these elliptical solutions, where the
logarithm of the distribution function is a polynomial of de-
gree two as a function of the residual velocity components,
and where the masses gravitate in their own gravitational
field, therefore implies the construction of the solution em-
anating from a system of twenty-one non-linear differential
equations. The potential being Newtonian, we derive the dis-
tribution function according to:

Ψ = Gm

∫︂
x

n(r)
r

d3r = Gm

∫︂
x

d3r

r

∫︂
v

f (r,v) d3v (12)

The gravitational field g, this time considered as created by
the distribution function f , is then defined by:

g = −∂Ψ

∂r
= −Gm

∂

∂r

[︃∫︂
x

d3r
r

∫︂
v

f (r,v) d3v

]︃
(13)

Mathematically speaking, we can summarize Chan-
drasekhar’s approach by saying that he looked for functions
f such that their logarithm is expressed as a polynomial of
degree two as a function of the residual velocity, which is a
solution of the integrodifferential equation:

∂f

∂t
+ v.

∂f

∂r
− Gm

(︃
∂

∂r

[︃∫︂
x

d3r
r

∫︂
v

f (r,v)d3v
]︃)︃

.
∂f

∂v
= 0

(14)

The introduction of the solution, according to Chan-
drasekhar, in the form of a polynomial of degree 2, trans-
forms the collisionless Boltzmann equation into a polyno-
mial of degree three. If we restrict ourselves to a stationary
solution:

– By cancelling out the degree-three terms, we deduce the
evolution of the components of the velocity ellisoid.

– By cancelling out terms of degree two, we deduce the
macroscopic velocity field.

– By cancelling out the unit-order terms, we deduce the po-
tential in space and hence the density.

– When stationary, there are no zero-order terms.
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At the end of this calculation, we don’t have to ask
whether the gravitational potential is compatible with such
a solution, since it is an integral part of it. As we can see,
Chandrasekhar’s approach is the reverse of the conventional
one. As early as the 1970s, we took up the question of how to
construct these elliptical solutions, taking advantage of the
computational techniques introduced in 1939 by S. Chap-
man and T.G. Cowling in their book “The Mathematical
Theory of Non-Uniform Gases” (Chapman and Cowling,
1939). At the time, their notations were remarkably elegant
and compact. Scalars are indicated by thin letters, and vec-
tors by bold ones. But they also introduced dyadics, which
are simple matrices composed using vectors:

ab =
⎛
⎝

axbx axby axbz

aybx ayby aybz

azbx azby azbz

⎞
⎠ (15)

Gradient vectors are then themselves considered as

dyadics, formed from the vector ∇ = ∂

∂r
, being the position

vector (x, y, z) and, for example, the gravitational potential
Ψ . The scalar product of two vectors is always denoted a.b.
But the authors introduce the scalar product of two dyadics
noted w : w′ and defined by:

w : w′ =
∑︂
α

∑︂
β

wαβ w′
βα = w′ : w (16)

The product of a dyadic matrix and a vector is also noted:

(ab).d and d.(ab) (17)

It is then possible to use the set of theorems related to this
algebra of dyadics, such as:

(ab).d = a(b.d) d.(ab) = (d.a)b (18)

ab : cd = a.(b.cd) = a.{(b.c)d} = (a.d)(b.c) (19)

ab : cd = ac : bd (20)

w being a dyadic:

b.(a.w) = ba : w (21)

The authors also introduce a “mobile operator”:

D

Dt
= ∂

∂t
+ c0.

∂

∂r
(22)

The tedious collisionless Boltzmann equation then becomes:

∂ ln(f )

∂t
+ c0.

∂ ln(f )

∂r
+ C.

∂ ln(f )

∂r

−
(︃

∂Ψ

∂r
+ Dc0

Dt

)︃
.
∂ ln(f )

∂C
− ∂ ln(f )

∂C
C : ∂c0

∂r
= 0 (23)

In steady state:

c0.
∂ ln(f )

∂r
+ C.

∂ ln(f )

∂r
−

(︃
∂Ψ

∂r
+ ∂c0

∂t
+ c0.

∂c0

∂r

)︃
.
∂ ln(f )

∂C

− ∂ ln(f )

∂C
C : ∂c0

∂r
= 0 (24)

The terms ∂ ln(f )
∂C C and ∂c0

∂r are dyadic matrices composed
from two vectors. Note the remarkable compactness of this
formulation. If we don’t use it, the last term of the equation
is itself transformed into nine terms, etc. ∂c0

∂r is therefore the
velocity gradient matrix, not to be confused with its diver-
gence, which is written as:

∂

∂r
.c0 (25)

Macroscopic parameters are defined as stochastic quan-
tities. We have already seen the density n, above, and the
macroscopic velocity c0. We define the pressure matrix p,
which is a dyadic, as:

p = m

∫︂
CC f d3v = nm < CC > (26)

With the dyadic:

CC =
⎛
⎝

U2 UV UW

UV V 2 V W

UW V W W 2

⎞
⎠ (27)

The matrix is symmetrical. There is a third macroscopic
quantity which, in fluid mechanics, is the absolute tempera-
ture T , which is then defined as the mean value of the kinetic
energy associated with the thermal agitation velocity:

3

2
kBT = 1

2
ρ < C2 >= 1

2
m

∫︂
C2f d3v (28)

kB being Boltzmann’s constant. From the pressure matrix,
we define a scalar pressure:

p = ρ tr < CC >= ρ < C2 >= nkBT (29)

And Boyle’s law comes into play again. We add the heat flux
vector, defined as the transport of thermal agitation energy:

q = 1

2
m

∫︂
C2 Cf d3v = 1

2
ρ < C2C > (30)

Entropy is also defined as the mean value of the quantity
Logf :

s = 1

n

∫︂
f ln(f ) d3v = < ln(f ) > (31)

The collisionless Boltzmann equation also provides the con-
servation equations, which are greatly simplified by the use
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of dyadics:

∂ρ

∂t
+ c0.

∂ρ

∂r
+ ρ

∂

∂r
.c0 = 0 (32)

∂

∂r
.p + ρ

(︃
∂Ψ

∂r
+ ∂c0

∂t
+ c0.

∂c0

∂r

)︃
(33)

∂T

∂t
+ c0.

∂T

∂r
+ 2

3kBn

(︃
p : ∂c0

∂r
+ ∂

∂r
.q

)︃
(34)

The term p : ∂c0
∂r represents the work of the pressure forces.

Of course these equations simplify when the medium is in
a state of local thermodynamic equilibrium, i.e. when the
distribution function has Maxwellian form:

f 0 = n

(︃
m

2πkBT

)︃3/2

e
− mC2

2kBT (35)

In other words, ln(f ) is a spherical polynomial. The
equations then become Euler’s equations. If the medium is
homogeneous and uniform, the unsteady solution gives the
Friedman equation, and we find (Petit and Monnet, 1975)
the Newtonian cosmology discovered in 1934 by Milne and
Mc Crea (McCrea and Milne, 1934). We will use this par-
ticular case of the Maxwellian solution, already treated by
Chandrasekhar (Chandrasekhar, 1941) to show the path fol-
lowed when we center the solution on the simple form of the
distribution function. We have:

ln(f 0) = Cst − mC2

2kBT
+ ln(

n

T 3/2
) (36)

We introduce this form of the distribution function into the
collisionless Boltzmann equation in a stationary situation.
The equation becomes:

(C + c0).

(︃
mC2

2kBT

∂T

∂r
+ ∂

∂r
ln(

n

T 3/2 )

)︃

+ mC
kBT

.

(︃
∂Ψ

∂r
+ c0.

∂c0

∂r

)︃
+ m

kBT
CC : ∂c0

∂r
= 0 (37)

We have a single third-order term:

mC2

2kBT

(︃
C.

∂T

∂r

)︃
= 0 (38)

The medium is therefore isothermal. Transposed to astro-
physics, this means that the dispersion of mass-point veloc-
ities is constant throughout space. We now turn to second-
order terms. In dyadic algebra, this is written:

CC : ∂c0

∂r
= 0 (39)

By expanding, we have nine terms. The solution to this sys-
tem of differential equations is:

c0 = v0 + 𝝎 × r (40)

Fig. 1 Mass distribution of an isothermal, spheroidal formation, ac-
cording to Chandrasekhar

Assuming v0 = 0, we obtain a solid-body rotation with con-
stant angular velocity ω. The unit order terms give:

∂ ln(n)

∂r
+ m

kBT

(︃
∂Ψ

∂r
+ c0.

∂c0

∂r

)︃
= 0 (41)

Equation which states that the gravitational field is balanced
by the combination of pressure force plus centrifugal force.
We have the following equation:

c0 = ω

⎛
⎝

−y

x

0

⎞
⎠ (42)

Let’s introduce the vector:

u = ω

⎛
⎝

x

y

0

⎞
⎠ (43)

We get:

∂

∂r
.

(︃
ln(n) + m

kBT

(︃
Ψ − 1

2
u2ω2

)︃)︃
(44)

Whence:

n = n0 e

m

kBT
Ψ+ m

2kBT
u2ω2

(45)

Combining with the Poisson equation:

ΔΨ = 4π Gn0 e

m

kBT
Ψ+ m

2kBT
u2ω2

(46)

From which we derive the gravitational potential and mass
distribution (Fig. 1).
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Fig. 2 One of the axes of the velocity ellipsoid pointing towards the
geometric center

Which is nothing other than the result obtained by
Chandrasekhar, with a heavier handwriting. After this long
preamble, we are now in a position to understand the strat-
egy of the present article, whose project is to construct a
model of a galaxy as an exact stationary solution of the col-
lisionless Boltzmann equation, having as its sole starting
point the form of the distribution function, and exploiting
the computational technique of dyadic algebra. Under these
conditions, ln(f ) becomes a particular polynomial of order
two, depending on the components (U,V,W) of the resid-
ual velocity. By introducing this expression into the equation
written in terms of the components of the residual velocity,
and setting its various polynomials to zero, we obtain a sys-
tem of twenty non-linear differential equations, to which
Poisson’s equation is added. As with the Maxwellian so-
lution, the third-order terms will give the evolution of the
velocity ellipsoid in space. The second-order terms will give
the velocity field and the first-order terms, combined with
the Poisson equation, the gravitational potential and mass
distribution. In stationary mode, there are no zero-order
terms. So there’s no need to ask whether this potential is
compatible with this distribution function, since it follows
from it as an integral part of a solution, based solely on the
form of this function.

2 Extension to a steady axisymmetric
elliptical solution

The hypothesis that the logarithm of the distribution func-
tion is a polynomial of degrees 2 depending on the compo-
nents of the residual velocity, such that one of the axes of
the ellipsoid points towards the origin was proposed in 1972
by J.P. Petit (Petit, 1972), then taken up again in 1974 in ref-
erence (Petit and Monnet, 1974). In this model one of the
principal axes of the velocity ellipsoid points towards the
geometric center of the system, which corresponds to Fig. 2.

In this figure the vector P is parallel to the plane (z = 0).
We can define speed dispersions according to:

σP = ⟨C2
P ⟩

σQ = ⟨C2
Q ⟩

σR = ⟨C2
R ⟩

(47)

Still following reference (Petit, 1972):

ln(f ) = ln(B)− m

2kBH
C2 +a (C.r)2 +α [C.(k × r)]2 (48)

The functions B , H , α, a are functions of the position and
will then have to be determined. We only have data referring
to the velocity ellipsoid in the vicinity of the Sun. Its major
axis then does not point towards the center but in its vicinity.
We will attribute this small deviation, called the vertex de-
viation, to the influence of the local fluctuation of the gravi-
tational field linked to the presence of the spiral arm. When
we introduce the form of the distribution function (48) into
equation (24), the latter becomes a polynomial of degree 3
as a function of the components (U,V,W) of the residual
velocity. Since this equation must be satisfied regardless of
these components, we then obtain a system of twenty par-
tial differential equations to which we must add Poisson’s
equation (11).

3 The terms of degree three give the
evolution of the velocity ellipsoid (Petit
and Monnet, 1975)

Let’s group these terms together:

− m

2kB

C2C.
∂

∂r
(

1

H
) + 2a(C.r).C.C + C.

∂a

∂r
(C.r)2

+ C.
∂α

∂r
[C.(k × r)]2 = 0 (49)

− m

2kB

(︂
C2

x + C2
y + C2

z

)︂

×
(︃

Cx

∂

∂x

(︃
1

H

)︃
+ Cy

∂

∂y

(︃
1

H

)︃
+ Cz

∂

∂z

(︃
1

H

)︃)︃

+2a(C2
x + C2

y + C2
z )(xCx + yCy + zCz)

+
(︃

Cx

∂a

∂x
+ Cy

∂a

∂y
+ Cz

∂a

∂z

)︃
(xCx + yCy + zCz)

2

+
(︃

Cx

∂α

∂x
+ Cy

∂α

∂y
+ Cz

∂α

∂z

)︃
(−yCx + xCy)

2 = 0

(50)

Whence:

C3
x : − m

2kB

∂

∂x

(︃
1

H

)︃
+ 2ax + x2 ∂a

∂x
+ y2 ∂α

∂x
= 0 (51)

C3
y : − m

2kB

∂

∂y

(︃
1

H

)︃
+ 2ay + y2 ∂a

∂y
+ x2 ∂α

∂y
= 0 (52)
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C3
z : − m

2kB

∂

∂z

(︃
1

H

)︃
+ 2az + z2 ∂a

∂z
= 0 (53)

C2
xCy : − m

2kB

∂

∂y
(

1

H
) + 2ay + x2 ∂a

∂y
+ 2xy

∂a

∂x

+ y2 ∂α

∂y
− 2xy

∂α

∂x
= 0 (54)

C2
yCx : − m

2kB

∂

∂x

(︃
1

H

)︃
+ 2ax + y2 ∂a

∂x
+ 2xy

∂a

∂y

+ x2 ∂α

∂x
− 2xy

∂α

∂y
= 0 (55)

C2
xCz : − m

2kB

∂

∂z

(︃
1

H

)︃
+2az+x2 ∂a

∂z
+2xz

∂a

∂x
+y2 ∂α

∂z
= 0

(56)

C2
yCz : − m

2kB

∂

∂z

(︃
1

H

)︃
+2az+y2 ∂a

∂z
+2yz

∂a

∂x
+x2 ∂α

∂z
= 0

(57)

C2
z Cx : − m

2kB

∂

∂x

(︃
1

H

)︃
+ 2ax + z2 ∂a

∂x
+ 2xz

∂a

∂z
= 0 (58)

C2
z Cy : − m

2kB

∂

∂y

(︃
1

H

)︃
+ 2ay + z2 ∂a

∂y
+ 2yz

∂a

∂z
= 0 (59)

CxCyCz : 2yZ
∂a

∂x
+ 2xz

∂a

∂y
+ 2xy

∂a

∂z
− 2xy

∂α

∂z
(60)

Assuming that a and α do not depend on r or z, we get
(D’Agostini, 2016):

C3
x ≡ C2

z Cx ≡ C2
yCx : − m

2kB

∂

∂x

(︃
1

H

)︃
+ 2ax = 0 (61)

C3
y ≡ C2

xCy ≡ C2
z Cy : − m

2kB

∂

∂y

(︃
1

H

)︃
+ 2ay = 0 (62)

C3
z ≡ C2

xCz ≡ C2
yCz : − m

2kB

∂

∂z

(︃
1

H

)︃
+ 2az = 0 (63)

In addition we have:

ρ2 = x2 + y2 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ2

∂x
= 2x

∂ρ2

∂y
= 2y

(64)

We get:

C3
x ≡ C2

z Cx ≡ C2
yCx : − m

2kB

∂

∂ρ2

(︃
1

H

)︃
+ a = 0 (65)

C3
y ≡ C2

xCy ≡ C2
z Cy : − m

2kB

∂

∂ρ2

(︃
1

H

)︃
+ a = 0 (66)

C3
z ≡ C2

xCz ≡ C2
yCz : − m

2kB

∂

∂z2

(︃
1

H

)︃
+ a = 0 (67)

That is, after integration:

∂

∂ρ2

(︃
1

H

)︃
= m

2kB

a ⇒ 1

H
= m

2kB

aρ2 + f1(z
2) (68)

∂

∂z2

(︃
1

H

)︃
= m

2kB

a ⇒ 1

H
= m

2kB

az2 + f2(ρ
2) (69)

The function f1 depends only on z2. So, if we differenti-
ate (68) with respect to z2 we can write:

∂

∂z2

(︃
m

2kB

aρ2 + f1(z
2)

)︃
= ∂

∂z2
f1(z

2) = ∂

∂z2

(︃
1

H

)︃

= m

2kB

a (70)

Thus:

f1(z
2) = m

2kB

aρ2 + kz (71)

Whence:

1

H
= m

2kB

aρ2 + m

2kB

az2 + kz (72)

Originally we have
1

H
= kz that we set equal to the con-

stant
1

H
= 1

T0
which gives:

1

H
= m

2kB

aρ2 + m

2kB

az2 + 1

T0
(73)

By introducing the characteristic length ro we get:

r2
0 = m

2akBT0
⇒ H = T0

1 + r2

r2
0

(74)

We will now decompose the residual velocity vector C
according to its projections on the P , Q, R axes.

Cr = C.R = C.
r

∥r∥ = C.r

∥r∥ (75)

Cp = C.P = C.
k × r

∥k × r∥ = C.(k × r)

∥k × r∥ (76)

Cq = C − Cr − Cp (77)

∥k × r∥2 = (|k × r).(|k × r) = (k.k)(r.r) − (k.r)(k.r)

= r2 − z2 = ρ2 (78)

ln(f ) = ln(B) + arC
2
r + apC2

p + aqC2
q (79)
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ln(f ) = ln(B) + (ar − aq)

r2
(C.r)2 + (ap − aq)

ρ2
[C.(k × r)]2

+ aqC2 (80)

By identifying:

aq = − m

2kBH
(81)

a = (ar − aq)

r2 → aq = − m

2kBH
+ ar2 (82)

α = (ap − aq)

ρ2
→ ap = − m

2kBH
+ aρ2 (83)

Let’s ask:

ρ2
0 = m

2αkBT0
(84)

We get:

ar = − m

2kBT0
(85)

ap = − m

2kBT0

(︄
1 + r2

r2
0

− ρ2

ρ2
0

)︄
(86)

aq = − m

2kBT0

(︄
1 + r2

r2
0

)︄
(87)

We can then express the velocity distribution function as
a function of the coordinates (Cr,Cp,Cq):

f = f0 e

⎛
⎝− m

2kBT0

⎡
⎣C2

r +C2
p

⎛
⎝1+ r2

r2
0

−ρ2

ρ2
0

⎞
⎠+C2

q

⎛
⎝1+ r2

r2
0

⎞
⎠

⎤
⎦

⎞
⎠

(88)

with:

f0 = n

(︃
m

2πkBT0

)︃ 3
2
(︄

1 + r2

r2
0

)︄ 1
2
(︄

1 + r2

r2
0

− ρ2

ρ2
0

)︄ 1
2

(89)

Which gives us the axes of the velocity ellipsoid:

σr =
√︃

2kBT0

m
(90)

σp =
⌜⃓
⃓⃓
⎷⃓

2kBT0

m

1

1 + r2

r2
0

− ρ2

ρ2
0

(91)

σp =
⌜⃓
⃓⃓
⎷⃓

2kBT0

m

1

1 + r2

r2
0

(92)

Fig. 3 Evolution of the axes of the velocity ellipsoid

We see that:

σp ≤ σq ≤ σr (93)

At the center of the system, the distribution of Maxwellian
speeds:

σp = σq = σr (94)

The component σr is independent of r . If we want to take
into account the observational data, these give σp ≈ σq . This

will mean, in our solution, that
1

ρ2
0

≪ 1

r2
0

i.e. α ≪ a. At large

distance the transverse axes tend towards zero, while the ra-
dial axis retains its value (Fig. 3).

In doing so, we are only repeating identically the calcu-
lations of references (Petit, 1972) and (Petit and Monnet,
1974). In 2016 reference (D’Agostini, 2016) introduced a
symmetry that had escaped the authors, and which leads to
an interesting result.

4 The terms of order 2 provide the
macroscopic velocity field (D’Agostini,
2016)

These are the terms from the expression:

c0.
∂ ln(f )

∂r
− ∂ ln(f )

∂C
C : ∂c0

∂r
= 0 (95)

Mathematically, the velocity field, resulting from hypoth-
esis (47) must emanate from equation (95). In all cases, the

gradient
∂ ln(f )

∂r
, located in a plane containing oz, due to the

axisymmetry, contains a priori components parallel and per-
pendicular to the oz axis. Similarly, there should be compo-
nents c0r and c0z also located in a plane passing through this
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Fig. 4 3D velocity fields on a family of surfaces with nested torus
topology

axis. But the non-zero nature of these components does not
seem compatible with a physical situation. Indeed, these two
components, depending on their sign, translate movements
of distance and approach with respect to, respectively, the
oz and or axes. Movements that cannot correspond, exclu-
sively, either to the distance or to the approach, because this
would translate either to a loss or to a gain of matter. There
would therefore be no conservation of mass. These compo-
nents must therefore, in this velocity field, have values of
both signs. The only velocity field ensuring the conserva-
tion of mass corresponds to 3D helical trajectories falling
on a family of surfaces having the topology of nested tori
(Fig. 4).

If we opt for the assumption that this term is non-zero,
we’re out of the realm of galactic dynamics. The solution,
with its macroscopic velocity field in the form of helical tra-
jectories inscribed on a family of surfaces with the oz axis as
the axis of symmetry and the horizontal plane as the plane
of symmetry, then refers to the trajectories of electrically
charged particles in a tokamak (we would then have to con-
sider two Vlasov equations, one for electrons and one for
hydrogen ions). The law of velocity variation with distance
from the axis would then follow a different law. But these
are two completely different physics problems.

The projection of these trajectories along the plane pass-
ing through the oz axis corresponds to Fig. 5.

But if we add the natural hypothesis of a symmetry with
respect to the plane z = 0 this excludes the left field. Contin-
uing to consider the existence of non-zero c0r and c0z com-
ponents we should then consider the structure of the figure
on the right. But, a simple physicist’s intuition suggests that
the most plausible solution would be the one where these
components c0r and c0z are simply zero. In these conditions
the term c0.∇r ln(f ) becomes zero and the equation with the
terms of order two is reduced to:

∂ ln(f )

∂C
.C : ∂c0

∂r
= T r(AB) = 0 (96)

Fig. 5 Projection of velocity fields with non-zero c0z.
∂ ln(f )

∂r

Let’s calculate the dyadic B:

B = ∂c0

∂r
=

⎛
⎜⎜⎝

∂c0x

∂x

∂c0y

∂x
0

∂c0x

∂y

∂c0y

∂y
0

∂c0x

∂z

∂c0y

∂z
0

⎞
⎟⎟⎠

=
⎛
⎜⎝

−y ∂ω
∂x

x ∂ω
∂x

+ ω 0

−y ∂ω
∂y

− ω x ∂ω
∂y

0

−y ∂ω
∂z

x ∂ω
∂z

0

⎞
⎟⎠ (97)

Let’s calculate the dyadic A:

A = ∂ ln(f )

∂C
.C (98)

A = − m

2kBH
C.C + 2a(C.r).r.C + 2α[C.(k × r)].(k × r)

= A1 + A2 + A3 (99)

A1 = − m

2kBH

⎛
⎝

C2
x CxCy CxCz

CyCx C2
y CyCz

CzCx CzCy C2
z

⎞
⎠ (100)

A2 = 2a(xCx + yCy + zCz)

⎛
⎝

xCx xCy xCz

yCx yCy yCz

zCx zCy zCz

⎞
⎠ (101)

A3 = 2α

⎛
⎝

y2Cx − xyCy

−xyCx + x2Cy

0

⎞
⎠ (CxCyCz)

= 2α

⎛
⎝

y2CxCx − xyCyCx y2CxCy − xyCyCy

−xyCxCx + x2CyCx −xyCxCy + x2CyCy

0 0

y2CxCz − xyCyCz

−xyCxCz + x2CyCz

0

⎞
⎠

(102)
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Consider the following two matrices

A =
⎛
⎝

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠ and

B =
⎛
⎝

Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

⎞
⎠

(103)

The trace of their matrix product is given by

T r(AB) = (AxxBxx + AxyByx + AxzBzx)

+ (AyxBxy + AyyByy + AyzBzy) + (0) (104)

Let’s calculate each of the terms:

Axx = − m

2kBH
C2

x + 2a(x2C2
x + yxCxCy + zxCxCz)

+ 2α(y2C2
x − xyCyCx)

= C2
x

(︃
− m

2kBH
+ 2ax2 + 2αy2

)︃

+ CxCy2(a − α)xy + CxCz2axz

(105)

Ayy = − m

2kBH
C2

y + 2a(xCxyCy + yCyyCy + zCzyCy)

+ 2α(−xyCxCy + x2CyCy)

= C2
y

(︃
− m

2kBH
+ 2ay2 + 2αx2

)︃

+ CxCy2(a − α)xy + CyCz2ayz

(106)

Axy = − m

2kBH
CxCy + 2a(xCxxCy + yCyxCy

+ zCzxCy) + 2α(y2CxCy − xyCyCy)

= CxCy

(︃
− m

2kBH
+ 2αx2 + 2αy2

)︃

+ C2
y2(a − α)xy + CyCz2axz

(107)

Ayx = − m

2kBH
CyCx + 2a(xCxyCx + yCyyCx

+ zCzyCx) + 2α(−xyCxCx + x2CyCx)

= C2
x2(a − α)xy + CxCy

(︃
− m

2kBH
+ 2αy2 + 2αx2

)︃

+ CxCz2ayz

(108)

Axz = − m

2kBH
CxCz + 2a(xCxxCz + yCyxCz + zCzxCz)

+ 2α(y2CxCz − xyCyCz)

= C2
z 2axz + CxCz

(︃
− m

2kBH
+ 2ax2 + 2αy2

)︃

+ CyCz2(a − α)xy

(109)

Ayz = − m

2kBH
CyCz + 2a(xCxyCz + yCyyCz + zCzyCz)

+ 2α(−xyCxCz + x2CyCz)

= C2
z 2axz + CxCz2(a − α)xy

+ CyCz

(︃
− m

2kBH
+ 2ay2 + 2αx2

)︃

(110)

The terms C2
x come from AxxBxx and from AyxBxy

(︃
− m

2kBH
+ 2ax2 + 2αy2

)︃(︃
−y

∂ω

∂x

)︃

+ 2(a − α)xy

(︃
x

∂ω

∂x
+ ω

)︃
(111)

The terms C2
y come from AxyByx and from AyyByy

(︃
− m

2kBH
+ 2ay2 + 2αx2

)︃(︃
x

∂ω

∂y

)︃

+ 2(a − α)xy

(︃
−y

∂ω

∂y
− ω

)︃
(112)

The terms C2
z come from AxzBzx and from AyzBzy

2axz

(︃
−y

∂ω

∂z

)︃
+ 2ayz

(︃
x

∂ω

∂z

)︃
(113)

The terms CxCy come from AxyByx , AxxBxx , AyxBxy,
AyyByy

(︃
− m

2kBH
+ 2ax2 + 2αy2

)︃(︃
−y

∂ω

∂y
− ω

)︃

+ 2(a − α)xy

(︃
−y

∂ω

∂x

)︃

+
(︃

− m

2kBH
+ 2ay2 + 2αx2

)︃(︃
+x

∂ω

∂x
+ ω

)︃

+ 2(a − α)xy

(︃
+x

∂ω

∂y

)︃
= 0

(114)
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The terms CxCz come from AxxBzx , AxxBxx , AyxBxy,
AyzByz

(2axz)

(︃
−y

∂ω

∂x

)︃

+
(︃

− m

2kBH
+ 2ax2 + 2αy2

)︃(︃
−y

∂ω

∂z

)︃

+ (2axy)

(︃
x

∂ω

∂x
+ ω

)︃
+ 2(a − α)xy

(︃
x

∂ω

∂z

)︃
= 0

(115)

The terms CyCz come from AxyByx , AxzBzx , AyyByy,
AyzBzy

(2axz)

(︃
−y

∂ω

∂x
− ω

)︃
+ 2(a − α)xy

(︃
−y

∂ω

∂z

)︃

+ (2ayz)

(︃
x

∂ω

∂y

)︃

+
(︃

− m

2kBH
+ 2ay2 + 2αx2

)︃(︃
x

∂ω

∂z

)︃
= 0

(116)

Let us now exploit the fact that ω only depends on ρ2 and
z2. Thus, from (64) we obtain:

∂ω

∂x
= ∂ω

∂ρ2

∂ρ2

∂x
= 2x

∂ω

∂ρ2 (117)

∂ω

∂y
= ∂ω

∂ρ2

∂ρ2

∂y
= 2y

∂ω

∂ρ2 (118)

∂ω

∂z
= ∂ω

∂z2

∂z2

∂z
= 2z

∂ω

∂z2
(119)

The equation C2
x becomes:

∂ ln(ω)

∂ρ2
= − (a − α)(︃

m

kBH
− 2αρ2

)︃ ) (120)

Placing ourselves in the particular context where a and α

are constant throughout space, we obtain:

∂ ln(ω)

∂ρ2
= −1

2

2(a − α)(︃
m

kBT0
− 2(a − α)ρ2 + 2az2

)︃

= −1

2

∂

∂ρ2

[︃
ln

(︃
m

kBT0
+ 2(a − α)ρ2 + 2az2

)︃]︃

(121)

Whence:

ω = ωρ0(z
2)√︃

m

kBT0
+ 2(a − α)ρ2 + 2az2)

(122)

Fig. 6 Rotation curve (D’Agostini, 2016)

On the same way as before, the equations CxCz give

∂lnω

∂z2 = − a(︃
m

kBH
− 2αρ2

)︃ (123)

By taking up the hypothesis that a and α are constant, we
get:

ω = ωz0(ρ
2)√︃

m

kBT0
+ 2(a − α)ρ2 + 2az2)

(124)

Which gives the rotation speed at a point:

v = ρ.ω = ρ.
ω0√︂

m
kBT0

+ 2(a − α)ρ2 + 2az2)
(125)

In the diametrical plane of the galaxy:

v = ω0 ρ√︃
m

kBT0
+ 2(a − α)ρ2)

(126)

Taking into account that α ≪ a

v ≈ ω0 ρ√︃
m

kBT0
+ 2aρ2)

(127)

Which gives a linear growth near the center of symme-
try (solid body rotation) and a constant speed plateau at the
periphery (Fig. 6).

5 Comparison with observational data

While the curves derived from observational data do show
a velocity plateau at the periphery, their behavior near the
center often includes a velocity peak. This is only absent in
relatively rare cases, such as the NGC 128 galaxy (Fig. 7).

In contrast, rotation curves near the center of galaxies are
generally very irregular (Fig. 8).

Those who originally interpret these overspeed as being
due to the action of a dark matter halo are then obliged
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Fig. 7 Velocity curve of galaxy NGC 128

Fig. 8 Rotation curves of galaxies

to endow this distribution with a peak, at the center of
the galaxy, so that the excursion of the gravitational field
can counterbalance the centrifugal force. But it’s also pos-
sible that these velocity excursions are the result of can-
nibalism by galaxies with smaller masses. Like the canni-
bal galaxy that absorbs them, these mini-galaxies are sets
of non-collisionless mass-dots. Subjected to the potential
well of the larger galaxy, they then fall towards their cen-
tral part. In so doing, they retain their angular momentum, as
these point-mass ensembles cannot transfer it to the cannibal
galaxy by viscous exchange, or encounters. In contrast, the
NGC 128 galaxy would not have experienced any absorp-
tion of mini-galaxies. At most, it could have merged with
similar galaxies, in terms of mass distribution and velocity
field.

6 About the potential and mass distribution

The cancellation of the unit order terms corresponds to the
equation:

C.
∂ ln(f )

∂r
−

(︃
∂Ψ

∂r
+ c0.

∂c0

∂r

)︃
.
∂ ln(f )

∂C
= 0 (128)

Fig. 9 Gravitational potential in spherical symmetry (Chandrasekhar
(Chandrasekhar, 1941))

The density field is then constructed by combining it with
Poisson’s equation. We’ll present the complete numerical
solution in a later article. This potential is necessarily com-
patible with the form chosen for the distribution function,
since it is an integral part of the solution. This construc-
tion is not straightforward, as it requires iterations to eval-

uate the term
∂2Ψ

∂z2
. Nevertheless, we can draw conclusions

about the shape of the potential and the values of the den-
sity. We know that the distribution function tends towards
Maxwellian form at the center. The equation then reduces
to:

∂ ln(n)

∂r
+

(︃
∂Ψ

∂r

)︃
m

kBT0
(129)

The equation of the potential at the center is then:

ΔΨ = Cst e
− mΨ

kBT0 (130)

Let’s be satisfied with reduced variables and an expression
of the potential in arbitrary units. The form of the potential
near the center is shown in Fig. 9.

7 Conclusion

We have opted for a completely different approach to the one
considered classical, taking up that of Chandrasekhar, based
entirely on the choice of an elliptical distribution function.
We have extended this method by introducing rotation (ax-
isymmetric stationary system). The distribution function is
associated with a velocity ellipsoid. The only assumption,
of a geometrical nature, is that one of the axes of this el-
lipsoid in all space points to the system’s center of symme-
try. The mathematical tool of dyadic algebra is then used
to carry out the calculations. Introducing the elliptic form
of the distribution function into the collisionless Boltzmann
equation, written in terms of the components of the residual
velocity, transforms it into a third-order polynomial. Can-
cellation of the third-order terms then gives the evolution of
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the axes of the ellipsoid. We then find that the three axes
become equal at the center, i.e. the velocity distribution be-
comes Maxwelian. The transverse axes tend towards zero
at infinity, while the radial velocity dispersion remains con-
stant. The fact that the transverse axes are smaller than the
radial velocity dispersion axis is consistent with observa-
tional data from the vicinity of the Sun. Cancellation of the
second-order terms gives the velocity field. This tends to-
wards solid-body rotation at the center and a plateau at in-
finity. It then remains to calculate the gravitational field by
combining the cancellation of the unit-order terms and Pois-
son’s equation. We refer this to a future article.
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