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Abstract

We consider four subsets of the complexified spacetime algebra,
namely the real even part, the real odd part, the imaginary even part
and the imaginary odd part. This naturally leads to the four con-
nected components of the Lorentz group, supplemented each time by
an additional symmetry. We then examine how these four parts im-
pact the Dirac equation and show that four types of matter arise with
positive and negative masses as well as positive and negative charges.

1 Introduction

Geometric algebra was discovered by Clifford and Grassmann in the late 19th
century ([1], [2]). Despite its innovative and promising aspects, this algebra
did not get the attention it deserved at that time. In fact, most researchers
have only exploited the purely algebraic aspects of this concept and have
obscured the other facets.

It was not until the work of Hestenes [3] that the richness of geometric
algebra was fully realized. Since then, some scientists have made significant
contributions and firmly believe (an opinion we share) that geometric algebra
is the simplest and most coherent language that can reconcile physics with
mathematics. The subject itself is covered in detail in [3], [4] and [5].

Geometric algebra can be considered in any physical discipline but where
it probably takes a particular importance is the physics of the electron [6].
Generalizing the concept of complex numbers, it allows to highlight an inter-
esting alternative to the Dirac theory. This other option is referred to as the
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real formulation of the Dirac equation or the Dirac-Hestenes equation ([7],
[8] and [9])

This proposition is based on the geometric algebra related to the Minkowski
spacetime (namely the spacetime algebra) and, surprisingly enough, only one
part of this algebra (the part referred to as the real even part) is necessary
to have equivalence with the Dirac formulation.

On a different level, the acceleration of the expansion of the Universe has
been observed by astronomers [10]. This discovery implies the existence of
unknown matter and energy (i.e. the dark matter and the dark energy). If
their natures are still a mystery, there is more and more evidence to say that
particles of negative masses [11] could be the best candidates to solve this
enigma ([12], [13], [14], [15], [16], [17], [18]).

The negative mass matter interacting only by gravity with positive mass
matter (and not through electromagnetic phenomena), it is not possible to
directly experiment it. Its detection is done indirectly by analysing the alter-
ation of the light emitted by positive mass matter. We refer the interested
reader to [19] for further details.

It is natural to wonder about a possible relation between spacetime alge-
bra and negative masses and it is precisely the goal of this paper.

In Section 1, we will show, after a brief recall on the basics of the geometric
algebra, that if only a part of the content (and by this we mean the even
real part) of the spacetime algebra has been really exploited in most of the
contributions on the geometric algebra of the electron, it is also possible
to consider the other parts (odd real part, even imaginary part and odd
imaginary part). These supplementary parts are connected to the usual one
by applying to it the discrete unitary operators P ,T ,PT .

This will naturally leads us, in Section 2, to revise the relativistic invari-
ance where not only the restricted Lorentz group SO+(1, 3) will be reached
but also its three connected components. When the odd part is included, we
will show that the Lie superalgebra gl(2|2) arises naturally.

Section 3 will be devoted to the highlighting of the four types of solutions
of the Dirac equation, both with positive and negative masses.

In Section 4, we will put in evidence the corresponding equations and
solutions within the geometric algebra formalism.

The relativistic invariance of these equations as well as the transformation
laws on their solutions will be discussed in Section 5. The remarkable point
is the appearance of an additional symmetry compared to the traditional
theory, symmetry which brings a transformation law on the mass.
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We will conclude in the last Section.

2 Preliminary: the spacetime algebra and its

four components

First, we briefly recall the fundamentals of a geometric algebra.
Let u and v be two vectors of a vector space of dimension n

u = ujej ; v = vjej (1)

(here and in the following, summation on repeated indices is understood).
The geometric product of these vectors is defined according to

u v = u · v + u ∧ v (2)

In the first term, we recognize the -symmetric- inner product (equivalent to
the scalar product when dealing exclusively with vectors). It gives rise to
a scalar (0-vector). In the second term, we find the -antisymmetric- outer
product leading to a bivector (2-vector or oriented portion of plan).
In other words

u · v =
1

2
(u v + v u) , u ∧ v =

1

2
(u v − v u) (3)

Applied to the (orthogonal) vector basis, the geometric product is such that

ej ek = −ek ej, j ̸= k (4)

It also generates a 2n-dimensional algebra made of one 0-vector, n 1-vectors,
n(n−1)

2
2-vectors and so on until one n-vector, respectively given by

1, ej, ej ek, ..., In ≡ e1 e2...en (5)

This n-vector In is also known as the pseudo-scalar unit.
Second, we particularize to spacetime algebra (STA) for which n = 4 and

e20 = −e21 = −e22 = −e23 = 1 (6)

From (4) and (6), it is obvious to see that the basis vectors of the STA are
nothing but the generators of the Clifford algebra Cl(1, 3) and can be realized
through the Dirac matrices (in the Weyl realization, for instance):

e0 = γ0 =

(
0 I
I 0

)
, ej = γj =

(
0 σj

−σj 0

)
(7)
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where I is the identity matrix of dimension 2 and σj are the Pauli matrices.
A remarkable fact about STA is that its real even part

E = a0 I + aj γjγ0 −
1

2
ϵklj bj γkγl + b0 I4, a0, aj, b0, bj ∈ R (8)

(where ϵklj is the completely antisymmetric Levi-Civita tensor) is a geometric
algebra in itself, namely the one associated with the 3D Euclidian space (SA).
This is easily seen by identifying the first three 2-vectors of the STA with
the 1-vectors of the SA

e′j ≡ γjγ0 (9)

It is then straightforward to see that

e′je
′
k = −γjγk, I3 = e′1e

′
2e

′
3 = γ0γ1γ2γ3 = I4 (10)

Moreover, we can write

E = a0 I + aj e′j + I4(b
0 I + bj e′j) = a0 I + a⃗+ I4(b

0 I + b⃗) = a+ I4 b (11)

Here and in the following, we refer to the concept of relative vector [20]
(written with a lowercase letter)

u ≡ u0 I + uj e′j = u0 I + u⃗ (12)

by opposition to the one of proper vector (written with a capital letter)

U ≡ u e0 = uµ eµ ; µ = 0, 1, 2, 3 (13)

In addition to this real even part, we will consider three other contributions.
In total, we will have four types of elements of the (complexified) STA:

• the real even part
ERe = a+ I4 b (14a)

• the real odd part

ORe ≡ γ0 ERe = a0 γ0 − aj γj −
1

2
ϵklj bj γ0γkγl + b0 γ1γ2γ3 (14b)

• the imaginary even part

EIm ≡ −iI4 ERe = ib0 I − ibj γ0γj +
i

2
ϵklj aj γjγk − ia0I4 = i(b− a I4)

(14c)

4



• the imaginary odd part

OIm ≡ −iγ1γ2γ3 ERe = ib0γ0 − ibj γj +
i

2
ϵklj aj γ0γkγl − ia0 γ1γ2γ3

(14d)

Notice that the great majority of the authors focus on the real even part,
only. The reason is that this part is sufficient to recover the usual Dirac
equation (see Section 4). The only reference we found dealing with other
contributions is [21] but in a different context than the one involved here
(the accent was there put on idempotent matrices).
If we follow the realization (7), these four contributions respectively read

ERe =

(
N 0

0 N̂

)
, ORe =

(
0 N̂
N 0

)
(15a)

EIm =

(
N 0

0 −N̂

)
, OIm =

(
0 −N̂
N 0

)
(15b)

Here the matrix N is given by

N = (a0 + ib0)I + (aj + ibj)σj (16)

while N̂ refers, in agreement with the usual notation to

N̂ = (a0 − ib0)I − (aj − ibj)σj (17)

This involutive automorphism corresponds to the fact that each of the 3D
basis vector has been reversed.
The incoming calculations will be really simplified by remembering that

N =

(
a b
c d

)
→ N̂ =

(
d∗ −c∗

−b∗ a∗

)
(18)

where * is the usual complex conjugate and a, b, c, d four complex numbers.
Let us also mention that the operators in (14b)-(14d) are not chosen at
random. In fact, as is well known, γ0 is the parity operator P for the Dirac
equation while −iI4 actually is the chirality operator γ5. However we prefer
to see this operator as the product of P and the last one −iγ1γ2γ3 which
has been identified [22] as the unitary time-reversal operator T for the Dirac
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equation.
Consequently, the four contributions read

ERe, ORe = PERe, EIm = PT ERe, OIm = T ERe (19)

This highly suggests to associate them to the four connected components of
the Lorentz group. That’s precisely the aim of the next Section.

3 The relativistic invariance

Following the standard STA approach, we define the position vector by

X = xµ γµ =

(
0 x
x̂ 0

)
(20)

where x = x0I + xjσj, x̂ = x0I − xjσj.
Let us now consider the transformations that this position vector can un-
dergo. The general relation is

X ′ = MXM̃ (21)

The notation M̃ refers to a particular conjugation (called reversal) which con-
sists in totally swapping the order of the vectors (γjγk → γkγj, γjγkγl →
γlγkγj and so on). It has been chosen so because, in general, MM̃ =
diag(αI, α∗I), a property rather similar to the unitarity of transformations.
Moreover, when matrices of dimension 2 are concerned, this conjugation is
identical to the hermitic conjugation

N =

(
a b
c d

)
→ Ñ = N † =

(
a∗ c∗

b∗ d∗

)
(22)

We will also need a third conjugation combining the first two ones

N =

(
a b
c d

)
→ N̄ ≡ (̃N̂) =

(
d −b
−c a

)
(23)

The transformations can then be of four types as suggested by (19)

X ′ = MERe
XM̃ERe

=

(
N 0

0 N̂

)(
0 x
x̂ 0

)(
N̄ 0

0 Ñ

)
→ x′ = NxÑ

(24a)
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X ′ = MORe
XM̃ORe

=

(
0 N̂
N 0

)(
0 x
x̂ 0

)(
0 N̄

Ñ 0

)
→ x′ = N̂ x̂N̄

(24b)

X ′ = MEIm
XM̃EIm

=

(
N 0

0 −N̂

)(
0 x
x̂ 0

)(
N̄ 0

0 −Ñ

)
→ x′ = −NxÑ

(24c)

X ′ = MOIm
XM̃OIm

=

(
0 −N̂
N 0

)(
0 x
x̂ 0

)(
0 N̄

−Ñ 0

)
→ x′ = −N̂ x̂N̄

(24d)
Each of these transformations (24) can be rewritten in a more usual way as

x′ = Rx (25)

Besides, in all cases, the three rotations are given by

Nrotations = e
i
2
θ σj (26)

(we write the same parameter θ for the simplicity of the notation but it is
evidently subtended that each transformation has its own parameter) while
the boosts are obtained from

Nboosts = e
1
2
θ σj (27)

If we allow the determinant of N to differ from 1 (and it is without any
consequence on R whose determinant still is 1), we also have to add a sup-
plementary transformation characterized by

Nsupplementary = e
i
2
θ I (28)

In the case of the transformation (24a), it is the well-known homomorphism
between the special linear group SL(2, C) (related to the matrix N when we
restrict ourselves to the cases where det N = 1 -a restriction that we will
give up in the following-) and the restricted Lorentz group SO+(1, 3) (asso-
ciated with R). It has to be mentioned that the transformations recovered
here -namely three rotations and three boosts- are proper and orthochronous
(component L↑

+ of the Lorentz group). In other words, they preserve the ori-
entation of space (a fact that can be seen from det R = 1) and the direction
of time (the element at the intersection of the first row and the first column
of R is positive).
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The explicit form of the transformation matrices coming from the geometric
algebra point of view is given by

Mrotations = e−
1
2
θ γjγk , Mboosts = e−

1
2
θ γ0γk , Msupplementary = e

1
2
θ I4 (29a)

At the algebra level, we thus have to consider

Jjk ≡ −1

2
γjγk, J0j ≡ −1

2
γ0γj, J ≡ 1

2
I4 (29b)

As well known, the six first operators generate the Lorentz algebra so(1, 3)

[Jαβ, Jλρ] = gβλ Jρα + gαρ Jλβ + gβρ Jαλ + gαλ Jβρ ; g = diag(1,−1,−1,−1)
(30)

while J (still with a vanishing trace) commutes with each of these operators.
To find back the other three connected components, the three other cases
(24b)-(24d) are necessary.
The proper retrochronous transformations (i.e. L↓

+ for which the time is re-
versed, a fact that is marked through a change of sign in R00) are obtained
through (24c). Indeed the result (24c) just means that R has been replaced
by −R. At the level of the rotations, the interpretation is that not only the
time but also one of the spatial coordinates has been reversed. The rotations
themselves, in each of the planes subtended by two spatial coordinates, are
no longer rotations of angle θ in the clockwise direction but rotation of angle
π − θ in the trigonometric direction. At the boosts, all the coordinates have
been reversed but the velocity is unchanged. This total inversion will be also
found at the additional symmetry: x′ = −x.
The explicit form of the corresponding transformation matrices are obtained
from (29a) on which PT = −iI4 is applied. Obviously, they cannot be writ-
ten as exponentials anymore. However the relations (30) are still valid if we
consider the seven operators (29b) on which PT is applied on the left.
The improper orthochronous component (i.e. L↑

− for which the orientation of
space has been changed or, in other words, the determinant of R is now equal
to −1) is obtained from the odd transformation (24b). In fact, with respect
to the original matrix R, assigned to the proper orthochronous transforma-
tions, only the first row is unchanged. The other rows have changed sign. In
what concerns the rotations, the time is unchanged while a spatial coordinate
is reversed. Once again, in each of the plane determined by the two other
spatial coordinates, there is no longer a rotation of θ in the clockwise direc-
tion but a rotation of π − θ in the trigonometric sense. For the boosts, we
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notice that the time remains unchanged while the spatial coordinates have
been inversed and so is the velocity.
The explicit form of the corresponding transformation matrices is obtained
from Eqs (29) on which P = γ0 is applied.
Let us also mention that the supplementary transformation is nothing but
this P operation. The corresponding matrix R gets the well-known form
diag(1,−1,−1,−1).
The improper retrochronous transformations (L↓

−) correspond to (24d). The
situation is the reverse of the previous one: only the first row of the matrix R
has changed sign. So the rotations are the ones of the proper orthochronous
transformations and only time has been reversed. The boosts are, as in the
previous context, characterized by an inversion of the velocity due, in this
case, to the reversal of time (the spatial coordinates remain unchanged with
respect to the proper orthochronous boosts).
As expected, the explicit form of the corresponding transformations is ob-
tained from Eqs (29) on which T = −iγ1γ2γ3 is applied. It is thus not
surprising that the supplementary transformation reduces to this unitary
time-reversal transformation and the corresponding R is diag(−1, 1, 1, 1).
Let us end this Section by mentioning that gl(2, C) is usually recognized as
the Lie algebra associated with the even part of the STA. It is due to the
presence of the matrix N on which no constraint is required. In particular,
the determinant (= ad− bc) can take any complex value, say rei θ. We have
focused here on the case where r = 1. Nevertheless, there remains an addi-
tional parameter (with respect to the Lorentz group) in the presence of the
angle, which is associated with this operator J .
If we consider the odd part in addition (as it is the case when we deal with
the improper transformations), we speak about a Lie superalgebra, that is
precisely gl(2|2). This superalgebra is characterized by the relations [23]

[Epq, Ers] = δqr Eps − (−1)((p)+(q))((r)+(s))δpsErq (31)

with the following rules : if p+ q and r+ s are odd numbers, the Lie bracket
is an anticommutator while it reduces to a commutator in all other cases.
To be convinced of this link, we realize the Cartan subalgebra generators
with

H1 = E11 + E33 =
1

2
I − i

2
I4, H2 = E22 + E33 =

1

2
I − i

2
γ1γ2 (32a)

H3 = E22 + E44 =
1

2
I +

i

2
I4 (32b)
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H4 = E11+E22−E33−E44+α (E11+E22+E33+E44) = −γ0γ3+α I (32c)

We complete the identification by realizing the simple raising operators (two
even operators and one odd operator) as

E13 = − i

4
γ2γ3 +

1

4
γ0γ1 +

1

4
γ3γ1 +

i

4
γ0γ2 (33a)

E24 = − i

4
γ2γ3 −

1

4
γ0γ1 −

1

4
γ3γ1 +

i

4
γ0γ2 (33b)

E32 = −1

4
γ0 +

1

4
γ3 +

i

4
γ0γ1γ2 −

i

4
γ1γ2γ3 (33c)

together with their lowering counterparts

E31 = E†
13, E42 = E†

24, E23 = E†
32 (33d)

Finally, we add the following odd generators

E12 = E13 E32, E34 = E32 E24, E14 = E12 E24 (34)

where the product involved here is the geometric one.
Let us now turn our attention to the Dirac equation.

4 The Dirac equation with positive and neg-

ative masses

A remark to begin with: when Dirac established his famous equation, in the
free case, he only imposed conditions on the squares of the matrices (see
equation (6) of [24]) leaving the field open to two possibilities of signs before
the mass term. On page 615 of his paper he specifies that he marks one
possible choice to satisfy these conditions.
So, at the start, the possibility of having negative masses was already present.
Now, let us consider the Dirac equation when the electron is in interaction
with an electromagnetic field

(γµ(∂µ + i e Aµ) + i m) |ϕ⟩+ = 0 (35)

With the realization (7) and |ϕ⟩+ ≡
(

ξ+
η+

)
, this equation can be written as{

(∆ + i e A) η+ + i m ξ+ = 0

(∆̂ + i e Â) ξ+ + i m η+ = 0
(36)
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where the usual gradient ∆ issued from STA has been used as well as its
conjugate ∆̂

∆ ≡ ∂0 − σj ∂j ; ∆̂ ≡ ∂0 + σj ∂j (37)

To be coherent, an analogue of the electromagnetic field has also been defined

A ≡ A0 − σj Aj ; Â ≡ A0 + σj Aj (38)

By taking the complex conjugate of the system (36) and then multiplying it,
on the right, by −iσ2, we obtain{

(∆̂− i e Â) (−iσ2η
∗
+)− i m (−iσ2ξ

∗
+) = 0

(∆− i e A) (−iσ2ξ
∗
+)− i m (−iσ2η

∗
+) = 0

(39)

Here we have made use of

−iσ2 ∆̂
∗ = ∆ (−iσ2) ; −iσ2 Â

∗ = A (−iσ2) (40)

We are now ready to highlight four types of matter by looking closely at the
systems (36) and (39). Indeed, the system (36) shows us that if the electron
of positive matter

|ϕ⟩e,+ =

(
ξ+
η+

)
≡


ϕ1

ϕ2

ϕ3

ϕ4

 (41a)

is the usual solution, there is an additional solution corresponding to a change
of sign in the last term and thus to an electron of negative mass ; it is given
by

|ϕ⟩e,− =

(
ξ+
−η+

)
≡


ϕ1

ϕ2

−ϕ3

−ϕ4

 (41b)

In what concerns the system (39), it tells us that there is a solution associated
with a positron of positive mass

|ϕ⟩p,+ =

(
−iσ2η

∗
+

iσ2 ξ
∗
+

)
≡


−ϕ∗

4

ϕ∗
3

ϕ∗
2

−ϕ∗
1

 (41c)
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as well as a solution corresponding to a positron of negative mass

|ϕ⟩p,− =

(
−iσ2η

∗
+

−iσ2 ξ
∗
+

)
≡


−ϕ∗

4

ϕ∗
3

−ϕ∗
2

ϕ∗
1

 (41d)

We notice easily that

|ϕ⟩p,+ = iγ2|ϕ⟩∗e,+ ; |ϕ⟩p,− = −iγ2|ϕ⟩∗e,− (42)

The first of these two relations is what is expected from the well-known
charge conjugation operator. A change of sign with no consequence (a ket
being defined up to a phase factor) is introduced within the negative masses
counterpart.
We also see that

|ϕ⟩e,− = −iI4|ϕ⟩e,+ ; |ϕ⟩p,− = −iI4|ϕ⟩e,− (43)

Now, the matrix −iI4 , belonging to the imaginary extension of the STA, is
nothing else than the chirality operator γ5.

5 The Dirac-Hestenes equation with positive

and negative masses

We owe it to Hestenes to have proposed the counterpart of the Dirac equation
in the context of geometric algebra. This (real) equation is

γµ (∂µϕ γ2γ1 − e Aµ ϕ) = m ϕ γ0 (44)

It can also be proposed on the form{
−i∆ Φ̂ σ3 + e A Φ̂ +m Φ = 0

−i∆̂ Φ σ3 + e Â Φ +m Φ̂ = 0
(45)

with ϕ =

(
Φ 0

0 Φ̂

)
.

It is then usually said that the whole Dirac formalism is contained in the
first 2 by 2 equation of (45) as the second one is simply its conjugate in the
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sense σj → −σj.
Hestenes’ demonstration of his equation is as follows: he proposed to consider
a bispineur |u⟩ such that

⟨u|u⟩ = 1 ; γ0|u⟩ = |u⟩ ; γ2γ1|u⟩ = i|u⟩ (46)

It is then sufficient to put
|ϕ⟩+ = ϕ |u⟩ (47)

to recover (35).
If we are interested in the precise form of the ket |u⟩ satisfying (46) with the
realization (7), we obtain

|u⟩ = 1√
2


1
0
1
0

 (48)

up to a constant C such that |C| = 1.
Both equations (45) and (47)-(48) lead to

ϕ ≡ ϕ+1 =
√
2


ϕ1 −ϕ∗

4 0 0
ϕ2 ϕ∗

3 0 0
0 0 ϕ3 −ϕ∗

2

0 0 ϕ4 ϕ∗
1

 =

(
Φ 0

0 Φ̂

)
(49)

At this stage, we have to make a few remarks.
First, the STA approach allows us to see unusual facts. By this we mean that
the first block on the diagonal contains all the information of the traditional
theory. But what do we see there? The simultaneous consideration of the
electron of positive mass and of what seems to be, at first sight, the positron
of positive mass (cf. the first two components of (41a) and (41c)). But if
we look at it more closely and consider the second block on the diagonal,
we see that, if we confirm the presence of the electron with positive mass,
the antiparticle is, on the other hand, characterized by a negative mass (cf.
(41d))!
Second, this combination of positive matter-negative antimatter is typical to
have considered the real even part of the STA only. Indeed, (49) is of type
ERe in (15)).
So the question arises naturally: is it possible to put in evidence the other

13



solutions (41c) (we restrict ourselves to even matrices)?
For this purpose, we modify (47) and consider, instead

|ϕ⟩− = −iI4 |u⟩ (50)

The new matrix −iI4 ϕ is then of EIm -type and writes explicitly

−iI4 ϕ ≡ ϕ−1 =
√
2


ϕ1 −ϕ∗

4 0 0
ϕ2 ϕ∗

3 0 0
0 0 −ϕ3 ϕ∗

2

0 0 −ϕ4 −ϕ∗
1

 =

(
Φ 0

0 −Φ̂

)
(51)

So we now have the combination of negative matter-positive antimatter and
the Dirac-Hestenes equation is slightly modified to write

γµ (∂µ(−iI4 ϕ) γ2γ1 − e Aµ (−iI4 ϕ)) = −m (−iI4 ϕ) γ0 (52)

Compared to the original one (44), we notice a change of sign in what con-
cerns the mass term. The four types of matter (antimatter) can thus be
embedded in a system made up of the equations (44) and (52).
Let us now have a look on the transformations of the wave functions.

6 Relativistic invariance of the Dirac equa-

tion with positive and negative masses

We concentrate here on the free case since it is implied that the transfor-
mations of the derivatives and components of the electromagnetic field are
identical in form.
The question is the following: how can we characterize the transformation
|ϕ′⟩± on |ϕ⟩± such that

(γµ ∂µ ± i m) |ϕ⟩± = 0 (53a)

transforms as
(γµ ∂′

µ ± i m′) |ϕ′⟩± = 0 (53b)

if ∂′
µ is specified according to one of the transformations (24)?

This question has already been answered for the transformation (24a) in [25].
We resume the results by presenting them from a point of view that can be
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applied to other transformations (24).

First, we notice that the transformation (24a) x′ = N xÑ implies

∆ = N̄ ∆′ N̂ (54)

where ∆ has been defined in (37).
Second, we introduce the transformation (54) in (53a) and ask the result to
be equivalent to

M−1
ERe

(γµ ∂′
µ ± i m′) MERe

|ϕ⟩± (55)

If so, by applying MERe
on the left of Eq (55), this implies, at least for the

six Lorentz transformations, that

m′ = m, |ϕ′⟩± = MERe
|ϕ⟩± (56)

The key is to ensure that

γµ MERe
∂′
µ = MERe

γµ ∂µ (57)

with ∂′
µ being given by (54). As easily checked, this is satisfied with MERe

given by (29a).
As an example, let us consider the rotation

x′0 = x0

x′1 = x1

x′2 = cos θ x2 + sin θ x3

x′3 = − sin θ x2 + cos θ x3

(58)

The constraint (57) leads then to{
γ0 MERe

= MERe
γ0, γ1 MERe

= MERe
γ1

γ2 MERe
= MERe

(γ2 cos θ + γ3 sin θ), γ3 MERe
= MERe

(−γ2 sin θ + γ3 cos θ)
(59)

These relations are indeed satisfied with

MERe
= cos

θ

2
I − sin

θ

2
γ2γ3 (60)

The same results hold true for each of the six Lorentz transformations.
The case of the supplementary operator MERe

= e
1
2
θ I4 is a bit trickier.

Indeed, in this case, as x′ = x,∆′ = ∆, we have two possibilities: either
m′ = m and |ϕ′⟩± = |ϕ⟩± or m′ ̸= m and |ϕ′⟩± = MERe

|ϕ⟩±. The first
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possibility is the only one allowed by the traditional way of seeing while the
second possibility is typical of the geometric algebra point of view which is
richer compared to the usual one because the subtended group GL(2, C) has
more parameters than the Lorentz one.
It seems to us much more logical to favor this second possibility for reasons
of consistency as, for the Lorentz transformations, we precisely have |ϕ′⟩± =
MERe

|ϕ⟩± each time. We therefore opt for, in all cases

|ϕ′⟩± = MERe
|ϕ⟩± (61)

We also notice that, for MERe
= e

1
2
θ I4 , we have

γµ MERe
= M−1

ERe
γµ (62)

and finally obtain

(γµ ∂′
µ ± im′) |ϕ′⟩± = ±i(−M−1

ERe
m+m′ MERe

) |ϕ⟩± (63)

So, the invariance leads to

m′ = m

(
e−i θ 0
0 ei θ

)
(64)

What this tells us is that the mass itself undergoes a transformation, which
consists of a rotation in the complex plane. For θ = π, these rotations lead
to an inversion of the sign of the mass.
As noticed in [25], the relations (62) lead to different transformation laws for
each spinor of |ϕ⟩±

|ξ′⟩± = N |ξ⟩± ; |η′⟩± = N̂ |η⟩± (65)

In what concerns the version coming from the geometric algebra, it is easy
to convince ourselves that

ϕ′
ϵ = MERe

ϕϵ ; ϵ = ±1 (66)

Let us now turn, in a similar way, to the other cases (24c), (24b) and (24d).
First, we consider the proper retrochronous transformations. At the start,
we observe a simple change of sign through (24c) and

∆ = −N̄ ∆′ N̂ (67)
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This leads to anticommutation relations where there were commutation re-
lations and vice versa. In particular, (59) now reads{

γ0 MEIm
= −MEIm

γ0, γ1 MEIm
= −MEIm

γ1

γ2 MEIm
= −MEIm

(γ2 cos θ + γ3 sin θ), γ3 MEIm
= MEIm

(γ2 sin θ − γ3 cos θ)
(68)

and is satisfied with

MEIm
= −i sin

θ

2
γ0γ1 − i cos

θ

2
γ0γ1γ2γ3 = −i I4 MERe

(69)

as expected.
This change of sign is also recovered for the supplementary symmetry in the
sense that we now have

γµ MEIm
= −M−1

EIm
γµ (70)

Despite this change of sign, the relation (64) still holds true.
In what concerns the results (65) and (66), they become respectively

|ξ′⟩± = N |ξ⟩± ; |η′⟩± = −N̂ |η⟩± (71)

and
ϕ′
ϵ = i MEIm

ϕϵ γ1γ2 (72)

We now come to the improper orthochronous transformations characterized
by (24b). The transformation law on the derivatives is given by

∆ = Ñ ∆̂′ N (73)

Each constraint on MORe
is affected by sign changes. For instance, Eq (59)

now reads{
γ0 MORe

= MORe
γ0, γ1 MORe

= −MORe
γ1

γ2 MORe
= −MORe

(γ2 cos θ + γ3 sin θ), γ3 MORe
= MORe

(γ2 sin θ − γ3 cos θ)
(74)

and is satisfied with

MORe
= cos

θ

2
γ0 − sin

θ

2
γ0γ2γ3 = γ0 MERe

(75)

In what concerns the supplementary symmetry, we have to distinguish the
time contribution from the spatial ones

γ0 MORe
= γ0 (cos

θ

2
γ0 + sin

θ

2
γ1γ2γ3) = (cos

θ

2
γ0 − sin

θ

2
γ1γ2γ3) γ

0 (76a)
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γj MORe
= γj (cos

θ

2
γ0+sin

θ

2
γ1γ2γ3) = −(cos

θ

2
γ0−sin

θ

2
γ1γ2γ3) γ

j (76b)

in order to obtain the transformation law on mass (64).
The results (65)-(66) are now

|ξ′⟩± = N̂ |η⟩± ; |η′⟩± = N |ξ⟩± (77)

We conclude this case by mentioning that

ϕ′
ϵ = ϵ MORe

ϕϵ γ0 (78)

Let us now turn to the ultimate case, the one of improper retrochronous
transformations (24d). It is extremely close to the previous case. Eqs (73)
and (74) just get a minus sign in front of the second member of each relation.
Consequently, we obtain

MOIm
= −i cos

θ

2
γ1γ2γ3 − i sin

θ

2
γ1 = −i γ1γ2γ3 MERe

(79)

Relations (76) become

γ0 MOIm
= γ0 (i cos

θ

2
γ1γ2γ3−i sin

θ

2
γ0) = (−i cos

θ

2
γ1γ2γ3−i sin

θ

2
γ0) γ

0

(80a)

γj MOIm
= γj (i cos

θ

2
γ1γ2γ3 − i sin

θ

2
γ0) = (i cos

θ

2
γ1γ2γ3 + i sin

θ

2
γ0) γ

j

(80b)
leading once again to (64).
The information is complete if we add

|ξ′⟩± = N̂ |η⟩± ; |η′⟩± = −N |ξ⟩± (81)

and
ϕ′
ϵ = ϵ MOIm

ϕϵ γ0γ1γ2 (82)

7 Conclusion

Usually, when one study the spacetime algebra, one focus to its even part,
isomorphic to the space algebra. This is because this even part allows to find
the whole content of the Dirac equation. The relativistic invariance is then
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that of the restricted Lorentz group.
We wanted to extend these considerations here by proposing three other
types of elements of this spacetime algebra, i.e. the odd and the imaginary
parts. This allowed us to highlight all connected components of the Lorentz
group.
We then linked these developments to the Dirac equation, with the two signs
of mass and confirmed that the four propositions were associated with four
types of matter, of positive or negative mass, of positive or negative charge.
Each time, the Lorentz invariance was confirmed but also completed by a
new transformation: a rotation in the complex plane concerning the mass
and thus allowing the inversion of the sign of this mass.
This supplementary transformation is due to the presence of the unit pseudo-
scalar of the STA. We are convinced that this pseudo-scalar unit could bring
other interesting developments. For example, we know that the mass term
of the usual Dirac Lagrangian, mϕ̄ϕ, is purely scalar. But what happens to
this mass term in its geometric algebra version? We just have to take again
(49) and (51) simultaneously on the form

ϕϵ =

(
Φ 0

0 ϵΦ̂

)
(83)

as well as

ϕ̄ϵ =

(
Φ̄ 0

0 ϵΦ̃

)
(84)

to see that

m ϕ̄ϵ ϕϵ =

(
(c1 + ic2)I 0

0 (c1− ic2)I

)
(85)

with {
c1 ≡ ϕ1 ϕ

∗
3 + ϕ∗

1 ϕ3 + ϕ2 ϕ
∗
4 + ϕ∗

2 ϕ4

c2 ≡ i(−ϕ1 ϕ
∗
3 + ϕ∗

1 ϕ3 − ϕ2 ϕ
∗
4 + ϕ∗

2 ϕ4)
(86)

What is remarkable in (85) is the combination of both scalar and pseudo-
scalar contributions

m ϕ̄ϵ ϕϵ = c1 + c2 I4 (87)

a fact that was absent from traditional considerations since

mϕ̄ϕ = m ⟨ϕ|γ0|ϕ⟩ = m c1 (88)

We believe that a mass acquisition process ”à la Higgs” applied to (85) could
bring interesting developments and this is what we will work on in the future.
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