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Abstract

The cosmological problem is studied here starting from a metric with a variable scale
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with a differential equation which can be solved through Lie group analysis and dynamical
systems theory, and a frequent use of computer algebra has been made in the ensuing
caleulations. This leads to a good agreement with the recent observational results relating
to distant supernovae; on the other hand, the solution obtained for S is particularly simple
if spacetime has a dimension at least equal to ten, a result to be compared with those
given by superstring or M theories.
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1. Introduction

In the recent years, theories of time varying speed of light and other physical constants
(see for example [1 - 7]) have been proposed to solve the difficulties of modern cosmology,
especially the horizon problem (in our previous paper however [6], although the coefficient
goo of the metric is time-dependent, the observable value of light velocity is constant).
Just after the redaction of [6] had been completed, new observational results were pub-
lished concerning the relation between the redshift and the luminosity distance of remote
supernovae [8]. Since no adjustable parameter is available in [6], and as nothing could
be gained from an introduction of the cosmological constant, we wondered whether the
results we obtained for this relation (see line (5) of table 1) might be improved through
the introduction of a specific scale parameter for the extra dimensions. This was a logical
extension of [6] since, already there, one extra dimension at least had to be added to space
in order to get a consistent theory.

In the following, we briefly show how the Einstein equations in more than four dimen-
sions with zero on their right-hand side can be established for the present metric; then,
as in [6], following an idea initially due to Einstein and recently reintroduced by P. Wes-
con and his co-workers [9, 10], we determine R(t) by identifying these equations with the
usual four-dimensional Einstein equations with matter-energy terms. Then we study the
differential equation for S(t) so as to be able to evaluate c(t) and the luminosity distance.

2. The Einstein equations

The components of the Riccl tensor for a metric

n : n+m
ds? = —A()di? + R () S G e + () Y h(dE)? (1)
i=1 i=n+1.

can be obtained as in [6] replacing in [6 (7)] and [6 (8)] the non-zero components of the
affine connexion by '
o = {RR’“.-.- (1<i<n)
= | 558G (n+l1<i<n+m)
and
R'/R (1<i<n)

i T o=
Toi = Lio {S’/S (n+l1<i<n+m) ,
vielding for the spatial part (indices ,j = 1,2,...,n +m)

R c R"? RR'S'Y . .
Ry = —[B@ SR+ -+ AT G (1Shi<n) ()
and |
S oo S SS'R'7 .. L
Ri; = -—l:z-z-(sf _-gsf)+(m—l)(-;2—+k)+n-§2—] Gij (n+1<1,7 <n+m) , (3)
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where the derivatives are taken with respect to cosmic time ¢, where k is the (common) cur-

vature index of the subspaces with scale parameters R and S respectively, the dimensions
of which are n and m, and where the g;; are those of the spatial part of a Robertson-Walker

metric [11], with

gij = R*®)§; (1<i,j<n) or gy = S*(t)gi; (n+1<i,j<n+m)

Gi; =0 if ¢#73
and for the temporal part

!

n ., m ¢
Roo = -R*C*E (R - -E-R’) + 3,“;'2- (S” - :S') . (4)

The Einstein equations with zero as a second member follow immediately and can be
written after a few simplifications:

_1_rr C_!t n—1 . 2 RS _ '
R(R cR)+ 7 (R +kc)+mRS =0 (2"}
1 " _ -C:- ' m — 1 2 2 R'S’ _ f
5(8" = =8N+ (8" + k') tnpe = 0 (3')
. , _
LR-SR)+ =SSy =0 @)
so that a coupling term appears in equations (2’) and (3’).
'3. Determining R(t)
Noting as in [6]
. 3RH
Gy = Bz (3)
and 1
R = ——(RR"+2R") g (i,j = 1.3) (6)

the parts of the Ricci tensor components which correspond to the Friedmann model with
zero curvature, the time-time and space-space components of the Einstein equations can

be written:

(Fi1+3) | 4. R" R m
Roo = Roo' "~ +(n=3)p7 gzt 352

(s'-Ssh=0 @

g [BRY o R eemPE ) Gy G = 8
Rijj =R +[ = (n=3) " (n=-1)k—m o ]g,J (G,5 = 1,3) , (8)
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hence, identifying (7) and (8) with the usual quadridimensional equations

. 8rG
Ré§,1+3) '1“'"32"’500' -0 (7')
and rC
(F;1+3) T
Ry +-—-5;; =0 (8)
with source terms 1 3
I P
Soo = 3o+ 5 - (9)
Sio =0 (10)
1 P\p2s
Sij = 5lo— )RG5 (11)
the equations '
A7G 3p 3R"
= p+3) = -735 (12)
4nG P 1 R" _R?
—(p~5) = Z(F+2% (13)

2
which are naturally those of the zero curvature Friedmann model.

Of course, for this identification to be possible, the (n + m)-space has to contain an
Fuclidean three dirensional variety, which was the only consistent possibility found in [6):
an example of this situation has been given there for a negative curvature n-space and we
shall take k = —1 here also; however we shall keep on using index k in order to discuss the
consequences of attributing it other values when appropriate.

The resolution of (12) and (13) follows classically: for an equation of state

2

p = (25—-1)”—§-—- ( constant) (14)
equivalent to )
pt+3p 36 -
pc2_p T 9_§ (15)
one gets
8 _ 3R o (16)
2-6  RR"+2R"?
or |
: RR"
Té‘,'z— = —‘6 (17)
the non-trivial solution of which satisfying
R(0) = 0 (18)

and
R(ty) = Ro | (19)



is, as in [6],
s

R(t) = Ro(%) T (20)

with v = 1/4.
This gives, for ¥ = 1 and 2 respectively, the solutions in #1/2 and t2/* describing the
radiation era and the dust universe in the zero curvature Friedmann model.

4. Determining S(t)

Combining (2'), (3’) and ( ) easily yields

. R s S'2 2 r gl
n(n— (g7 +kg) +mm—1)(g +hg) +2mnpz =0 (21)
hence '2 o
\ ( 1) -f-n(n——l)—%z—-}—2mn7{%
ket = - m{m —1) _n(n — 1) (22)
52 R?

One can see here that the hypothesis & = 0 is not interesting: (22) would then give for S
an expression of the form

S ty\o
5 - &)
with a a root of 4 4
m(m — 1)a® + zmne + §n(n —-1) =0

and thus for ¢ in (4’) a power of ¢ always different from —1/3, the value which allows one

to avoid the occurrence of horizons [6].
Noting that in (2) ¢ appears only in k¢? and in

= 5@ (23)

o o,

it can be seen that the differential equation which can be formed for S starting from
(2), (20) and (22) does not depend on the sign of k. Noting also that, still in (2'), the
denominator of ¢2/R? involves the expression

mim — 1) g7 = m(m —1)ij da 24)

éo that defining
S(t) = Tos(t) (25)



with

&

(26)

2o = =
.t'1+1
0

yields for s(¢) a differential equation where Ro and o never appear and which writes, with
8 = ~/(y+1)
(m — 1)8ln(n — 1)s* + m(m — 1)t28]#355's" + nf%[n(n — 1)s* + m(m — 1)t2P)$2 5% 8"

+m(m—1)*(n— 1)t*ss™ + (m — 1)8[n(n - 1)(3m — 1)s? —m?*(m - 1)e28)% "
+ B{n(n—1)[(83rm —2n—m+ 1)F+m 1]s? — m(m — 1)[(83m — 2)nf —m + 1)]£28}¢%s5"
+nB8*{n(n - 1{rn-1)8+ 1]s? — (m — 1)[(3nm —n—m+1)8 - mt?#}ts? 8!

—n?(n—1)(m — 1)64152’833 =0 . (27)

This equation can be solved through the Lie group method. As we shall see, one generator
of the group of equation (27) is easily determined; however, knowing all the generators
is important, and this may demand heavy computations — so we have used F. Schwarz’s
program SPDE [12] on the Computer Centre of the GMD at Sankt Augustin. As this
program works on equations with rational arguments only, we have dealt with the cases

3 = 2/3 (dust universe) and 8 =1 /2 (radiation era) separaely.

A) For the dust universe, changing the time variable to u = t}/® transforms (27) into
the following equation, where s’ now stands for ds/du :

2m — 1)[n(n — 1)s* + m(m - Dutju?ss’'s” + 4n[n(n — 1)s? 4+ m(m — 1)u*us®s"
+m(m —1)%(n = 1)udss™ +2(m — 1)[n(n — 1)(3m — 1)s? — m*(m — ut]u?s®
+ 2(6nm — 4n — m + 1)[n(n — 1)s* — m(m — ut]uss’
+ 4n[n(n — 1)(2n — 1)s* — (m — 1)(6nm — 2n — 3m + 2)ut]s?s’
—16n¥(n— D(m —1uls® = 0 . (28)

As suggested by the occurrence of sums of terms in s? and u?, this equation remains
invariant in the inhomogeneous scale transformation & = A/2y. 3 = )s, the generator of

which is L 8 5
U= gug+s4 (29)

as can be easily seen applying Taylor’s theorem up to first order in € to a differentiable
function f(#,5) with A =1+¢, e <<1and identifying with (1 + €U')f(u, 8) [13] (turning
to the time variable t, it may be noted that U is but the generator X of the inhomogeneous
dilation associated with Kepler’s third law [6, 13]). This generator is also the only one to
be found using SPDE. So, equation (28) can be reduced in order by one and we have to
determine the first extension U of the generator U: starting from the operator of total

differentiation with respect to u:

— E fa na
D= o-tsgtsigit.. (30)
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one has to compute D(n) and D(£) where n(u, s) and £(u, s) are the respective coefficients
of 3/0s and 8/0u in the expression of U, that is -

n=s ad £=3 o (31)
hence _
D(y) = &' and D(¢) = 1/2 (32)
" The general definition of U 8] being:
d a 0
m —_ 2oy n—
U = E(uvs)au +n(us5)as +¢ (uasas ) o (33)
where
(W(u,s,5") = D(n) - s'D(§) (34)
this yields here '
| OIS (35
=% (35)
and 5 5 '
v = 224242 (36)

20u ' Os @ 28

This process allows one to define new variables p and ¢ such that, in these variables, the
original second order equation (28) will be transformed into a first order one: for this to
be obtained, p and ¢ have to be solutions of

Ug =0 and UWp =0 , (37)
that is here 5 P
: U oq q
ik 4 ok - - 38
26u+333 0 (38)
and op Op o0

The solution of these first order partial differential equations can be found by integrating
the corresponding characteristic systems of ordinary differential equations which are here:

pdu _ &  (40)
u 3 ,
and o d s
2 = B =2 (41)
u s s
so that, for (40)
2 = ¢ (42)



and for (41)
= ¢ and = = G (43)

3
u? u
where Cp,C; and C; are constants. .
The general solutions of (38} and (39) are arbitrary functions of Cp and of C; and Cz, -
that is ¢(s/u?) and ¥(s/u?, s’ /u) respectively and the new variables p and g can be simply
defined as the independent dimensionless functions

3 s’

Substituting in (28) s,s’ and s” by

d
s = quf, s =pu and & = (p-29)3§ +p (45)

one gets a first order equation which can be factorized into

[(m — 1)p + 20g}{~2a(p — 20)in(n ~ 1) + m(m = DI + (mp + 2na)
m{m— Lp+ 4(m — 1)(n - g — (m— 1)(n - 1gp’ =2n(n Vsl = 0. (46)

Thus, (46) splits into two equations, the simplest of which is

(m—1)p+2ng = 0 (47)
or
(m—1)us'+2ns = 0 (48)
and gives )
s = ou m-T (oconstant) (49)
or 2
s = gt 3Im=T , _ (50)
So, after (25),
Sy s _ 2 n 1 (51)
St) st 3m-—1t
and, after (22), . . .
_ g _ 4nn+im-— 52
ke® = 92 m-—1 m{m—1) nfn—1) (52)
<z T

This would imply k = 1, but a variety with a constant positive curvature is_necessarily
finite [11] and cannot have an Euclidean space as a subvariety. Thus this possibility has

to be rejected here.
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The second factor on the left member of (46) yields the equation

dp _ (mp+2ng)2m(m—1)p+4(m—(n—1)g— (m—1)(n - 1)gp? — 2n(n — 1)g°p]
dq 2q(p — 2q)[n(n — 1)¢% + m(m — 1)]

(53)
equivalent to the following autonomous system, written as a function of a dimensionless
temporal variable § (obviously not to be identified with « nor t):

B~ (mp+2ng)2m(m—p+4(m—1)(n—1)g=(m~1)(n—1)ap’ ~2n(n—1)¢’p] (59

N — 2qfp~29)n(n ~ )¢ +mlm—1)] . (55)
and which can be investigated using the methods of dynamical systems theory [14,15].
Here, as implied by the definitions of p and g (44), to each integral curve (or trajectory)
of (54-55) in the (g, p) plane corresponds a differential equation for s{u). This system has
three singular (or equilibrium) points in the g > 0 half-plane — the only interesting region
" here (see fig. 1) — which are the zeroes of the vector field defined by the right member of

(54 - 55):

1) dgo — 0: Po = 0 (56)
m—1 : m—1

and the point at infinity. (For the second case, substituting p = 2g into the brackets of
(54-1) gives '
Am+n—1)gm—-1-(n—1)¢"] = 0

hence the result.)

It may also be noted that the straight lines g = 0 and p = 2q are singular lines for the
differential equation (53).

Let F and G stand for the right members of (54) and (55): these being polynomials
can be expanded in Taylor polynomials around their zeroes (gi,pi) (i = 0,1):

oF oF

F(q,p) = -5;'(”5)(? —pi)+ E}"(thi)(q —q)+ P(g—qi,p— i) (58)
oG oG

G(g,p) = a—p}(wi)(lﬂ ~pi) + %'(q;,m(q —gi)+ Qg —qi,p— pi) (59)

where P and Q start with terms which are at least quadratic in (p — p;) and (¢ — ¢i) and
may be expected to be negligible compared with the linear terms when they exist.

Near the first zero — the origin — the field is purely nonlinear; it does not give rise
to any interesting conclusions, and nor does the point at infinity as will be shown in the
appendix. For the second zero, '

OF

Bp gy = A= Dm A m)m A= o0
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oF :
== = —8(m +n)*(m—1 61
dq 1(q1,p1) (m yim Ju (61)
oG
= = 92 -1
9p q1.p1) (m +n)(m ) (62)
oG
- = —4m+n -1 63
9q l(a1,p1) ( )(m Jo (63)
so the matrix of the linear system associated with (54-55) in the neighbourhood of (q1,p1)
is %E %F_’l
P q
A = (Qg (q1,p1) oG (q1,P1)) = 2(m+n)(m-1ah (64)
# (e %@
with (
~2m+n—2) —4(m+n
A] - ( 1 ) (_2 . ) ) (65)
the characteristic equation of which is
AN 42m+n-1A+8m+n—1) =0 (66)
hence the eigenvalues:
A= —(m+n—1)i\/(m+n——1)(m+n—9) (67)

So, three cases have to be distinguished:

1)m+n<9: the eigenvalues are complex, and the trajectories spiral indefinitely
around the singular point — which is then a focus [14]; the real part of A being negative, p
and g are damped oscillatory functions of time;

2)m+n=9: the eigenvalue A = —8 is double, with an only eigenvector:

7= (‘f) ; (69)

A is not diagonalizable and all the trajectories are tangent to Z at (qi, p1), which is an
improper node of the second kind;

3)m+n>9: the eigenvalues are real and have the same sign (A < A < 0); all
‘the trajectories tend to (g1,p1) tangentially to %, the eigenvector which corresponds to A,
except the two trajectories which have the direction of Z' (the eigenvector corresponding
to A'); (g1,p1) is an improper node of the first kind.

In the last two cases, p and g, when sufficiently close to p1 and g1, are monotonous
functions of time.

The three preceding situations are among those for which the solutions of the initial
nonlinear system in the vicinity of the singular point have the same behaviour as those of
its linearization [15], and the above discussion allows one to conclude that for the initial

equation (53):
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—if m+n < 9, dp/dq has no limit when 8 — oo, so that in this case no differential
equation can be drawn from (53) for s(u) when u — co (as shown later, § — oo implies
u — 00);

—if m+n =9, this limit exists and is unique, as well as a simple limit form for the

differential equations which correspond to the trajectories of (54 - 55);
—if m+n > 9, dp/dq has two possible limits: however one of them (the slope of

') is exceptional since every trajectory which (in the linear approximation) is not exactly
directed along #’ ends tangentially to Z.

Thus a qualitative difference exists between the time dependencies of p and ¢ — and
S(t) - depending on the number of dimensions I} = m + n + 1 of space-time, and a simple
approximate solution can be found if D > 10.

B) In the case of the radiative era (B = 1/2), equation (27) is already rational, and
no change of variable has to be performed. Here also, the Lie group has an only generator
_ which can be obtained from the transformation # = A%¢,5 = As:

7] 0 ,
U = 2t"5t-+3(—9; (69)

In the same way as before, one finds for the first extension of U:

5} a , 0
1) — 9 pg— — g
v = 2tat+.sas B (70)

The new variables p and g, solutions of (37), have to satisfy the differential equations

dq | Oq
k4 kS 71
2t 5 + 8 s 0 (71)
and 5 5 5
LN U/ 72
2t 5 + 3 35 " e 0 (72)
which are equivalent to
dt ds
=2 o2 73
2t s (73)
and ,
d _ds _ 48 (74)
2t 8 s
hence s .
= C and §Vt =G (75)

with Co and C; constant, and the new variables

and p = sVt . (76)
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The substitutions

" ) d
s =gVt & = —\% and " = g—;[(?-g)—g—g (77)

~ bring the left member of (27) with § = 1/2 into an expression which, once again, can
be factorized as the product of a first degree polynomial in p and ¢ and of a first order
differential polynomial, hence:

2(m U+ nal{~24(2p — in(n ~ 1+ m(m — ] + (2mp -+ ng)
(= Dp+ (m = 1)(n — 1)g - 4(m — (n — g’ = 2nln — Vpl} = 0. (7

The polynomial factor yields a differential equation

ds
—1)t— =
2(m —1) A +ns = 0 (79)
the solution of which writes
s = ot~ EmET (o constant) (80)
hence, after (25):
') st _ n 1
S sty | 2(m-1)t (81)
as here ; i
R = Ro(g) , | (82)
so that R () . '

the numerator of k¢? (equation (22)) writes

g7 R"? R S nn+tm-—1
_[m(m_1)§2—+n(n—1)ﬁz—+2mnf~§] = W@ m-1 (84)

and for the same reasons as in the case of the dust universe, equation (79) must be rejected.
The differential polynomial yields a first order differential equation which, as in the
previous case, has two singular points: the origin and the point qy,p}) with

, m-—1 . , 1 fm-1
= = = . )
41 n_l’ pl 2 n"']. (8)

As before, it also has two singular lines: g = 0 and 2p = q.
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The matrix of the associated linear system is here:

with |
A, = (-—2(m -Z n—2) _(ni; n)) (87)

This matrix has the same trace and the same determinant as the matrix A; of equation |
(65) and the same conclusions as in the case of the dust universe are obtained as concerns
the solutions of the initial nonlinear equation and the influence of the number of dimensions

of space-time.

From the preceding results can be deduced an approximate expression of S(¢) in the

neighbourhood of the singular point (g;,p:) and hence for £ — oo.
For D = 10 and the dust universe, the equation of the tangent to all the trajectories

at (Qijl) is

p+6g = 8q (88)
hence the differential equation for s:
d
ds L 85 = squ (89)
du u '

which integrates by the method of variation of parameters to

s{u) = @ (u2 + i—g-) | (90)

and gives, after (26) with v = 2 and u = /3

S(t) = Q1R0[(%)2/3+K(%0)2] (91)
where
K = ntgfs . (92)
This yields -
* S afen(®"] =

% - q = 1/?:7’1' when ¢ — oo: there is no compactiﬁcation of the extra dimensions, a
possibility which is presently considered in superstring and M theories [16, 17).

As shown on figs. 1 or 2, any trajectory which has (q, p1) as a limit point cuts the
straight line p = 2g at another point where, after (55), the tangent is parallel to the p-axis.
In the vicinity of such a point with abscissa a, g remains approximately equal to a and
(94)

- X a

1?2
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hence
s ~ at?/? : (95)

and (26)
£\ 2/3
S = Tos =~ aRg (—) : (96)
to
then S varies in the same way as R and it seems natural to take t or 4 ~ 0 at this point.
(Taking the origin at (a,2a) and assuming, with £ = p —2a and n = ¢ - a, a parabolic
form n = A¢? for the trajectory near ¢ = a, one can show that

55 = a+ﬁ(l—%)2 ; (97)

hence for (97) to make sense, up can be taken small but not zero.)
For the radiation era, S(t) also varies like R(¢) (as #1/2) in the vicinity of points of
the line 2p = q different from (g;,p1)-

" The evolution of the universe thus takes place on a portion of trajectory starting on
the singular line p = 2¢ (for the dust universe) at a point g = a different from the node
(q1,p1) and approaching (g1,p1) as 8 —and ¢ — — oo, hence above or under the line p = 2¢
according as a is lower or greater than q;: as shown in the appendix, the other parts of
the integral curves of (54-55) can hardly be associated with physical solutions.

For D > 11 and the dust universe, the matrix A; has two distinct eigenvalues, noted

A and X', given by (67), with eigenvectors

f .
= (ATZ) and T = (/\ ;_2) ; (98)

the slope of # being A + 2, the equation of the common tangent at (gi,p1) to the stable
trajectories is:

p = (A+2)g-Aa (99)
hence the differential equation
ds s
i 2)- = —Aq1u (100)
which integrates to |
s(u) = q (u? + Ku**?) (101)
and gives:
$\2/3 to\ —(A+2)/3
s = (2" + ()" o
where, as before
K = st . (103)

From

S = afes(®)™ s
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the same conclusions as previously can be drawn from (93) and the portions of the integral
curves representing the evolution of the universe might also be described in the same way
as for D = 10. As superstring or M theories yield a maximum value D = 10 or 11 for the
number of non compact dimensions of space-time, from now on, in the frame of the simple
approximation defined above ((89)and (100)), we shall focus our attention on these two

cases.
5. Determining c(t), the horizons and the luminosity distance

Starting from (22), with now k = —1 (as results from (108), taking k = 1 would imply
c? < 0 for t - 00), one has:

ff._ _ m(mml)%;+n(n—1)%;+2mn%% (105)
R? n(n—1)+m(m - 1)& ’

hence in the vicinity of ¢ = 0, where S and R vary as t* (a = 2/3 or 1/2),

¢ 1
c 1 106
R 1 (106)

from which follows the divergence of the integral

B oo(t)dt
= 107
and thus the absence of particle horizon.
For t — oo, we have for the dust universe, with A = —8 if D = 10 and the largest
eigenvalue if D > 11
c? 41 1 1 A, fto\—M32
B T 9Bn—Llm+n[l4n(B) P {mem-pf1+0+5x(3) "]

anafo o 04 () o (8) ] ot 0o 52T} 09

hence, for }fs:(tit?-)_"/3| = |x(%2)~*?| < 1 where t, is an instant of reference and Rg the
corresponding value of R,

e e O
mn m+4n— 2 o\ 203 s
—% [ttgiii))(z(m‘f'-l-n“li;- H"“z(t?) /+0(n3(f2’) )} o)

go that

oe = [t T elt)dt (110)
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is divergent, implying the absence of event horizon.
The last expression can be integrated to give

7 =V e b ()7

mn[4(A m+n-— M), g —2A/3 s/t~
”81)\ [imifzz(z(m-"-’r-n——l)l)—l_ ]K (t?) A +O(ﬁ (t—tF) ,\)} (111)

and, R. and R, being the values of the scale parameter R at the instants of emission te
and of reception ¢, of a radiation,

R e O e N O

m+n \R, R,
1 mn[4(A+3)(m+n—1) +/\2 Ry
T8 (m+nP(m+n-—1) [(1‘2‘")

Noting that

(%) “)’] +0(° )} . (112)
&) - (&) = (B a-a+p)

a = ﬁ(RO)“Mz s

R,
b edt m+n-—1
ft, B = V——_r%—l {1n(1+z)
1 mn[4(A+3)(m +n —1) + %] o2 .
3 (m+n)2(m+n-1) [(1+Z) ~ 1]+ O(e )} ) (114)
With R, expressed as

this gives, with

(113)

D——al(l42) 7V ]

R, ¢ R, 1 1
H, ~ H R o/, (115)
(where c equals ¢, and H, is the present value of the Hubble constant Hy) and, after (20)

and ( 109)

c n—1
Br = -I{I-: m+n—l{1+2(
1mnld(A+3)m+n—-1)+ A2 -
-5 [(;M;g(m_,_n_i; ]a2+0(a3)} , (116)

the luminosity distance in the case of zero curvature

troedt
di = R.(1+32) % (117)
. te
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writes here at first order

2. mo
dp ~ c —AME ‘
L2 g Iog g ¢+ -4 IR 2) 1} - (118
The general expression of dy, is
dr = (1+z)re( ) (119)

Hp

where r.(z) writes for the Einstein - de Sitter model

re(z) = 2(1ﬂ 11+z) (120)

which is a special case of

lqu-I-(o—l)( 14292 +1)
, (121)
qO 142

re(z) =

valid for any Friedmann model whatever the curvature [11], and, for a zero curvature model
with density parameters Qs and Q4 (O + Q24 = 1) [8, 18],

re(z) = fozdz[‘(1+z)2(1+QMz)~—z(z+2)QA]_1/2 : (122)

Lines 1, 4 and 6 of table 1 show for various models the results obtained from the
previous expressions of r¢(z) for the parameter values — if any - which fit the recent
observations of high-redshift supernova,e [8].

Lines 2 and 3 give for (1 + 2)-22 = —10~2% and —2 1072 respectively the values of
the expression in braces in (118) for m+n =9 and 10 (A = —8 and —6): they differ by at
most 2.5% from the results of line 1 (3 = 0.2, Q4 = 0.8, zero curvature) and the second |
order terms in (114) are less than 7 1073 in absolute value for z = 1; the factor of H,
at the denominator of {(118) is then 1.04 or 1.06 but Hp is far from being expenmentally
known within 5% uncertainty (ref [8] ascribes it a value of 65 £ 7 kms™'Mpc™! and the
indications for Qs and 4 reported there are independent of this determination).

Line 5 gives the values of the same expression (i. €. In(1+ z)) for m = 0 hence for the
first version of the scale invariant model [6], which has no free parameter: they are quite
close to those of line 4 (Q3r = 0.2, Q4 = 0, negative curvature).

The values of line 6 are those of the Einstein - de Sitter model (2 = 1,8 = 0, zero

curvature).
With a negative as found here, the constant K in (90) is negative also and one may

compute

dp _dpd (u:)) _ 1(5_'_ ?.:‘i) dp (123)

du dqdu ul\u dg
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so, after (100) and since, in the neighbourhood of (¢1,p1), dp/dg ~ A + 2 (with A = -8
and —6 for D = 10 and 11 respectively), we have in this neighbourhood

g?i ~ AA+2)Kqut? (124)
u
so that dp/du has the same sign as K: here p is a decreasing function of u (if one goes
towards the singular point (g1,p1) when ¢ or v — oo) and the portion of curve which
represents the evolution of the universe is situated above the line p = 2¢ (see fig. 2).
Qualitatively, the variation with time of S(¢) is sketched on fig. 3, where
— the curve No 1 represents a function

510 = ako(£)" (125)

as given by (96); a is here the starting value of ¢ (< ¢ for K < 0), corresponding to
t~ 0 '

- the curve No 2 represents the limit form

2/3
50 = ako()” (126)
of S(¢) when t = oo (equations (91 - 92) and (102 - 103))

— and 8(t) (curve No 3) starts as S1(¢) for¢ ~ 0 and approaches S2(t) asymptotically
when ¢ —+ 0o, hence an acceleration of expansion when compared to Sy (t): here this
acceleration concerns the scale parameter of the extra dimensions; obviously, it originates
in the coupling term which appears in (2) and (3’) (if this term ~ the third one in these
equations — is dropped, the same law in t2/3 (as in [6]) can be taken for both § and R,
and d, then remains the same as in the model with one spatial scale parameter), and it
can affect the values of d7, only through the ability for ¢ to vary with time.

The preceding expression of dy has been derived supposing the evolution of the uni-
verse follows one of the tangents described by (88) or (99) ~ which are particular trajectories
of the linear approximation to (54 - 55). In order to check the accuracy of our results, we
shall now study the other trajectories and turn to better approximations.

6. Exact solutions of the linear approximation for the dust universe

A. Dimension D = 10 (m+n = 9)

The matrix A1 (equation (65)) has an only eigenvector # given by (68) and can be
transformed to the triangular form Dy introducing a vector 1 orthogonal to &,

7 = (é) , (127)
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to build the matrix

-6 1
P = (1 6) , (128)
the inverse of which is . . |
-1 L (6l 2 129
P“37(16)”37P’ (129)
so that .
Dy = P74 P = -8 37 (130)
0 -8
and, for A = pA; with
p = 2m+n)(m—1)q = 18(m—1)q here, (131)
the triangular form X
D = uDy . (132)
From this one gets
ed? = pellp-! (133)
where
Dl = e8ul ( ! 37‘“’) (184)
0 1
hence 610 0
a8 _ _—spe [ 1 —6ud —36u
e =c ( (8 1+6,u6') (135)
and, defining
§=p—p, N =49-q (136)
and
o = po—p1, T = @—q (137)

where the index 0 points to initial or reference values,

(5) = ef“’(gz) : | (138)

Thus £ and 71 are obtained as functions of the time variable 8 and, in order to express them
as functions of u or ¢, one has to find a relation between # and u: this can be done most
easily deriving with respect to u the expression (136) of n with g = s /u?, which yields

wB o 18 90 o po2g = E-2 (139)

or

dn/dd gg _ I . (140)
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now, starting from (135) and (138), one gets

dny

25 = ME=2n) (141)
so that
@ _ 1 142
and, taking § = 0 when u = uo, '
U 1 t
6 = ] — = = — .
7! In w 3 In T (143)

the mathematical time ¢, which appeared in (54-55), identifies, up to a constant factor,
to the conformal time ¥ [6] which thus appears to be the natural time of this dynamical

system.
This yields, substituting into (135) and (138),

¢ = (%)8 (~6m0 + (60 + 610)(1 — 61m :—0)) (144)
e _ (™ 8( 610) In — 14
n = (u) no + (€0 + 6m0) E;) : (145)
which gives after (136), with ¢ = s/ u?,
s = uz{th + (%)8 [??0 + (€ + Br?o)ln 5—0]} (146)
and £\ 2/3 NYE £ 1/3 |
S(t) = RO(E) {‘h + (T) [Tio + (%o +67?0)1n(5-;) ]} , (147) |

where o = ttl)/ %, and at last

s = who{(£)"+ (%")Zi—[nwé(go+6no)1n(%)]} L (49)
Writing
k= Z—i’ = 3%_1, K = %5(50—1—6770) (149)

this can be given the form

0 = an (" +n@ prem@l} 0w
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to be compared with (91): the complete solution involves a logarithmic additional term
depending on a constant ' proportional to the distance, measured along a parallel to the
p-axis, from the point (s, 7o) to the eigendirection £ + 6n = 0.

Then c(t) and the luminosity distance can be determined as in 84, using

st = 220w p-r(-mP)]} o
hence 8/3
B O ) -

§ 3t 1+n(%1)8/3[1+n’1n%].

which gives

¢ u 21 AEn T I Lol an D)e(®) vo(e(£) "))

4 (153)
an
- e ) e o))
hence, integrating between t. and i, (154
tr — )
[ %= e s - 9IE) - @)
(@) - () =g 0w ) 159
or _
= e (- 5) () (- )

t

+ ggi"n (B) [a+orma+a+ (1-a+2)%) m(%)] n o(nz(g)”’ )} ase)

and, with o defined by (113) with A = —8 and R, as in (115), an expression of dz, similar
to (118) in which the brackets in the denominator are to be replaced by the braces in (153)

and the braces in the numerator by

() 2 In(1 +2) — 22 (1= Y (42 - 1)

+ 309 [0 4ot +2) - (@ +2) - 1) m(FD)] - (8D
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So, all the new terms which appear in dj, are proportional to a constant k' which, after
(149), is close to zero if at the reference point (po, go) the trajectory p = f(g) lies close
enough to the common tangent A at (p1, q1); moreover, it may be noted that in the present
approximation, according to (149), since the portions of trajectories starting from a point
(a,2a) (94) are below A for < 0 and above it for n > 0, k' is necessarily positive.

B. Dimension D > 11

Now the matrix A; has two negative distinct eigenvalues A and M (X > N') which are
given by (67) and their eigenvectors by (98). The exact solution of the linear approximation
to (54-55) can be derived as for D = 10 from (133) and (138) where this time

. !
P - (ATZ Aifz) ’ (158)
- 1 1 —(XM+2)
1 T tm—
Pe= A—A'(—l A+2 ) (159)
and |
A% = Pexp [,ue ()‘ 0,)} P! (160)
0 A
where p is given by (131). Thus,
0 _ L (O 2)eH? — (M +2)e¥ 48 (A +2)(N + 2)(eX #? — ef) (161)
A=N erl _ gM'nd A+ Z)e" B8 (N 4+ 2)e’\”9
and

( 5) - 35 ((A +2)[60 — (N +2)710] + (X' + 2)[—Eo + (A + 2)moJel
1) T X=X o — (' + 20 + [0 + (0 + Dmale* 4
(162)

which implies as formerly (141) and (143), so that, here also, the mathematical time 6
identifies to the conformal time and 1 writes

1 u\A TR
=TT [Xo(;;) _-—Yo(;;) ] ) (163)
where
XQ = 50 t ()\’ +- 2)?‘]0 (164)
and
Yo = &—(A+2)m0 - (165)

This yields
— A’

1 ug A u
— o2 — 2 0 0
s = u(q +1) = qu’+ Y [Xou_(}""z) *%m] , (166)
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” 1 to_)\ /3 to—x /3
() = at’* + 55 [Yorbmm 'YOW] (167)
and ‘
B 3 £\2/3 1 Xo rto\ ~A+D/3 Y 10 ~(V+2)/3
s = Sos(t) = ake{(7) " +y=x [ (F) -5;(?) |} a9
or ;
£N2/3 [ty ~(A+2)/3 fo\ —(N'+2)/3

s = ame{(z) +<(3) +(3) ) 08

where
— (N — ()

T AN @ A=Y @
to be compared with the previous expressions of S(t): here again, ' is proportional to
the distance measured along a parallel to the p-axis from (o, 70) to the eigendirection
corresponding to ) and, if £’ = 0, k = no/qy; in any case, £ + £’ = no/q1. It can be seen
that the exact solution (169) of the linear approximation differs from the approximate one
(102) through a term which depends on ' and A’ in the same way as (102) depends on &
and A. The same calculations as formerly for ¢(t) and dy, lead to

m+n A E

ca+ 2w () s e-g] L any

re(z) = In(l+z)— o [(1 + z)a'f»: (RO)_A/Z[(l +2)"M2 — 1]

an expression which also involves similar terms for each eigenvalue.

As a last remark, it can easily be shown that D = 10 or 11 are the only cases which
lead to integral values for A and A’ — otherwise they are irrational numbers, together with
the exponents derived from them: writing N =m +n — 1, the square root in (67) can be
an integer if N(N — 1) = M?, with M integer only, hence

N = 416+ M2 ;

thus 16 + M? itself has to be a perfect square @?, so that
(Q@-M)(Q+M) =16 ,

and (Q — M) and (Q + M) are to be chosen among the divisors of 16, which leads to
m+n=0,1, 9 or 10.

C. Dimension D < 9

The previous results can be extended to this case writing equations (158) to (171)
with complex values for A and A" defining here

a = —(m+n-1) and § = Vim4+n—1)(9-—m-—n) (172)
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so that
AN=a+if and N = a—if (173)

yields

st) = am{ () +(2) " [ cos(5 In £ )60~ (a+2)m) g sin(§ 1n 1)}
(174)

and

re(z) = In(l14+2)+ 2m (&)—aﬂ [al{cos(glnﬂo—)—(1+z)'°/2 cos(gln@(l-i-z))}

m+n\R, R, 2 R,
_ag{sin(gln—go- ——(1+z)"'°‘/2sin(§ln%g(1+z))}] (175)
where
o = (1+ 2a )ﬂi__ 1 &—(a+2)n
! o?+ 5?21 o+ @
and
- 20 )iﬁo—(a-i-?)??o B m
IIPW @ T+ o

from which it can be seen that, owing to the presence of the trigonometric functions, dp/dq
has no definite limit when ¢t — oo.

D. Comparison with observation

In order to determine values of the parameters x and &’ which allow the theoretical
expressions (157), (171) and (175) of r.(z) to fit the observational results at best, these
expressions have been included in an optimization program which minimizes the sum of
squares S of the differences between the experimental and the theoretical values of r..
This has been performed with the help of a simple routine [19] using Nelder and Mead'’s
nonlinear simplex method [20], which has the advantage of requiring no derivations nor
matrix inversions. When both x and &' are available, the ratio Rg/Ry has been given a
succession of values (between 0.6 and 1.3) which allow, solving (149) for 1o and &, to
get the points (go, Po) associated with the corresponding reference times to and hence to
sketch the trajectory representing the evolution of the universe in the (g,p) plane which
yields the best agreement with observation (see fig. 4). Table 2 shows the values of re(z)
and S obtained for z varying as in table 1 and for different hypotheses and values of D.
As the sequence of values of re is very nearly independent of Ro/R,, one sequence only is
given for each case. For comparison, the S values corresponding to lines 2 and 3 of table
1 are 6.910~* and 1.7107%, so they are almost optimal: on table 2, with ' = 0, one
gets 6.3107* and 1.6 10~* respectively. Of course S decreases when &' is set free. It may
be noted that the result obtained for D = 7 (line 7 of table 2) is of the same order as
the other ones for the complete linear approximation: the observed values of dy, give no

indication about the number of extra dimensions.
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7. Higher order approximations

A differential equation such as (53) may always be cast [21] into the form of Briot
and Bouquet, the general solution of which however requires the introduction of ¥ series
(Malmquist [22]). Here, we shall use Poincaré’s theory of normal forms [23] to obtain
the first terms of the series which represent the solutions in the neighbourhood of an

equilibrium point.
)
r = 176
(§ (176)

With from now on
and ¢ and n defined as in (136), a nonlinear differential system can be written
' = Az + Z v () (177)
=7 '

where the vk(i) are vector-valued polynomials of degree r > 2 and where, here, due to
the polynomial form of the second member of (54 - 55), the number of terms of the sum

is finite.
Starting from a system with one only term vy,

g’ = Azr +v.(z) (178)

one performs the change of variable
z = y+he(y) (179)

where h, is also a vector-valued polynomial of degree r, which gives

Ohy
v+ gy = Ayt Ab(y) +o (v +he(y) - (180)
or
, Oh, Oh,
y' = Ay+Ah,(y)+or(y+he(y)) - B [Ay+Ahr(y)+vr (y+he()) =5, Ay] +--- (181)
which can be given the form
y' = Ay — (Lahe —vo(y)) + uzr-1(y) (182)
where the linear operator 5
Lahe = Zrdy - Abe(y) (183)

is the homological operator, and where

Uzeor(y) = ve(y+he(y) —vrly) - %’;’ [Ahr(y) +o.((y +he(y)) — %’;’" Ay] +o-e (184)
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is indeed of order 2r — 1. Thus the resolution of the homological equation
Lah, = vr | (185)

allows one to annihilate the terms of degree r in the initial nonlinear equation, which

becomes

[= ]
y = Ay+ », wk(y) (186)
k=r+1
where the w; include terms coming from the above u and v. Successively eliminating the
terms of degree 2, 3, ..., the original equation (177) is transformed into
y = Ay (187)

and one gets for z from (179) a series the first term of which isy, the solution of (187).
After the theorems of Poincaré and Poincaré - Dulac [23], this series is convergent if the
convex hull of the points which represent the eigenvalues of A in the complex plane does
not contain zero — which is obviously true here, the eigenvalues being negative.

All of this is possible only if the homological equation (185) can be solved, that is if
there are no resonance relations between the eigenvalues of A; here this occurs for D = 11,
with A = —6 and X = —12: then one has to start not from (187), but from a simple
nonlinear differential system and the series thus obtained is still convergent.

There being nothing special if A cannot be diagonalized (here, for D = 10), the
homological equation can be written for any m and n. For the quadratic terms one gets
as coefficients of the vector valued polynomial hz,

hll 2+h12 2+h13
hz(fv ??) = (h%lgz +h§2g2 +h§3§‘?}) (188)

rational fractions the denominators of which always include a factor m +n — 10, thus
indeed preventing the resolution of the homological equation in the case D =11. So,in

the general case (D # 11),
(i)z - (5) + ha(§, ) (189)

where ¢ and 7 are given by the linear approximation. For D = 10, one gets:

1 3

qi
1
13 . _ = (106 21 _
hl 72q1( n+ 747), h3 576q1(10n 63)
R = 7 (38n — 153), h3® = ﬂl—(SSn—189) (190)
2 144q; A 144q;
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For D = 11, however, one has to use the eigenbasis to compute the available coefficients
of hy:

]

1 1
hit —(-n+15), hi? = —(-4n+35
s (CnHis), h = o )

3
Rl® = ——(—4n + 35),

10¢
1
hi? = ’1'6«];—1(2” —~15), A2 = qil(n —6) (191)

and, since h3! is lacking, to add a nonlinear term to (187).

In the case D = 10, the second order approximations (189) to ¢ and 1 are expressed,
through the results of the linear ones (138), as functions of the time variable § which, as
formerly, can be related to u and thus to ¢ using (140). Starting from (189) and (190), one

gets on the left hand side of (140):

dn/dd _ 36[8u(lo+ 610)6 — &0 + 2] + (1/q1) exp(=8uB)P(6, b0, 10, 1:11) (102)
- 2n 36[8u(Eo + 670)8 — €0 + 2n0] + (1/q1) exp(—818)Q(6, {070, s )

where P and Q are polynomials of the second degree in 8, £, 70 and p and of the first one
in n.

H £ + 6o # 0, hence (149) if ' # 0, the change of variable

—fo + 210 (193)

8, = 8uf+
' # £o + 6no

transforms this expression into

dn/df _  36(fo + 6m0)61 + (1/2q1) exp((—Eo + 2n0)/ (€0 + 670) — B1)(é0 + 610)* P
€—2n  "36(Co +6m0)0: + (1/q1) exp((—Eo + 210)/ (€0 + 610) — 81)(§o + 6no)2621(

194)
the polynomials P and @ factorizing into (& + 6m0)? Py /2 and (& + 670)2 @1 respectively,
or, using the explicit expressions of P; and Qy:

8 _
dn/d6 1+ (ne'/24)e3F (7% /6,)[(16n — 63)6F + (24n — 63)6; + 24n — 126]
i

= i g
{—2n 1+ (k&'/12)e3# (e~ /6,)[(Tn — 36)6% + (11n — 36)8; + 12n — 63]

(195)

The linear approximation of n and £ amounts to replace by 1 the fraction on the right-
hand side of (195), or the exponentials exp(—6;) by zero. 8 or 8; being large and « small,
a second order approximation will be obtained developing this fraction to first order in

exp(—81), hence

dn/de KE' B._1 _g 9
~ AN 1 z ) 196
DD Gt e )0+ 1) (196)
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(140) thus integrates between 0 and 6 into

j L+ e et me @+ 2 [ )
3x Bu uo Y

yielding for 8 the equation

8u6 — ——(n + )( + &'+ 8ubr’) exp(—8uf) ~ 81nu35 - —-—(n + = )( +«"y  (198)

12
which, with
v = (L2 s = gup A= L n+ )( +x) and C = B D) (199
" ’ o, 12 12 n 2 ’ ( )
can be rewritten _
t—(A+Cz)exp(—z) @ —lnv—-A4 . (200)
Starting from
z = —lnv—A (201)
and iterating along
Tnpr = —lnv— A+ (A+Cz,)exp(—2a) (202)

an asymtotic expansion of the solution of (200) can be obtained, yielding at first order [14)

z ~ —lnv—A+[A—C(A+Inv)]exp(A)v + O(x? exp(24)v?) (203)

and A
xp(—z) = exp(A)v{l—[A—C(A+nv)]exp(A)v + O(x? exp(24A)0?)} . (204)

This is valid for z large enough, hence for up /u << 1, but more accurate conditions can
be obtained observing that (200) is equivalent to

2z = ®(z) where z = exp(—z) and ®(z) = exp(Awexp[(Clnz— A)z] (205)
from which (204) and (203) can be found again iterating once
Zng1 = P(zn) with 20 = exp(A)v (206)

and expanding the z-depending exponential at first order, so that the conditions to be
verified at the end of calculations are

(Clnz— A)z|] << 1 and |®'(z)] < 1 , (207)

the last one being the condition ®(z) has to fulfil to be a contractive mapping.
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Thus, in terms of u, 8, &, ...,
Ug K 9..8 K 9, .8
8uf ~ —8In— — — W=+« — Y=+«
e 8in— — Z(n+35)(5 ++)+{FR+ )3 +4)
kK’ 9. [k 9 .8 ; Up K (et 2)(B4n') U0\ E
- V| — -} = — 1z ZNg —
4 D DE +x) 48102 (%)
+ O(s2 exp(24)(=2)"°) | (208)

U

instead of (143) and

exp(—8uf) ~ e 2 (DG +s) (EE)S

U .
K 9 8 I‘iﬁ’ 9 K 9 8 U N(n+9)(8+n.r) U 16
_{E(n+§)(§+r€’)“‘E’(n+5)[§(n+§)(§+n')—l—8]n—;j—]}eﬁ 2)(3 (_u._)
+ O(x? exp(SA)(%g)%) | ‘ (209)

which implies that since, at first order (see (143 - 145) and (149))

n = Kqy exp(—8ub)(1 + 3x'uf) (210)

and ' : |
£ = 3kq exp(—8ufd)(x’ —2 — 6x'ub) (211)

the above expressions for 86 and exp(—~8u#} allow one to compute 7 and £ up to the
second order in x{uo/u)® and hence the second order approximations of n and £ given by
(189) and (190).

If k' =0, (192) reduces to

dn/dé _ MeXP(—Suﬁ)(lﬁn — 63)0/q1 +9 (212)
£—2n exp(—8u8)(14n — 72)m0/q1 + 9

or, owing to (149},

dn/d8 1+ (16n — 63)xexp(—8ub)/9
£E—2n PTF (14n — 72)x exp(—8uf)/9 (213)

Bringing this expression into (140) and integrating, one gets

e
dn 2n +9 1+ (14n — 72)%/9 =2 (214)

i M T BMan-72) "1+ (14n — 72)(x/9) exp(~8ub) %o

as a relation between the mathematical time 8 and the time variable «. This yields at first
order in K |

8uf + (1 +2n/9)x — (1L +2n/9)k exp(—8uf) = 8In i—‘— (215)
0
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which is nothing but (198) with «’ = 0, so that from this point on, the case k' = 0 can be
dealt with in the same way as the general case. '

From (209) can be deduced an asymptotic expansion of S(t) and, using (211), an
expression of S'/S which can be obtained without deriving \S:

ds dsdu du 1 ~1/3
- 5 - ma Pz~ 3 (20 +8) (216)
hence ,

S T sdt 3tltn/a

Thus ¢/ R can be éxpressed as

21 -1 .
% ~ 371 /%[1 + (co1 + c11lnv)v + (coz + c12lnv + ¢g2 In? v)vz] (218)

where the coefficients c;; depend on %, ' and n and where v is given by (199). Integrating

the last expression between i, and ¢, leads to
2 2
re(z) ~In(l142) + g(aﬁ + a7} (219)

where o
o = expl(2n + 9)(3x' + 8)x/T72] , (220)

o= {[(2n+9)(3"+ 8)rk' + 96(x" — 2) + 72x'(41n g’—i - D1+ z)* ~ 1]

4 288x'(1+ 2) In(1 + z)}%"z’:n(%ﬂf , (221)

and

o= - {576{{16[12(11 ~7)—(n—18)k"]— (n—T)[(2n+9)(3+’ +8)xk'+36k'(41n -g—g -1}
{In g—:’_ —(142)In[(1+ z)%%]} +144(n — T)&'(1 + 2)® In(1 + 2) In[(1 + z)@]}n'
— {{32(12(n = 7) — (n — 18)k'] — (2n + 9)(n — 7)(3x" + 8)kk}(2n + 9)(3x" + 8)kk'
— 2441072 — 477"+ 80k'n + 144x" + 384n — 2688) ~3(2n+9)(n—T)(3x'+8)kx"]}.

{1 +2)° - 1}}%@#(%)8 _— (222)

as given by Reduce after some reordering and where the 7 term can easily be seen to give
the same result as (156) at first order in «.
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Comparison with observation

Line 4 of table 2 shows the results given by expressions (219 - 222j, with the last
two ones directly converted by Reduce into Fortran instructions. As for the preceding
approximations, Ro/R, has been given values between 0.6 and 1.3 (in the last case, uo Ju
is not small, but the conditions (207) are still satisfied). The value of S obtained is still
better than on lines 2 and 3, thus confirming the validity of the present computation. This
can be seen also on fig. 4, where the trajectories representing the first and the second
order approximations get closer and closer when approaching the singular point (g1, 1)
The second order trajectory even shows a maximum in the same way as the theoretical
integral curves. A few theoretical trajectories have been computed starting from points of
the fitted second order one and using the Runge - Kutta integration method of Maple, and
a number of them cross the points of the fitted trajectory which are closer to the singular
point (q1,p1), showing the quality as well as the limits of this second order approximation.

In view of these results, and since in this case the calculations have to be reformulated
from the beginning, we did not go further than the first order for D = 11.

8. Conclusion

Starting from most general assumptions about the metric, we have obtained a model
of the universe which does not require inflation nor the cosmological constant and in which
the present acceleration of expansion is attributed to the extra dimensions. Moreover, the
qualitative behaviour of the solutions obtained for the scale factor of these extra dimensions
when ¢ — oo suggests the possibility of a meeting point with superstring or M theories as
concerns the number of dimensions of spacetime. Of course the big-bang model is strongly
relativized: in conformal (i. e. physical) time 9, the origin of the universe is rejected to
—o0 and no expansion is actually observable [6].

Lie groups play an important part in the theory, especially through the generator of
the inhomogeneous scale transformation associated with Kepler’s third law: it belongs to
the Lie algebra of equation (17) and appears in the resolution of equation (28) and also of
the equation which can be deduced from (A - §’) for s.

Computer algebra has been used more than once in the derivation of these results:
besides SPDE [24], the packages CHANGEVR [25] and TAYLOR {26] of Reduce [27] were
especially useful; several factorizations, derivations of functions, ...had to be worked out,
as well as, with Maple [28], asymptotic developments. The graphic representations of the
dynamical systems trajectories have been performed using Maple.
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Appendix — The singular points at the origin and at infinity

Al. The origin
Taking |p| and |¢] << 1 in (53) gives

dp _ (mp+2nq)(mp+2(n—1)g)
dg ~ mq(p — 29) ’ (4-1)

an homogeneous equation which writes, with z = p/q,

dz _ m(m— 1)2% +4mnz + 4n(n — 1) :
Taq =~ m{z — 2) | (4-2)

The last equation has as singular integrals the roots z and z2 of the numerator of the
fraction on its right-hand side:

2
21 = —m(mn—\/mn(m+n—l) (A-3)
— — 0
2 m(m_l)(mn+\/mn(m+n 1) (A-3)
and its general solution can be obtained through integration:
dg z—2 .
qg mfm(m—wl)zz+4mnz+4n(n'—l)dz (4-4)
1 z—2
T om-1 ] (z—-z;)(z'ng)dz
* hence
Clz—zﬂal'with o %~ 2 1 1,2 andC constant (A -—5)
~ Cr——— i = , 1 = ons -
L Tl (m =Dz — ) ’ |
vielding, together with
. IZ — zllm1 I}
p =~ Czrm—— (A -5

a parametric representation of the integral curves. Fig 5 shows a number of these curves,
which can also be interpolated from fig 1. As results from (A - 5) with z = 22 + ¢, the
integral curves are tangent to the singular solution z = 22 in the neighbourhood of the

origin, so that

ds s
p =~ 229 OF — 0 22—
u

du

and, noting &' the derivative of s with respect to t,

12
IR
o~ | =

!
3
s ~ ot**/*(c constant) and "



33
This gives for the numerator of ¢* in (22)

5!2 2 Rr S! )
52 +n(n— 1)R +o2mni=—= =~ (m(m-—1)z -§-4mn22+4n(n-1))§% , (A—86)

12

m(m—1)—=

R? RS

which thus tends to zero in the vicinity of the origin for all the trajectories (and gets a zero
value anywhere on the singular straight lines z = z; and z = 23), so that these solutions
have to be excluded.

A2, The point at infinity

For |p} and |g|] >> 1, (53) becomes

dp (mp+2ncﬂ m — 1)p + 2nq) (A-7)
dgq ' 2ng*(p — 29)

which, as previously, can be transformed into

dz

ng— ~ -é;—l(z—_——--(m(m — 1)22 4+ dmnz + 4n(n — 1)) (A~8)

where the second degree polynomial is the same as in (A - 2), so that we have here three
singular solutions: z = 0 and, as formerly, z = 21 and z = 2.
Integrating (A - 8) gives for the general solution

dq z?n/ 2 —, (A—9)
q z(m(m — 1)z2 + 4mnz + 4n(n — 1))
- 2n ] z—2 dz
~ m(m~1)J z2{z-=)(2—22)
hence, with C still standing for a constant,
1|z — zo|P2 2n zi—2 :
g =~ Clz|= ol where § oy e o P i ( )

so that, the §; being positive, ¢ = co when z — 2;: the integral curves are asymptotic to
the singular solution z = z; and, as formerly (A - 6), ¢ ~ 0 in this case also.
From (A - 10) we get for |z| — 00

1
qg— Clz['ﬁff|z|52"-.31

where, as can easily be verified,

fr=Br = —
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so that ¢ tends to remain constant, as can be seen on the parts of the trajectories parallel
to the p-axis on figs. 1 and 6. Thus here

s ~ Cu? ~ Ct*/3

and S follows the same law as R, which brings nothing interesting.
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z 0.16 033 050 066 083 1.0
) 0.156 0.312 0.457 0.584 0.709 0.823 |
) 0.156 0.306 0.446 0.573 0.706 0.843
(3) 0.15¢ 0.312 0.453 0.578 0.707 0.833
) 0.148 0.283 0.405 0.508 0.610 0.705
(5) 0.148 0.285 0.405 0.507 0.604 0.693
(6) 0.143 0.266 0.367 0.448 0.522 0.586

Table 1 — Comparison of the r. values given by various models

(1) Qup = 0.2, Qp = 0.8 k=0

(2) present theory with D = 10

(3) present theory with D = 11

(4) Qy =02, Q@ =0, k=1

(5) scale invariant cosmology [1]

(6) Einstein - de Sitter model (» = 1, Qr =0,k =0)
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z | 016 033 050 066 08 1.0 S
(1) | 0.156 0.312 0.457 0.584¢ 0.709 0.823

(2) | 0.156 0.306 0.445 0.570 0.703 0.838 6.3107*
(3) | 0.161 0.315 0457 0.582 0.707 0.824 4.9107°
(4) | 0.160 0.315 0457 0.583 0.709 0.823 2.8107°
(5) | 0.159 0.312 0.452 0.577 0.705 0.831 1.6107*
(6) | 0.161 0.315 0.457 0.582 0.707 0.824 5.3107°
(7) | 0.160 0.314 0.457 0.582 0.707 0.825 3.6107°

Table 2 — Comparison of the r. values giveﬂ by different
forms and orders of approximation of the present theory

) =02, Q) =08, k=0

) D = 10 - linear approximation with " = 0

) D = 10 - complete linear approximation

) D = 10 - second order approximation

) D = 11 - linear approximation with ' = 0

} D = 11 - complete linear approximation

}D = 7 (n = 4, m = 2) — complete linear approximation
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Figure captions

Figure 1: Trajectories of the field defined by equations (54 - 55) in the half-plane ¢ > 0
Figure 2: The two kinds of trajectories of the field defined by equations (54 - 55) and
ending at (g1,p1)

Figure 3: Variation of S(t) between the two limit forms S1(¢) and Sa(t)

Figure 4: Best fit trajectories in the vicinity of the singular point (g1,p1). The points
of the first order approximation are represented by small circles, the points of the second
order one by crosses; the two straight lines are the singular line p = 2¢ and the tangent
common to all the trajectories; the dotted line is the-locus of the maxima of the curved
trajectories; the arrow indicates the point for which Ro/R, = 1 (present time).

Figure 5: The trajectories in the vicinity of the singular point at the origin
Figure 6: The trajectories in the vicinity of the singular point at infinity

Figures 1, 2 and 4, 5, 6 correspond to the case D =10,n =4, m =5 {n = 4 has been
chosen to allow for the embedding of the (ordinary) Euclidean space in the n-space)
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