- \quad Page 75 : The equation (2.6.4) gives

$$
\mathrm{Pi} H \mathrm{P}^{-1}=i H
$$

where $H \equiv P^{0}$ is the energy operator. If P where antiunitary and antilinear the it would anticommute with i, so $\mathrm{Pi} H \mathrm{P}^{-1}=-H$. But then for any state Ψ of energy $E>0$, there would have another state $\mathrm{P}^{-1} \Psi$ of energy $\mathrm{E}<0$. There is no state of negative energy (energy less than that of the vacuum) so we are forced to choose the other alternative: P is linear and unitary, and commutes rather than anticommutes with H.

- \quad Page 76 Equation (2.6.6) yields

$$
\mathrm{T} \text { i } H \mathrm{~T}^{-1}=-i H
$$

If we supposed that T is linear and unitary the we would simply cancel the is and find T i $H \mathrm{~T}^{-1}=-H$, with again the disastrous conclusion that for any state Ψ of energy $E>0$, there would have another state $\mathrm{T}^{-1} \Psi$ of energy $\mathrm{E}<0$. To avoid this, we are forced to conclude that T is antilinear and antiunitary.

Page 104 : No examples are known of particles that furnish unconventional representations of inversions, so these possiblities will not be pursued further here. From now on, the inversions will be assumed to have conventional actions assumed in section 2.6

