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Abstract

In this article, we will examine the various symmetry groups as well as the action

of the electric Poincaré group with charge symmetry on the elements of the dual of the

Lie algebra, called torsors.
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Introduction

Groups and Lie algebras are mathematically significant objects that originate from the study

of symmetries. These structures have widespread applications in various areas of mathematics,

theoretical physics, and gauge theory. In this article, we will focus on the dynamic groups of

Lorentz, Poincaré, and Poincaré group with charge symmetry.

The Poincaré group is an iconic example of a Lie group. It plays a central role in theoretical

physics, particularly in special relativity. This symmetry group describes transformations that leave

the laws of physics invariant under translations, rotations, and Lorentz transformations that mix

spatial and temporal coordinates.

Poincaré’s group, a fundamental concept in the realm of symmetries and physics, initially found

its application in the study of gravitation. He played a crucial role in understanding the principles

governing gravitational interactions, shedding light on the intricate interplay of spacetime geometry

and massive objects.

Following the groundbreaking development of general relativity by Albert Einstein in 1915, the

scientific community became captivated by the notion of achieving a grand unification of the funda-

mental forces of nature. Several distinguished minds sought to bridge the gap between gravitation

and electromagnetism by introducing innovative ideas, and perhaps the most ingenious of these

attempts revolved around the concept of an additional dimension (see [2], [3], [4], [7], [8]). In this

audacious approach, theorists contemplated the existence of a fifth dimension, coiled and hidden

from our ordinary perceptions. This notion opened up a vast landscape of possibilities, where the

symmetries of spacetime extended beyond the conventional four dimensions.

Pioneers in this trailblazing field included Theodor Kaluza, who, in 1919, proposed a five-

dimensional theory that merged gravitation and electromagnetism into a single elegant framework.

His work laid the foundation for subsequent investigations into the unification of fundamental forces.

Oskar Klein, building upon Kaluza’s ideas, further refined the concept of compactification, suggest-

ing that the fifth dimension was curled up and compact, escaping detection at the macroscopic

scales we experience.

As the exploration of the fifth dimension unfolded, other notable figures joined the quest for a

unified theory. Among them were Peter Bergmann and Salomon Barmgman, who independently

contributed to the growing body of knowledge. Their collective efforts showcased the vibrancy of

theoretical research during that era, as minds converged on a shared goal of unraveling the secrets

of the cosmos.

Though some of their specific approaches might not have ultimately led to the grand unification

they sought, their collective endeavors laid the groundwork for further advancements in theoretical

physics.

However, as we delve deeper into their research, it becomes evident that their groundbreaking

approach was not without its complexities. The five-dimensional theory, while displaying com-

plete symmetry, presented a peculiar challenge that could not be easily dismissed. Einstein and

Bergmann, despite their audaciousness in postulating novel concepts, decided to take a step back

and modify the theory. The modification they introduced had far-reaching consequences, particu-

larly with regards to the five-dimensional symmetry. For modern readers, their decision might seem

contrived, but it must be viewed through the lens of the era in which they lived and worked. The

theoretical landscape of the 1930s was vastly different from today’s, and the scientific community

operated within different constraints and paradigms.

This prediction, though intriguing, posed a dilemma for Einstein and Bergmann. On the one
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hand, it offered the tantalizing prospect of unification and new fundamental interactions. On the

other, it raised questions about the experimental verifiability of such a field and the implications

it might have for other well-established theories. As scientists seeking to push the boundaries of

knowledge, they faced a difficult choice.

Ultimately, in 1938, Einstein and Bergmann made the pivotal decision not to embrace this

prediction fully. The ramifications of this choice would reverberate through the years, prompting

further investigations and theoretical developments. While the modified theory might have sacri-

ficed some of its original symmetry, it still provided a remarkable stepping stone in the quest for a

comprehensive understanding of the fundamental forces governing the cosmos.

In retrospect, the significance of their work becomes evident. Their willingness to explore new

dimensions and their courage to revise their theories when faced with challenging prospects mark

them as pioneers in the annals of astrophysics. Moreover, their cautionary stance reminds us of the

delicate balance between theoretical exploration and empirical validation – a balance that continues

to shape the scientific endeavors of today.

We begin the article with a generalization of the notion of symmetry. Then, we will explore

the fundamental properties of Lorentz and Poincaré groups, their Lie algebras, and the dual of

their Lie algebras. We conclude with the study of electric Poincaré group, which allow the study

of five-dimensional spacetime with one dimension curled up. This curled-up dimension introduces

an additional parameter which can be identified as a conserved scalar quantity, much like electric

charge in theoretical physics.

This text is inspired by the work of Jean-Marie Souriau, which can be found in [9] and [10].

1 Generalities

In this section, we generalize the notion of symmetry. We conclude the section with the concept of

matrix Lie groups and the associated affine group of a Lie group (see [6], [5], and [1]).

1.1 Standard Groups

We denote by M(n,R) the set of square matrices of size n with coefficients in R.
For all k, l ∈ {1, . . . , n}, we denote the elementary matrix Ekl whose coefficients are all zero

except for the coefficient in the k-th row and l-th column, which is equal to 1. Thus, the family

C(M(n,R)) := {Ekl, k, l ∈ {1, . . . , n}}

is a basis for M(n,R) over R.
The general linear group of size n over R is given by:

GL(n,R) := {B ∈ M(n,R), detB ̸= 0}

1.2 Symmetry

Notation 1.1. (1) For α := (α1, . . . , αn) ∈ {±1}n, we denote:

Iα :=


α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn
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and the signature of α as:

s(α) := (card{i ∈ {1, . . . , n}, αi = 1}, card{i ∈ {1, . . . , n}, αi = −1})

Thus, we have:

I−1
α = Iα.

There are two simple cases.

(a) If α := (1, . . . , 1,−1, . . . ,−1) and s(α) := (p, n − p) (0 ≤ p ≤ n), we use s(α) and α

interchangeably in the notation. For example, we write:

Ip,n−p := I(p,n−p) := Is(α) :=

(
Ip 0

0 −In−p

)
.

(b) In the case where α := (1, . . . , 1), i.e., s(α) = (n, 0). We use α, s(α), and n interchangeably

in the notation. For example, we write:

In = In,0 = I(n,0) = Is(α).

(2) For any matrix M ∈ M(n,R), we denote [M ]kl as the coefficient of M in row k and column l,

and for any vector V ∈ Rn, we denote [V ]k as the k-th coordinate of V .

(3) We denote C(Rn) as the canonical basis of Rn:

e1,n :=


1

0
...

0

 , e2,n :=


0

1
...

0

 , . . . , en,n :=


0

0
...

1

 .

If not specified, in the following we take α ∈ {±1}n.

Definition 1.1. Transposes

Let B ∈ M(n,R).

(i) The transpose BT of B is defined as:

[BT ]ij := [B]ji.

(ii) The α-transpose τα(B) of B is defined as:

τα(B) := IαB
T Iα.

We have for all k, l ∈ {1, . . . , n}:

[τα(B)]kl = αkαl.

The mapping τα is an involutive R-automorphism of M(n,R), thus we have τ−1
α = τα.

Point (i) is a particular case of (ii), we have:

BT = τn,0(B) = τ0,n(B).

As (BC)T = CTBT , we have directly:

τα(BC) = Iα(BC)T Iα = IαC
T IαIαB

T Iα = τα(C)τα(B).
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Example 1.2. Let:

B :=

a b c

d e f

g h j

 , Iα =

−1 0 0

0 1 0

0 0 −1


We have:

τα(B) = IαB
T Iα =

−1 0 0

0 1 0

0 0 −1


a d g

b e h

c f j


−1 0 0

0 1 0

0 0 −1

 =

 a −d g

−b e −h
c −f j


Definition 1.2. Let k ∈ {0, 1}. A matrix B ∈ M(n,R) is called k-symmetric of size α if:

B = (−1)kτα(B).

We denote their set as S(k, α).

(i) A 0-symmetric matrix of size α is also called a symmetric matrix of size α. We denote

their set as S(α), i.e., we have:

S(α) := S(0, α).

(ii) A 1-symmetric matrix of size α is also called an antisymmetric matrix of size α. We

denote their set as A(α), i.e., we have:

A(α) := S(1, α).

Noting:

S(n) := S((n, 0)) , A(n) := S((n, 0)).

We have the direct sum:

M(n,R) = S(α)⊕A(α)

given by the decomposition for any B ∈ M(n,R):

B = Sα(B) +Aα(B)

with

Sα(B) :=
B + τα(B)

2
, Aα(B) :=

B − τα(B)

2

respectively called the symmetric and antisymmetric matrices of size α associated with B.

Example 1.3. We use the notations from the previous example with:

B :=

a b c

d e f

g h j

 , Iα =

−1 0 0

0 1 0

0 0 −1


We have:

Sα(B) =
1

2

 2a b− d c+ g

−b+ d 2e f − h

c+ g −f + h 2j

 Aα(B) =
1

2

 0 b+ d c− g

b+ d 0 f + h

−c+ g f + h 0
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For all k, l ∈ {1, . . . , n} such that k < l, we denote:

S(α)kl := Ekl + τα(Ekl) = Ekl + αkαlElk

A(α)kl := −Ekl + τα(Ekl) = −Ekl + αkαlElk

We then have:

τα (S(α)kl) = τα (Ekl + αkαlElk) = αkαlElk + Ekl = S(α)kl

τα (A(α)kl) = τα (−Ekl + αkαlElk) = −αkαlElk + Ekl = −A(α)kl

i.e., we have:

S(α)kl ∈ S(α) , A(α)kl ∈ A(α)

A basis of S(α) over R is given by the family:

C(S(α)) := {S(α)kl, k, l ∈ {1, . . . , n}, k < l} ∪ {Ekk, k ∈ {1, . . . , n}}

thus:

dimS(α) = n(n+ 1)

2
.

And a basis of A(α) over R is given by the family:

C(A(α)) := {A(α)kl, k, l ∈ {1, . . . , n}, k < l}

thus:

dimA(α) =
n(n− 1)

2
.

Example 1.4. We resume the previous examples with:

α := (−1, 1,−1)

(1) We have dimS(α) = 6 and

S(α) = Vect (E11, E22, E33, S(α)12, S(α)13, S(α)23)

= Vect


1 0 0

0 0 0

0 0 0

 ,

0 0 0

0 1 0

0 0 0

 ,

0 0 0

0 0 0

0 0 1

 ,

 0 1 0

−1 0 0

0 0 0

 ,

0 0 1

0 0 0

1 0 0

 ,

0 0 0

0 0 1

0 −1 0




(2) We have dimA(α) = 3 and

A(α) = Vect (A(α)12, A(α)13, A(α)23)

= Vect


 0 −1 0

−1 0 0

0 0 0

 ,

0 0 −1

0 0 0

1 0 0

 ,

0 0 0

0 0 −1

0 −1 0




The vector space of linear forms on M(n,R), i.e., the dual of M(n,R), is denoted by:

M(n,R)∗ := L(M(n,R),R).

There exists an isomorphism of vector spaces:

Φ : M(n,R) −→ M(n,R)∗

M 7−→ Φ(M) : B 7−→ Tr(BMT )
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Therefore, linear forms on M(n,R) can be characterized using the trace. A basis for M(n,R)∗ is

given by the family of linear forms:

Ekl : B 7−→ Tr(B ET
kl) = Tr(BElk).

(They are linearly independent since Φ is injective, so they form a basis for M(n,R)∗.) Moreover,

we have:

Ekl(Eij) = Tr(EijElk) = [Eij ]mn[Elk]nm = δimδjnδlnδkm = δikδjl

Thus, the family

C(M(n,R))∗ :=
{
Ekl, k, l ∈ {1, . . . , n}

}
is the dual basis associated with the canonical basis

C(M(n,R)) = {Ekl, k, l ∈ {1, . . . , n}} .

We have the following result.

Proposition 1.5. Let β ∈ R∗ and B be a subset of C(A(α)). Let’s define:

E := Vect(B) ⊂ A(α)

There exists an isomorphism of vector spaces:

Φβ : E −→ E∗

M 7−→ Φβ(M) : B 7−→ βTr(BM)

Proof. Since the trace is linear, Φβ is clearly linear. It suffices to show that ker (Φβ) = {0}. Let

M ∈ E such that Φβ(M) = 0, i.e., for all B ∈ B:

Φβ(M)(B) = 0.

We will show that M is zero. It is already zero on the diagonal. Let’s prove that it is zero off the

diagonal. There exists a subset I of double indices:

I ⊂ {(k, l) ∈ {1, . . . , n}2, k < l}

such that:

B := {A(α)k,l, (k, l) ∈ I}

Let’s prove that [M ]kl = 0 for all (k, l) ∈ I. We have:

A(α)kl := −Ekl + αkαlElk ∈ A(α).

Thus, we have:

0 = Φβ(M)(A(α)kl)

= βTr(A(α)klM)

= β[A(α)kl]ij [M ]ji

= β[−Ekl + αkαlElk]ij [M ]ji

= β (−[M ]lk + αkαl[M ]kl)

= −2β[M ]lk.
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because αkαl[M ]kl = −[M ]lk. Thus, [M ]lk = 0. Therefore, M = 0. Hence, the result holds.

Keeping the notation of the proof, we have for all (i, j), (k, l) ∈ I:

0 = Φβ(A(α)ij)(A(α)kl) = −2β[A(α)ij ]lk = −2β (δilδjk − αiαjδikδjl) = ±2β

It is then natural to take β ∈ {±1/2}, so we choose:

β = −1

2
.

Let’s see why. We have:

Φ−1/2(A(α)kl)(A(α)kl) = −2
−1

2
= 1.

Therefore, the family

C(A(α))∗ :=
{
Φ−1/2(A(α)kl), k, l ∈ {1, . . . , n}, k < l

}
is the dual basis associated with

C(A(α)) = {A(α)kl, k, l ∈ {1, . . . , n}, k < l} .

We then define the isomorphism:

•∨ : E −→ E∗

M 7−→ M∨ : B 7−→ − 1
2
Tr(BM)

(1)

We can therefore deduce the following proposition.

Proposition 1.6. The dual basis of A(α)∗ associated with

C(A(α)) = {A(α)kl, k, l ∈ {1, . . . , n}, k < l}

is the family:

C(A(α))∗ =
{
A(α)∨kl, k, l ∈ {1, . . . , n}, k < l

}
.

1.3 Generalities on Matrix Lie Groups

The linear group GL(n,R) is a Lie group, and its Lie algebra is denoted gl(n,R), which is the vector

space M(n,R) equipped with the Lie bracket:

∀x, y ∈ M(n,R), [x, y] := xy − yx.

Definition 1.3. A matrix Lie group is a subgroup of GL(n,R) that is a submanifold of M(n,R).

According to Cartan’s theorem, a subgroup of GL(n,R) is a matrix Lie group if and only if it

is closed in GL(n,R).

The special linear group of size n over R is the subgroup of GL(n,R) defined by:

SL(n,R) := {B ∈ GL(n,R), detB = 1} .

Definition 1.4. Let G be a subgroup of GL(n,R). The special group associated with G is:

SG := G ∩ SL(n,R).
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The group SL(n,R) is a matrix Lie group and:

sl(n,R) = TInSL(n,R) = {B ∈ M(n,R), Tr(B) = 0} .

We recall the usual definitions of the adjoint and coadjoint representations in the case of matrix

Lie groups.

Definition 1.5. Let G be a matrix Lie group with Lie algebra g.

(i) The adjoint representation of G on g is defined as:

Ad : G −→ Aut(g)

a 7−→ Ada : Z 7−→ aZa−1

(ii) The coadjoint representation of G on g∗ is defined as:

Ad∗ : G −→ Aut(g∗)

a 7−→ Ad∗
a : ψ 7−→ (Z 7−→ ψ (Ada−1(Z)))

Suppose G ⊂ GL(n,R). We have, for example:

AdIn = Idg Ad∗
In = Idg∗ Ad−1

a = Ada−1 (Ad∗
a)

−1
= Ad∗

a−1

We then have the following simple lemma.

Lemma 1.6.1. Let G be a matrix Lie group with Lie algebra g, and β ∈ R∗. For any a ∈ G and

M ∈ g, we have:

Ad∗
a(Φβ(M)) = Φβ(aMa−1).

Proof. For any Z ∈ g, we have:

Ad∗
a(Φβ(M))(Z) = Φβ(M)(a−1Za) = βTr(a−1ZaM) = βTr(ZaMa−1) = Φβ(aMa−1)

Finally, we note that for any B,B′ ∈ A(α), we have:

τα([B,B
′]) = τα(BB

′ −B′B) = τα(BB
′)− τα(B

′B) = τα(B
′B)− τα(BB

′) = −τα([B′, B])

This implies [B,B′] ∈ A(α). We denote a(α) as the Lie subalgebra of gl(n,R) with vector space

A(α).

Example 1.7. We start by noting that the usual cross product satisfies the Jacobi identity, making

it a Lie bracket on R3:

∀u, v, w ∈ R3, u ∧ (v ∧ w) + w ∧ (u ∧ v) + v ∧ (w ∧ u) = 0.

Therefore, (R3,∧) is a Lie algebra.

Let’s define the natural map:

j : R3 −→ A(3)xy
z

 7−→

 0 −z y

z 0 −x
−y x 0
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where A(3) := A(3, 0) := A((1, 1, 1)). This map is clearly linear and injective. Since dimA(3) = 3,

it is an isomorphism of vector spaces.

Furthermore, for any u := uiei, v := viei ∈ R3, we have:

[j(u), j(v)] = j(u)j(v)− j(v)j(u) =

 0 v1u2 − u1v2 v1u3 − v3u1

u1v2 − u2v1 0 v2u3 − v3u2

u1v3 − u3v1 u2v3 − u3v2 0

 = j(u ∧ v).

Thus, j extends to an isomorphism of Lie algebras (also denoted by j):

j : (R3,∧) −→ a(3) := (A(3), [])xy
z

 7−→

 0 −z y

z 0 −x
−y x 0


1.4 Lie Groups and Associated Affine Group

In this subsection, we consider a matrix Lie group G, which means that there exists n ∈ N∗ such

that G is a Lie subgroup of M(n,R).
Let g be the Lie algebra of G, and we assume two things:

• There exists α ∈ {±1}n.

• There exists a subset B := (Z1, . . . , Zd) of C(A(α)).

such that:

g = Vect(B)

Therefore, g is a Lie subalgebra of a(α) with dimension d ≤ n(n− 1)/2.

Definition 1.6. The affine group associated with G is defined as:

Aff(G) := G⋉ Rn.

For any (U,D), (U ′, D′) ∈ Aff(G), the composition law on Aff(G) is defined as:

(U,D)(U ′, D′) := (UU ′, D + UD′)

Lemma 1.7.1. Let’s define the map:

PaffG : (Aff(G), ·) −→ (GL(n+ 1,R),×)

(U,D) 7−→

(
U D

0 1

)

Then, PaffG is an injective group homomorphism.

Proof. The map is clearly injective. For any (U,D), (U ′, D′) ∈ Aff(G), we have:

PaffG(U,D)PaffG(U
′, D′) =

(
U D

0 1

)(
U ′ D′

0 1

)
=

(
UU ′ D + UD′

0 1

)
= PaffG(UU

′, D + UD′) = PaffG((U,D) · (U ′, D′))

Therefore, the result follows.

Thus, we can identify (aff(G), []) as a subalgebra of Lie algebra (gl(n + 1,R), []). This is what
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we will do from now on, i.e.:

aff(G) =

{(
Z v

0 0

)
, Z ∈ g ∧ v ∈ Rn

}
. (2)

Therefore, a basis of aff(G) is given in this representation by:{(
Z1 0

0 0

)
, . . . ,

(
Zd 0

0 0

)}
∪

{(
0 e1

0 0

)
, . . . ,

(
0 en

0 0

)}

Definition 1.7. The elements of aff(G)∗ are called torsors.

Before giving an explicit description of torsors, we notice that we have the natural isomorphism:

•∨ : Rn −→ (Rn)∗

Q 7−→ Q∨ : R 7−→ QTR

(3)

Therefore, for all i, j ∈ {1, . . . , n}:
e∨j,n(ei,n) = δij .

The following proposition provides an explicit description of torsors.

Proposition 1.8. We have:

aff(G)∗ =

{{
N Q

}
:

(
Z v

0 0

)
7−→ −1

2
Tr(NZ) +QT v, N ∈ g ∧ Q ∈ Rn

}
.

Proof. Let’s prove the equality of vector spaces by double inclusion:

aff(G)∗ = {(Z, v) 7→ ϕ(Z) + ψ(v), ϕ ∈ g∗ ∧ ψ ∈ (Rn)∗} .

The backward inclusion ⊃ is clear. We only need to show the equality of dimensions. For every

i ∈ {1, . . . , d} and j ∈ {1, . . . , n}, let’s define:

Z̃i : (Z, v) 7→ Z∨
i (Z)

˜ej,n : (Z, v) 7→ e∨j,n(Z)

and since:

Z̃i(Z, v) = Z∨
i (Z) = Z∨

i (Z) +OL(Rn,R)(v)

˜ej,n(Z, v) = e∨j,n(v) = 0L(g,R)(Z) + e∨j,n(v)

we conclude that these d + n functions are elements of the right vector space. Since dim aff(G) =

d+ n, it suffices to show that these functions are linearly independent.

Let λ1, . . . , λd, µ1, . . . , µn ∈ R such that λiZ̃i + µj ˜ej,n = 0. Then, for all i, k ∈ {1, . . . , d} and

j, l ∈ {1, . . . , n}, we have:

0 = λiZ̃i(Zk, 0) + µj ˜ej,n(Zj , 0) = λk

0 = λiZ̃i(0, el,n) + µj ˜ej,n(0, el,n) = µl

Thus, the vector spaces are equal.

According to the isomorphisms 1 and 3, for every ϕ ∈ g∗ and ψ ∈ (Rn)∗, there exist unique
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elements N ∈ g and Q ∈ Rn such that ϕ = N∨ and ψ = Q∨. Hence, we have the equalities:

aff(G)∗ =
{
N∨ +Q∨, N ∈ g ∧ Q ∈ Rn}

=

{{
N Q

}
:

(
Z v

0 0

)
7−→ −1

2
Tr(NZ) +QT v, N ∈ g ∧ Q ∈ Rn

}

Definition 1.8. The action of the group Aff(G) on aff(G)∗ is defined by the coadjoint repre-

sentation, i.e., for every a ∈ Aff(G) and µ ∈ aff(G)∗, we denote:

a • µ = Ad∗
a(µ).

Proposition 1.9. Let:

a :=

(
U D

0 1

)
∈ Aff(G) ,

{
N Q

}
∈ aff(G)∗.

We have:

a •
{
N Q

}
=
{
UNU−1 − 2DQTU−1

(
U−1

)T
Q
}
.

Proof. We have:

(
a •
{
N Q

})(Z v

0 0

)
=
{
N Q

}(
a−1

(
Z v

0 0

)
a

)

=
{
N Q

}((U−1 −U−1D

0 1

)(
Z v

0 0

)(
U D

0 1

))

=
{
N Q

}(U−1ZU U−1ZD + U−1v

0 0

)

= −1

2
Tr(NU−1ZU) +QT (U−1ZD + U−1v)

= −1

2
Tr(UNU−1Z) + Tr(QTU−1ZD) +QTU−1v since QTU−1ZD ∈ R

= −1

2
Tr((UNU−1 − 2DQTU−1)Z) +QTU−1v

=
{
UNU−1 − 2DQTU−1

(
U−1

)T
Q
}(Z v

0 0

)

Thus, we obtain the result.

2 Dynamic Groups

Let α ∈ {±1}n be fixed.

2.1 Pseudo-Orthogonal Groups

Definition 2.1. The pseudo-orthogonal group of size α over R is defined as:

O(α) := {L ∈ GL(n,R), τα(L)L = In} .

Thus, we have:

O(α) =
{
L ∈ GL(n,R), LT IαL = Iα

}

12



and for all L ∈ O(α), L−1 = τα(L). We denote:

SO(α) := O(α) ∩ SL(n,R) := {L ∈ O(α), detL = 1} .

Proposition 2.1. O(α) and SO(α) are matrix Lie groups and their Lie algebras are equal and

given by:

o(α) = so(α) = TInO(α) = a(α).

Proof. The group O(α) is closed in GL(n,R) as it is the preimage of the singleton {Iα} under the

continuous map:

f : M(n,R) −→ S(n)
x 7−→ xT Iαx

Since f is C∞-class, it suffices to calculate the derivative of f at In in an arbitrary direction

H ∈ M(n,R). Let H ∈ M(n,R) be a matrix. For every real number t in a neighborhood of 0:

f(In + tH) = Iα + t
(
HT Iα + IαH

)
+O(t2).

Since the map H 7→ HT Iα + IαH is linear and surjective (for every y ∈ S(n), let x := 1/2Iαy, then

y = xT Iα + Iαx), we have:

dInf : H 7→ τα(H)Iα + IαH.

and:

o(α) = TInO(α) = Ker dInf.

Finally, since the map det : O(α) −→ {±1} is continuous and {1} is an open set in {±1}, we

conclude that SO(α) is an open subset of O(α). Thus, we obtain the result.

Therefore, we have:

dim o(α) = dim so(α) =
n(n− 1)

2
.

and a basis is given by C(A(α)). Thus, we are in the particular case of the previous section with

d := n(n− 1)/2.

2.2 Pseudo-Euclidean Groups

Definition 2.2. The pseudo-Euclidean group of size α over R is the affine group associated

with the pseudo-orthogonal group O(α), i.e.:

Euc(α) := Aff(O(α)).

By Lemma 1.7.1, the pseudo-Euclidean group can be seen as a subgroup of GL(n+ 1,R) given
by:

Euc(α) :=

{(
L C

0 1

)
, L ∈ O(α) ∧ C ∈ Rα

}
Since:

d+ n =
n(n− 1)

2
+ n =

n(n+ 1)

2

we can deduce from subsection 1.4 the following result.

Proposition 2.2. The group Euc(α) is a Lie group of dimension n(n+1)/2, and its Lie algebra is

given by:

euc(α) :=

{(
Λ Γ

0 0

)
, Λ ∈ a(α) ∧ Γ ∈ Rα

}

13



Therefore, a basis of euc(α) in this representation is given by:{(
A(α)kl 0

0 0

)
, k, l ∈ {1, . . . , n}, k < l

}
∪

{(
0 e1,n

0 0

)
, . . . ,

(
0 en,n

0 0

)}

Moreover, we have that euc(α) satisfies the assumptions of g in subsection 1.4, and thus, ac-

cording to Proposition 1.8, we have:

euc(α)∗ = L(euc(α),R)

=

{{
M P

}
:

(
Λ Γ

0 0

)
7→ −1

2
Tr(MΛ) + PTΓ, M ∈ a(α) ∧ P ∈ Rn

}
. (4)

The action of the group Euc(α) on poin∗ is defined by the coadjoint representation, i.e., for any

a ∈ Euc(α) and µ ∈ euc(α)∗, we denote:

a • µ := Ad∗
a(µ).

For all

a :=

(
L C

0 1

)
∈ Euc(α) ,

{
M P

}
∈ aff(G)∗

and since L−1 = τα(L), by Proposition 1.9 we have:

(
a •
{
M P

})(Λ Γ

0 0

)
=
{
LMτα(L)− 2CPT τα(L) τα(L)

TP
}(Λ Γ

0 0

)

= −1

2
Tr((LMτα(L)− 2CPT τα(L))Λ) + PT τα(L)Γ (5)

3 Applications to Relativity

3.1 The Lorentz Group

Definition 3.1. The Lorentz group in dimension 4 is defined as:

L := O(1, 3) =
{
L ∈ GL(4,R), LT I1,3L = I1,3

}
.

We have L = {L ∈ GL(4,R), τ1,3(L)L = I4}. We have the following simple lemma.

Lemma 3.0.1. Let

L :=

(
e bT

c d

)
∈ L

with e := [L]00 ∈ R, b, c ∈ R3, and d ∈ M(3,R).

(i) We have det(L) = ±1 and e2 = [L]200 ≥ 1.

(ii) We have bT b = cT c = e2 − 1.

Proof. Since IT1,3 = I1,3, we have LT I1,3L = I1,3 and TI1,3L = I1,3 which implies:(
1 0

0 −I3

)
=

(
e bT

c d

)(
1 0

0 −I3

)(
e cT

b dT

)
=

(
e2 − bT b ∗

∗ ∗

)
(
1 0

0 −I3

)
=

(
e cT

b d

)(
1 0

0 −I3

)(
e bT

c dT

)
=

(
e2 − cT c ∗

∗ ∗

)
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Therefore, we have e2 − cT c = e2 − bT b = 1 and moreover as cT c = (ci)2 ≥ 0, we only have

e2 ≥ 1.

Let’s define:

T4 :=

(
−1 0

0 I3

)
, P4 :=

(
1 0

0 −I3

)
.

We define the eight fundamental subsets of L.

Definition 3.2. (i) (a) The neutral component is:

Ln := {L ∈ L, det(L) = 1 ∧ [L]00 ≥ 1}.

(b) The P -symmetric component is:

Lp := {L ∈ L, det(L) = −1 ∧ [L]00 ≥ 1}.

(c) The T -symmetric component is:

Lt := {L ∈ L, det(L) = −1 ∧ [L]00 ≤ −1}.

(d) The PT -symmetric component is:

Lpt := {L ∈ L, det(L) = 1 ∧ [L]00 ≤ −1}.

(ii) (a) The orthochronous component is:

Lo := Ln ⊔ Lp = {L ∈ L, [L]00 ≥ 1}.

(b) The antichronous component is:

La := Lt ⊔ Lpt = {L ∈ L, [L]00 ≤ −1}.

(iii) (a) The special component1 is:

Ls := Ln ⊔ Lpt = {L ∈ L, det(L) = 1}.

(b) The improper component is:

Li := Lp ⊔ Lt = {L ∈ L, det(L) = −1}

Among these components, three are subgroups of L.

Lemma 3.0.2. The components Ln, Lo, and Ls are subgroups of L. They are respectively called:

(i) Ln: restricted Lorentz subgroup or proper orthochronous, also denoted as SO0(1, 3);

(ii) Lo: orthochronous subgroup;

(iii) Ls: special subgroup, also denoted as SO(1, 3).

Proof. We have Ls = SO(1, 3) = L ∩ SL(4,R) so Ls is a subgroup of L.
1In the literature, the special component is also called the proper component, so as not to confuse it

with the Lp component, we choose to call it the special component and denote it ”Ls”.
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Let’s show that Lo is a subgroup of L. Let

L :=

(
e bT

c d

)
, L′ :=

(
e′ b′T

c′ d′

)
∈ Lo.

We define L′′ :=

(
e′′ b′′T

c′′ d′′

)
:= LL′. Then we have:

(
e′′ b′′T

c′′ d′′

)
= L′′ = LL′ =

(
e bT

c d

)(
e′ b′T

c′ d′

)
=

(
ee′ + bT c′ ∗

∗ ∗

)

thus we have bT c′ = e′′ − ee′. Therefore, using Cauchy-Schwartz and point (ii) of the previous

lemma, we have:

|e′′ − ee′|2 = |bT c′|2 ≤ (bT b)(c′T c′) = (e2 − 1)(e′2 − 1).

Since e, e′ ≥ 1, we have ee′ ≥ 1 and thus:

e′′ ≥ ee′ −
√

(e2 − 1)(e′2 − 1).

To show that e′′ ≥ 1, it suffices to show that e′′ ≥ 0 because |e′′| ≥ 1. Therefore, it is enough to

show by squaring that (ee′)2 ≥ (e2 − 1)(e′2 − 1). We have:

(ee′)2 − (e2 − 1)(e′2 − 1) = e21 + e22 − 1 ≥ 0.

Thus we have L′′ ∈ Lo. Consequently, Lo is a subgroup of L.
Since Ln := SO0(1, 3) = Lo ∩ Ls then Ln is a subgroup of L.

We have the usual decomposition into connected components:

L = Ln ⊔ Ls ⊔ Lt ⊔ Lpt = Ln ⊔ P4Ln ⊔ T4Ln ⊔ P4T4Ln.

Since det(−L) = det(L) for all L ∈ L, we have:

−Lt = {−L, L ∈ Lt} = {L ∈ L, det(L) = −1 ∧ [L]00 ≤ −1} = Lp

−Lpt = {−L, L ∈ Lpt} = {L ∈ L, det(L) = 1 ∧ [L]00 ≥ 1} = Ln

and since T 2
4 = I4, we have:

T4Lp = {T4L, L ∈ Lp} = {T4P4L, L ∈ Ln} = Lpt

T4Lt = {T4L, L ∈ Lt} = {T 2
4L, L ∈ Ln} = Ln

Therefore, we have the following decompositions:

L = Lo ⊔ La L = Ls ⊔ Li

= Lo ⊔ (−Lo) = Ls ⊔ (T4Ls)

= (Ln ⊔ Ls) ⊔ (Lt ⊔ Lpt) = (Ln ⊔ Lpt) ⊔ (Lt ⊔ Ls)

= (Ln ⊔ P4Ln) ⊔ (T4Ln ⊔ P4T4Ln) = (Ln ⊔ P4T4Ln) ⊔ (T4Ln ⊔ P4Ln)

In the rest of this section, we will particularly focus on the decomposition:

L = Lo ⊔ La = {λLo, Lo ∈ Lo ∧ λ ∈ {±1}} .

These decompositions are summarized in the following diagram:

16



It is a Lie group of dimension 6. The Lie algebra of the Lorentz group is given by:

lor :=o(1, 3) = a(1, 3)

=VectR

K1 :=


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,K2 :=


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,K3 :=


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

K4 :=


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,K5 :=


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 ,K6 :=


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0




We can use the isomorphism j from Example 1.7, and we have a more precise expression for

the Lie algebra:

lor =

{(
0 βT

β A

)
, A ∈ a(3) ∧ β ∈ R3

}
=

{(
0 βT

β j(w)

)
, β, w ∈ R3

}

3.2 The Poincaré Group

In this subsection, we extend the results from the previous subsection on the Lorentz groups. The

Poincaré group is the affine group of the Lorentz group. We refer to chapters 13 and 14 of [9] for

the results.

Definition 3.3. The Poincaré group is defined as:

P := Euc(1, 3).

It has four connected components, just like the Lorentz group. Let us denote:

∀x ∈ {n, p, t, pt, s, i, o, a}, Px :=

{(
L C

0 1

)
, L ∈ Lx ∧ C ∈ R4

}

and

T5 :=

(
T4 0

0 1

)
=

(
−1 I4

0 1

)
, P5 :=

(
P4 0

0 1

)
=

(
1 0

0 −I4

)
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As with the Lorentz group, we have:

P = Pn ⊔ Pp ⊔ Pt ⊔ Ppt = Pn ⊔ P5Pn ⊔ T5Pn ⊔ P5T5Pn

= Po ⊔ Pa = Po ⊔ (−P5T5Po)

= Ps ⊔ Pi = Ps ⊔ (T5Ps)

It has the following representation:

P =

{(
L C

0 1

)
, L ∈ L ∧ C ∈ R1,3

}

=

{(
λLo C

0 1

)
, Lo ∈ Lo ∧ C ∈ R1,3 ∧ λ ∈ {±1}

}

It is a Lie group of dimension 10. We have an expression for the Lie algebra:

poin =

{(
Λ Γ

0 0

)
, Λ ∈ a(1, 3) ∧ Γ ∈ R1,3

}
=


0 βT ν

β j(w) γ

0 0 0

 , β, w, γ ∈ R3 ∧ ν ∈ R


=VectR

({
K̃i :=

(
Ki 0

0 0

)
, i ∈ {1, . . . , 6}

}⋃{
Ji :=

(
0 ei,4

0 0

)
, i ∈ {1, . . . , 4}

})

The dual of poin is given by equation (4):

poin∗ = L(P,R) =

{{
M P

}
:

(
Λ Γ

0 0

)
7−→ −1

2
Tr(MΛ) + PTΓ, M ∈ a(1, 3), ∧ P ∈ R1,3

}

For any M ∈ A(1, 3), there exist ℓ, g ∈ R3 such that:

M =

(
0 gT

g j(ℓ)

)
.

Hence the following definition.

Definition 3.4. Let

µ :=
{
M P

}
:=

{ (
0 gT

g j(ℓ)

) (
E

p

) }
∈ poin∗.

(i) The matrix M is called the moment matrix associated with µ.

(ii) The vector P ∈ R1,3 is called the energy-momentum vector associated with µ.

(iii) The vector p ∈ R3 is called the momentum vector, and the scalar E ∈ R is called the

energy.

(iv) The vector ℓ ∈ R3 is called the angular momentum of M .
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Therefore, we have:

{
M P

}(Λ Γ

0 0

)
=

{ (
0 gT

g j(ℓ)

) (
E

p

) }0 βT ν

β j(w) γ

0 0 0


= −1

2
Tr

((
0 gT

g j(ℓ)

)(
0 βT

β j(w)

))
+
(
E pT

)(ν
γ

)

= −1

2
Tr

(
gTβ ∗
∗ βT g + j(ℓ)j(w)

)
+
(
E pT

)(ν
γ

)

= −1

2
Tr(j(ℓ)j(w))− 1

2
Tr(gTβ + gβT ) + pT γ + Eν

= (ℓ1w1 + ℓ2w2 + ℓ3w3)− gTβ + pT γ + Eν because gTβ = gβT ∈ R

= ℓ∨(w)− g∨(β) + p∨(γ) + Eν

We denote this last equality as:

{
ℓ g p E

}0 βT ν

β j(w) γ

0 0 0

 .

Therefore, we have:

poin∗ =


{
ℓ g p E

}
:

0 βT ν

β j(w) γ

0 0 0

 7−→ ℓ∨(w)− g∨(β) + p∨(γ) + Eν, ℓ, g, p ∈ R3 ∧ E ∈ R


The action of the group P on poin∗ is defined by the coadjoint representation i.e. for any a ∈ P

and µ ∈ poin∗, we denote:

a • µ := Ad∗
a(µ).

For all

a :=

(
L C

0 1

)
∈ P ,

{
M P

}
∈ poin∗

we have, from Proposition 1.9:

(
a •
{
M P

})(Λ Γ

0 0

)
=
{
LMτ1,3(L)− 2CPT τ1,3(L) τ1,3(L)

TP
}(Λ Γ

0 0

)

= −1

2
Tr((LMτ1,3(L)− 2CPT τ1,3(L))Λ) + PT τ1,3(L)Γ

We can then deduce the action of the three fundamental matrices T5 and P5 on poin∗.

Proposition 3.1. Let: {
ℓ g p E

}
∈ poin∗.

We have:

T5 •
{
ℓ g p E

}
=
{
ℓ −g p −E

}
P5 •

{
ℓ g p E

}
=
{
ℓ −g −p E

}

19



Therefore, for all i, j ∈ N:

(T i
5P

j
5 ) •

{
ℓ g p E

}
=
{
ℓ (−1)i+jg (−1)jp (−1)iE

}
.

Proof. We have:

T5 •
{
ℓ g p E

}
=

{
T4

(
0 gT

g j(ℓ)

)
T4 T4

(
E

p

) }

=

{ (
0 −gT

−g j(ℓ)

) (
−E
p

) }
=
{
ℓ −g p −E

}
and we have:

P5 •
{
ℓ g p E

}
=

{
P4

(
0 gT

g j(ℓ)

)
P4 P4

(
E

p

) }

=

{ (
0 −gT

−g j(ℓ)

) (
E

−p

) }
=
{
ℓ −g −p E

}

3.3 The electric Poincaré group

In this subsection, we extend the results from the previous subsection. We introduce the concept

of electric Poincaré groups.

Definition 3.5. (i) The electric Poincaré groups is the subgroup of GL(6,R) given by:

K :=


e 0 ϕ

0 L C

0 0 1

 , e ∈ {±1} ∧ ϕ ∈ R ∧ L ∈ L ∧ C ∈ R1,3


(ii) The restricted electric Poincaré groups is the subgroup of GL(6,R) given by:

Kn :=


1 0 ϕ

0 Ln C

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Ln ∧ C ∈ R1,3


It has eight connected components. To define them, we introduce some notations. Let:

T6 :=

(
1 0

0 T5

)
=

1 0 0

0 −1 0

0 0 I4

 , P6 :=

(
1 0

0 P5

)
=

I2 0 0

0 −I3 0

0 0 1

 , C6 :=

(
−1 0

0 I5

)
.

Thus, we have:

∀λ, µ, ν ∈ {0, 1}, Tλ
6 P

ν
6 C

µ
6

1 0 ϕ

0 Ln C

0 0 1

 =

(−1)µ 0 ϕ

0 Tλ
4 P

ν
4 Ln C

0 0 1
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and therefore:

K =


(−1)µ 0 ϕ

0 Tλ
4 P

ν
4 Ln C

0 0 1

 , λ, µ, ν ∈ {0, 1} ∧ ϕ ∈ R ∧ L ∈ L ∧ C ∈ R1,3

 .

Let us define:

∀λ, µ, ν ∈ {0, 1}, Kλ,µ,ν := Tλ
6 P

ν
6 C

µ
6 Kn =


(−1)µ 0 ϕ

0 Tλ
4 P

ν
4 Ln C

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Ln ∧ C ∈ R1,3


and Kn := K0,0,0. And so we have:

K =
⊔

λ,µ,ν∈{0,1}

Kλ,µ,ν =
⊔

λ,µ,ν∈{0,1}

Tλ
6 P

ν
6 C

µ
6 Kn.

The group K is a Lie group of dimension 11, and its Lie algebra is given by the equation (2):

k =


0 0 ε

0 Λ Γ

0 0 0

 , ε ∈ R ∧ Λ ∈ a(1, 3) ∧ Γ ∈ R1,3


we are in the case:

Z :=

(
0 0

0 Λ

)
, v =

(
ε

Γ

)
.

A basis of k is given in this representation by:{(
0 0

K̃i 0

)
, i ∈ {1, . . . , 6}

}⋃{(
0 0

Ji 0

)
, i ∈ {1, . . . , 4}

}⋃{(
0 1

05 0

)}

We are indeed under the assumptions of subsection 1.4. The Lie algebra k is a Lie subalgebra

of a(α′) with α′ := (−1, 1,−1,−1,−1). We deduce the following proposition where the action of

the group K on k∗ is defined by the coadjoint representation i.e., for any a ∈ K and any µ ∈ k∗, we

denote:

a • µ := Ad∗
a(µ).

Proposition 3.2. (i) We have:

k∗ =


{
M P q

}
:

0 0 ε

0 Λ Γ

0 0 0

 7−→ −1

2
Tr(MΛ) + PTΓ + qε, M ∈ a(1, 3) ∧ P ∈ R1,3 ∧ q ∈ R

 .

(ii) We have:

a•
{
M P q

}
=
{
Tλ
4 P

ν
4 LnMτ1,3(Ln)P

ν
4 T

λ
4 − 2CPT τ1,3(Ln)P

ν
4 T

λ
4 Tλ

4 P
ν
4 τ1,3(Ln)

TP (−1)µq
}
.

Proof. Let M ∈ a(1, 3), P ∈ R1,3, and q ∈ R. Let’s define:

Q :=

(
q

P

)
, N :=

(
0 0

0 M

)
.

(i) We have:

QT v =
(
q P

)(ε
Γ

)
= PTΓ + qε
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and:

Tr(NZ) = Tr

((
0 0

0 M

)(
0 0

0 Λ

))
= Tr(MΛ).

By Proposition 1.8, the dual of k is thus:

k∗ =

{{
N Q

}
:

(
Z v

0 0

)
7−→ −1

2
Tr(NZ) +QT v, N ∈ g ∧ Q ∈ Rn

}

=


{
M P q

}
:

0 0 ε

0 Λ Γ

0 0 0

 7−→ −1

2
Tr(MΛ) + PTΓ + qε, M ∈ a(1, 3) ∧ P ∈ R1,3 ∧ q ∈ R

 .

(ii) Let:

a :=

(−1)µ 0 ϕ

0 Tλ
4 P

ν
4 Ln C

0 0 1

 ∈ K.

Let’s define:

U :=

(
(−1)µ 0

0 Tλ
4 P

ν
4 Ln

)
, D :=

(
ϕ

C

)
.

We have:

U−1 =

(
(−1)µ 0

0 τ1,3(Ln)P
ν
4 T

λ
4

)

UNU−1 =

(
(−1)µ 0

0 Tλ
4 P

ν
4 Ln

)(
0 0

0 M

)(
(−1)µ 0

0 τ1,3(Ln)P
ν
4 T

λ
4

)
=

(
0 0

0 Tλ
4 P

ν
4 LnMτ1,3(Ln)P

ν
4 T

λ
4

)

DQTU−1 =

(
ϕ

C

)(
q PT

)((−1)µ 0

0 τ1,3(Ln)P
ν
4 T

λ
4

)
=

(
(−1)µϕq ϕPT τ1,3(Ln)P

ν
4 T

λ
4

(−1)µqC CPT τ1,3(Ln)P
ν
4 T

λ
4

)

QTU−1 =
(
q PT

)((−1)µ 0

0 τ1,3(Ln)P
ν
4 T

λ
4

)
=
(
(−1)µq PT τ1,3(Ln)P

ν
4 T

λ
4

)
By Proposition 1.9, we have:

a •
{
M P q

}
= a •

{
N Q

}
=
{
UNU−1 − 2DQTU−1

(
U−1

)T
Q
}

=
{
Tλ
4 P

ν
4 LnMτ1,3(Ln)P

ν
4 T

λ
4 − 2CPT τ1,3(Ln)P

ν
4 T

λ
4 Tλ

4 P
ν
4 τ1,3(Ln)

TP (−1)µq
}

We keep the same notations as in the subsection on the Poincaré group. Therefore, we have:

{
M P q

}0 0 ε

0 Λ Γ

0 0 0

 =

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}
0 0 0 ε

0 0 βT ν

0 β j(w) γ

0 0 0 0


= −1

2
Tr

((
0 gT

g j(ℓ)

)(
0 βT

β j(w)

))
+
(
E pT

)(ν
γ

)
+ qε

= (ℓ1w1 + ℓ2w2 + ℓ3w3)− gTβ + pT γ + Eν + qε

= ℓ∨(w)− g∨(β) + p∨(γ) + Eν + qε
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We denote this last equality as:

{
ℓ g p E q

}
0 0 0 ε

0 0 βT ν

0 β j(w) γ

0 0 0 0

 .

Therefore, we obtain the following result.

Proposition 3.3. The dual k∗ has the following description:
{
ℓ g p E q

}
:


0 0 0 ε

0 0 βT ν

0 β j(w) γ

0 0 0 0

 7−→ ℓ∨(w)− g∨(β) + p∨(γ) + Eν + qε, ℓ, g, p ∈ R3 ∧ E, ε ∈ R

 .

We deduce the following corollary.

Corollary 3.4. Let: {
l g p E q

}
∈ k∗.

We have:

P6 •
{
l g p E q

}
=
{
l −g −p E q

}
T6 •

{
l g p E q

}
=
{
l −g p −E q

}
C6 •

{
l g p E q

}
=
{
l g p E −q

}
.

Thus, for all λ, µ, ν ∈ {0, 1}:

(Tλ
6 P

ν
6 C

µ
6 ) •

{
l g p E q

}
=
{
l (−1)λ+νg (−1)νp (−1)λE (−1)µq

}
.

Proof. We apply point (ii) of Proposition 3.2:

a•
{
M P q

}
=
{
Tλ
4 P

ν
4 LnMτ1,3(Ln)P

ν
4 T

λ
4 − 2CPT τ1,3(Ln)P

ν
4 T

λ
4 Tλ

4 P
ν
4 τ1,3(Ln)

TP (−1)µq
}
.

(1) Case a := P6. We are in the case:

C := 0 , λ := 0 , µ := 0 , ν := 1 , Ln := I4.

We have:

P6 •
{
l −g −p E q

}
= P6 •

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}

=

{
P4

(
0 gT

g j(ℓ)

)
P4 P4

(
E

p

)
q

}

=

{ (
0 −gT

−g j(ℓ)

) (
−E
p

)
q

}
=
{
l −g p −E q

}
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(2) Case a := T6. We are in the case:

C := 0 , λ := 1 , µ := 0 , ν := 0 , Ln := I4.

We have:

T6 •
{
l −g −p E q

}
= T6 •

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}

=

{
T4

(
0 gT

g j(ℓ)

)
T4 T4

(
E

p

)
q

}

=

{ (
0 −gT

−g j(ℓ)

) (
E

−p

)
q

}
=
{
l −g −p E q

}
(3) Case a := C6. We are in the case:

C := 0 , λ := 0 , µ := 1 , ν := 0 , Ln := I4.

We have:

C6 •
{
l −g −p E q

}
= C6 •

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}

=

{
I4

(
0 gT

g j(ℓ)

)
I4 I4

(
E

p

)
−q

}

=

{ (
0 gT

g j(ℓ)

) (
E

p

)
−q

}
=
{
l g p E −q

}

We can summarize the proposition with the following table using:

(Tλ
6 P

ν
6 C

µ
6 ) •

{
l g p E q

}
=
{
l (−1)λ+νg (−1)νp (−1)λE (−1)µq

}
.
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Conclusion

In physics, the fecundity of the use of groups as well as the invariance and symmetry relations

attached to them no longer needs to be demonstrated. Thus the restricted Lorentz group, limited

to its two connected orthochronous components, translates the different facets of special relativity.

Composed with the group of 3D translations, it then becomes a sub-group of the isometry group

of Minkowki space, itself defined by its metric, the Lorentz metric. By treating this group as the

dynamic group of a flat space-time, the action on the dual of its Lie algebra makes it possible to

obtain, according to the methods initiated by the mathematician J.M. Souriau ([10]) the compo-

nents of its moment, which then characterize the classes of movements, carried out according to

the geodesics of this space. Geodesics of zero length then refer to the motion of photons, those of

non-zero length to masses.

In unfolding these different movements the P -symmetry, which transforms a ”right” photon

into a ”left” photon, refers to the physical phenomenon of the polarization of light. In 1970, this

technique enabled Souriau to identify the geometric nature of spin (not quantified). By adding

a translation along a fifth dimension, this endows the moment with an additional scalar which

can then be identified with the electrical charge, positive, negative or zero, with which the masses

are then equipped. We can then give this extension of the Poincaré group the name ”Kaluza group”.
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By adding an additional symmetry, inverting the fifth dimension, we double the number of

connected components of the group. The action on the moment then links this new symmetry

to the inversion of the electric charge. Here we obtain a geometric translation of C-symmetry, or

charge conjugation, or matter-antimatter symmetry. We suggest designating this extension of the

”Kaluza group”, ”Dirac group”.

From this angle, the addition of a new symmetry challenges the physicist, the question being

whether it can receive the status of a physical phenomenon. This is not how Dirac was led to

propose the existence of what was later called antimatter. This idea aroused strong skepticism

among theoreticians, in particular dear Niels Bohr. But fortunately the anti-electron was observed

in cosmic rays, barely two years later.

By taking up this approach to reality through dynamic groups, the phenomenon of the polar-

ization of light could have been suggested through the use of P -symmetry, translated by the second

connected component of the orthochronous Poincaré group. Similarly the existence of antiparti-

cles could have been suggested by adding a new symmetry to the ”Kaluza group”. Today, and

this is the conclusion of this article, we must note the following path. Lorentz’s group had come

just in time to take on the properties of relativistic particles. But, immediately, one thing stands

out. It has two orthochronous components and two antichronous components, which reverse time

and energy. Fortunately, in 1970 J.M. Souriau provided a first clarifying answer. This inversion

of the time coordinate, and not of the proper time, only translates geometrically the inversion of

the energy, and of the mass of the elements, when they are endowed with it. The question must

then be put another way: Does this new symmetry make physical sense? Can the universe contain

in addition to its particles and antiparticles of positive mass, new particles and antiparticles, of

negative mass, capable of emitting and capturing photons of negative energy? If so, what would be

the phenomena that might emerge from all of this? Would these phenomena agree or contradict

the observations? The question deserves examination. But, to do this, the particles must be bound

by gravitational and possibly antigravitational forces. A model where spacetime is described by

a Lorentz metric, whose dynamic group, its isometry group, the Poincaré group, is a flat space,

without curvature. The gravitational force is absent from it, as well as the electromagnetic force.

No force exists in this space, in fact. This Minkowskian space is not the theater of phenomena, of

interactions, it only describes the conservation of the quantities composing the moment. To create

these interactions, generators of phenomena, it is necessary to introduce the gravitational fields cre-

ated by these masses, positive and negative, then to make a hypothesis concerning the interactions

which link them. Finally see what could emerge from such a model. This will be the subject of the

following article, where the metrics will be Riemanian and no longer Lorenzian and where these

will be linked by coupled field equations, based on an action, constructed with the Ricci tensors

of each of between them, and deriving from an action. If the approach turned out to be fruitful,

if this model was likely to produce a better interpretation of observations, or even to predict new

ones that would be verified, then this would mean that taking into consideration, through a purely

mathematical approach to reality , driven by group theory, of a new symmetry, T -symmetry, would

bear fruit. Then mathematics would play the role of a guide in relation to physics, illuminating the

path to follow, rather than the path already taken.
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[10] J. M. Souriau, Structure of Dynamical Systems, a Symplectic View of Physics, New York:
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