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1. Introduction

Since Hubble’s discovery of the recession of galaxies, obtaining the variation with
cosmic time of the scale parameter (or ”radius”) R(t) which describes the expansion of
the universe is the basic problem a cosmological theory has to deal with. The closely
related question of deciding relative to what the expansion takes place, or where it stops,
is much more seldom explicitly stated [1]. It is commonly admitted there is no expansion
at distances smaller than the size of clusters of galaxies, so that this size, or the size of our
galaxy, or of the solar system, . . . can be used as a reference scale. This may seem to be
sensible at present, but what about the past, when R(t) was smaller than these objects?
The existence and observability of permanent reference scales for time and length intervals
thus appear to be assumed. It is also commonly admitted – but this argument has been
questioned [2,3] – that the scale parameter cannot be applied to all length scales in the
universe, on the grounds that this would amount to getting no expansion at all, so that
the universe would be scale invariant and there would be no redshift. On the other hand,
if the inflation theory eliminates the causality problem for the presently observed regions
of the universe, it does not in the future . . . In order to solve these problems, L. Nottale [1]
introduces a transition from scale independence to scale dependence in the general frame
of a theory of scale relativity.

Already Laplace [1, 4] pointed out the scale invariance of Newton’s theory of gravita-
tion, concluding that ”the universe reduced to the smallest imaginable space would always
present the same appearance to observers” and that ”the laws of nature only permit us to
observe relative dimensions”. Poincaré made similar observations as concerns comparing
time intervals as well as lengths at two different instants (and this is, of course, the only
way to proceed for time intervals): he notes ”we have no direct intuition of the equality
of two lapses of time” – for instance those ”between noon and one o’clock and between
two and three o’clock” [5]. So it should be possible to allow a general variation of all
length [2] and time intervals, as long as one keeps in mind that this kind of variation
cannot be physically observed by comparisons necessarily performed at the same instant:
there would be no permanent observable reference scale; since this looks as an unnecessary
complication, the possibility for expansion to act at any scale has seldom been considered
seriously. However, Hoyle and Narlikar [6], as an alternative to expansion, already used
a somewhat similar view in their variable mass theory, where all masses are supposed to
increase with cosmic time, which implies decreasing wavelengths for atomic radiations and
decreasing sizes for atoms. Indeed, it may be observed that, as opposed to the case of pure
gravitation, where the size and the period of a Keplerian orbit can be changed arbitrarily
as long as Kepler’s laws are respected, without any modification of Newton’s constant nor
of the masses of the bodies, physical constants must be allowed to change if the expansion
is considered to apply, for instance, to structures the size of which is directly linked to
atomic sizes. This is clear from the expression of the Bohr radius,

a0 =
h2ε0
πmee2 =

h̄

meαc
, (1)

which involves physical constants only: supposing the absence of permanent observable
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reference scales for length and time intervals implies some physical constants, among which
c, can vary with cosmic time.

So, since c also appears in the expression of the metric tensor, we shall suppose it to
be variable and we shall look for a function R(t) which already results from one of the
classical cosmological theories: such a function should not depend on hypotheses which
can be made about the reference scale relative to which R(t) is defined. This leads to a
highly constrained problem which cannot be solved realistically (i.e. with non-zero pressure
and density) unless more than four dimensions are introduced in the description of space-
time. This idea, initially due to Einstein and recently reintroduced by P. Wesson and
his co-workers [7, 8], aims at obtaining the properties of matter in our four dimensional
space-time in a purely geometrical way, starting from Einstein’s equations

Rµν = 0 (2)

written for five dimensions or more with no matter-energy terms on the right-hand side to
find the usual 4-dimensional equations

R(1+3)
µν = −8πG

c2
Sµν = −8πG

c2
(
Tµν −

1
2
gµνT

λ
λ

)
(2′)

where Tµν is the energy-momentum tensor of a perfect fluid, and we shall try it together
with the hypothesis of a variable light velocity. Even though introducing such a geometriza-
tion of matter through a variation of the single parameter c may appear as an oversim-
plifying supposition, it seems to be a natural one, since if the properties of matter are to
be geometrized, the physical constants they are related to should be allowed to depend on
R(t) – which, together with the curvature index, is here (see § 2) the only characteristic
parameter of geometry – and so on t itself.

2. The Einstein equations

We write Einstein’s equations for an arbitrary number n of space dimensions and with
a variable c in a maximally symmetric space, hence with a metric which, as concerns space,
generalizes to n dimensions the metric of Robertson-Walker. Choosing such a metric with
n greater than 3 is obviously surprising – usually a different scale factor is associated with
space dimensions beyond the third one – and this will be discussed later (§ § 5 and 6).

It is to be noted that, as a consequence of our hypotheses, the geometrical space-time
coordinates – defined with respect to permanent reference scales – will appear to be distinct
from the physically observable ones. This is obvious for lengths: expansion applying to
spatial domains of arbitrary size, physical distances here are the comoving ones; the case
of time intervals will be dealt with in § § 3 and 4. So as to make this distinction easier,
geometrical coordinates or intervals will generally be written using Latin characters, and
physical coordinates or intervals using Greek ones.

Designing by 0 the index corresponding to the chronological coordinate x0, with dx0 =
c(t)dt, and by i, j = 1, 2, . . . , n the indices associated with the spatial coordinates, the
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components of the metric tensor are:

g00 = −1 (3)

gi0 = 0 (4)

gij = R2(t)g̃ij , g̃ij = 0 (i 6= j) (5)

where the g̃ij depend on the space coordinates only. Choosing x0 rather than t and taking
into account the time dependence of c at the end of the calculations allow one to get a
constant g00 and thus a smaller number of non-zero components for the affine connection.
Starting from

Γβγα =
1
2
gβη [∂γgαη + ∂αgηγ − ∂ηgγα] (6)

(where the four indices run from 0 to n), these components are found to be (the ′ designing
a derivation with respect to x0):

Γ0
ki = RR′g̃ki (7)

Γj0i = Γji0 =
R′

R
δji (8)

Γjki = Γ̃jki , (9)

so the Γjki are time-independent.
This yields for the Ricci tensor

Rαβ = ∂βΓηηα − ∂ηΓηαβ + ΓλαηΓηβλ − ΓηηλΓλαβ , (10)

the non-vanishing components

R00 = n
R′′

R
(11)

Rij = R̃ij − (RR′′ + (n− 1)R′2) g̃ij (12)

where [9], k = 0,±1 being the curvature index,

R̃ij = −(n− 1)kg̃ij , (13)

hence
Rij = −[RR′′ + (n− 1)R′2 + (n− 1)k] g̃ij . (14)

Taking into account the hypothesis of a variable c and introducing the time variable
t gives:

R′ =
dR

dx0 (15)

and

R′′ =
d2R

dx02 =
1
c2
d2R

dt2
− 1
c3
dc

dt

dR

dt
, (16)
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so that (11) and (14) become

R00 =
n

Rc2
(R′′ − c′

c
R′) (17)

and

Rij = −
[R
c2

(R′′ − c′

c
R′) + (n− 1)(

R′2

c2
+ k)

]
g̃ij , (18)

where the prime now stands for the derivation relative to t.
Of course, the same result might have been obtained using t instead of x0 from the

beginning, getting
gtt = −c2(t)

instead of (3), a non-zero

Γttt =
c′

c

and

Γtki =
RR′

c2
g̃ki

instead of (7).
Applying (2) to (17) and (18) immediately entails

k = −1 (19)

if the density is to be non-zero, so that the n-space curvature is negative, and

R′2 = c2 , (20)

hence
R′ = εc (ε = ±1), (21)

R′′ = εc′ , (22)

and
c′

c
=

R′′

R′
. (23)

Noting

R
(F ;1+3)
00 =

3R′′

Rc2
(24)

and
R

(F ;1+3)
ij = − 1

c2
(RR′′ + 2R′2) g̃ij (i, j = 1, 3) (24′)

the parts of the Ricci tensor components which correspond to the Friedmann model with
zero curvature and using equations (19) to (23), the time-time (17) and space-space (18)
components of the Ricci tensor can be written:

R00 = R
(F ;1+3)
00 − 3εc′

Rc2
(25)
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Rij = R
(F ;1+3)
ij + (2 + ε

Rc′

c2
) g̃ij (i, j = 1, 3) . (25′)

Identifying (2) with (2’) where the source term is:

S00 =
1
2

(ρ+
3p
c2

) (26)

Si0 = 0 (27)

Sij =
1
2

(ρ− p

c2
)R2g̃ij (28)

gives:
4πG
c2

(ρ+
3p
c2

) = −3εc′

Rc2
(29)

4πG
c2

(ρ− p

c2
) = (2 + ε

Rc′

c2
)

1
R2 . (30)

Of course, for this identification to be possible, the negative curvature n-space has to
contain an Euclidean three dimensional variety: an example of this situation will be given
later (§5).

Both R and c depending on t, there must be a relation between them. Writing, with
K constant,

φ(R, c) = K (31)

hence
∂φ

∂R
R′ +

∂φ

∂c
c′ = 0 (32)

and, using (21),
c′

c
= −ε∂φ/∂R

∂φ/∂c
(33)

(29) and (30) give:
ρc2 + 3p
ρc2 − p

=
3δ

2− δ
, (34)

where

δ =
R

c

∂φ/∂R

∂φ/∂c
(35)

So, for an equation of state (34) with δ a constant,

dc

dR
= −∂φ/∂R

∂φ/∂c
= −δ c

R
(36)

and
cRδ = K ′ (37)

or, with γ = 1/δ,
Rcγ = K ′′ (38)
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where K ′ and K ′′ are constant.
The equation of state (34) can be given the form

p = (
2
γ
− 1)

ρc2

3
(39)

and includes the two cases
p = 0 (40)

and

p =
ρc2

3
(40′)

of the dust universe and of the radiation era for γ = 2 and 1 respectively.
Whatever γ, (29) and (30) yield

8πG
3

ρ =
R′2

R2 , (41)

so that the density of matter ρ corresponds, as results from the elimination procedure
leading to (41), to the curvature term in the expressions (18) or (25’) of Rij . Introducing
the Hubble constant

H =
R′

R
, (42)

(41) writes

ρG =
3

8π
H2 (43)

– so the density equals the critical density. This gives for the density of energy ε = ρc2:

ε =
3c2

8πG
H2 . (43′)

Of course, the pressure is a function of γ:

p =
c2

8πG
(
2
γ
− 1)H2 . (44)

The scale parameter R(t) is easily obtained deriving (38) with respect to time and
using (23) to get

R′′ +
R′2

γR
= 0 (45)

from which it can be seen that δ is but the deacceleration parameter q. The non-trivial
solution of (45) which satisfies

R(0) = 0 (46)

and
R(t0) = R0 (46′)
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is:

R(t) = R0

( t
t0

) γ
γ+1

, (47)

as in the zero curvature Friedmann model for an equation of state of the type (39).
Thus for the radiation era (γ = 1),

R(t) = R0

( t
t0

)1/2
(48)

and for the dust universe (γ = 2),

R(t) = R0

( t
t0

)2/3
. (49)

3. Time and the redshift

In the same way as lengths remain proportional to the cosmological scale factor R(t),
intervals of cosmic time vary as t itself: for instance, the period T = l/c of a radiation of
wavelength l varies as

T ≈ R

c
≈ R

γ+1
γ ≈ t (50)

and the same kind of variation will characterize the period of any circular motion, since its
speed can be defined as a fraction of c, and thus varies as R−1/γ , as also results for various
examples (period of a pendulum, of planetary motions, . . . ) from the gauge relations
described in § 7: every time interval expands proportionally to cosmic time with respect
to a permanent reference scale.

At a given t, a cosmic time interval dt can but be defined as proportional to t and to
the number dϑ of periods a reference clock completes during this interval dt:

dt = k t dϑ (51)

where k is a constant, the dimension of which should be the inverse of a time if ϑ is to be
a time also. Obviously, intervals of ϑ only (and of the associated proper time), not of t,
can be measured.

Let us now state the nature of ϑ more precisely. The square of the (1 + 3) space-time
interval with zero space curvature writes, following from now on the timelike convention:

ds2 = c2(t)dt2 − dl2 (52)

where dl is the space interval, or, introducing R(t), which we suppose to have the dimension
of a length:

ds2 = c2(t)dt2 −R2(t)dξ2 (52′)
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and here dξ stands for the spatial distance in dimensionless comoving coordinates.
Computing c(t) (with ε = 1) from (21) and (47):

c(t) =
γ

γ + 1
R0

t0

( t
t0

)− 1
γ+1

(53)

and writing in (51)

k =
γ + 1
γ

cM
RM

(54)

with
R(t) = RMa(t) (55)

where RM and cM are constant and a(t) is dimensionless, yields

ds2 = a2(t) [c2Mdϑ
2 −R2

Mdξ
2]

or
ds2 = a2(t) [c2Mdϑ

2 − dλ2] (56)

with
dλ = RMdξ (57)

to give the spatial distance dλ the dimension of a length. Thus ϑ can be identified with the
conformal time, which gives the metric an expression of the conformal type, and cM can be
interpreted as the constant light velocity in the Minkowski space-time which is measured
when using coordinates ϑ and λ. It may be noted that, up to a scaling factor, a unique
definition of the conformal time is obtained here for the dust universe as well as the for
the radiation one – which does not happen in the classical theory.

So as to study the formation of the redshift, let us consider, as in [10], two events
occurring at the same point in space and separated by a time interval corresponding to
(56):

∆s1 = cMa(t1)∆ϑ , (58)

where this time interval is small as compared to time t1. If these two events consist in the
emission of two light signals which will be perceived at another point in space, the time
interval between the two instants of reception will be the same in conformal time as in
(58), that is, ∆ϑ. This results directly from (56): light propagation is described by

dλ = ±cMdϑ (59)

so that, for a propagation along the radial coordinate χ,

dλ2 = R2
Mdχ

2 , (60)

dϑ = ±RM
cM

dχ (61)



10

hence
ϑ = ±RM

cM
χ+ C , (62)

where C is constant: the conformal time needed to go from the emission point to the
reception one depends on the difference of the radial coordinates of these points only and
not on the instant of emission, so both signals will arrive at the (same) reception point at
two instants separated by the same conformal time interval ∆ϑ as at their emission. To
this ∆ϑ corresponds at the reception time t2 an interval

∆s2 = cMa(t2)∆ϑ , (63)

hence:
∆s2

∆s1
=

a(t2)
a(t1)

, (64)

or, after (55),
∆s2

∆s1
=

R(t2)
R(t1)

. (65)

This conclusion is valid whatever the type of coordinates used, either (t, l) or (ϑ, λ).
The remainder of the argumentation relies entirely on the definition of proper time

dτ =
1
c
ds (66)

in general relativity:
a) with coordinates (ϑ, λ), c is constant and equals cM , and proper time dτϑ is defined

by:
ds = cMdτϑ , (67)

so that
∆τϑ2

∆τϑ1

=
R(t2)
R(t1)

: (68)

the redshift is obtained;
b) with coordinates (t, l), proper time dτ is defined by:

ds = c(t)dτ (69)

hence
∆τ2
∆τ1

=
∆s2

∆s1

c(t1)
c(t2)

=
R(t2)
R(t1)

c(t1)
c(t2)

(70)

and, if γ has the same value at t1 and t2,

∆τ2
∆τ1

=
[R(t2)
R(t1)

] γ+1
γ

=
t2
t1

. (71)

In the last relation, ∆τ1 is the period of the radiation emitted at t1 and ∆τ2 the period of
this radiation when received at t2; now, the redshift is defined by the ratio between ∆τ2
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and the emission period ∆τe2 of the same radiation at the reception place at t2 and, as
results from (50),

∆τe2
∆τ1

=
t2
t1

, (72)

so that
∆τ2
∆τe2

= 1 : (73)

there would be no redshift if cosmic time intervals were accessible to measurement. In the
present model they are not, and the redshift is obtained with conformal time intervals (68).
This is a logical consequence of the absence of an observable permanent reference scale for
time: t can be regarded as a purely geometrical variable which might be measured from
outside the universe, but not inside it (and, by definition, there is no outside). The same
can be said about the associated space variables l, and the actual physical variables are ϑ
and λ, physical time being the proper time associated with coordinate time ϑ through

dτϑ = a(t)dϑ . (74)

Of course, at a given t, intervals ∆ϑ of conformal time only can be measured. As
concerns cosmic time and space variables, only relations established without using non-
measurable quantities (such as in (72)) are physically meaningful. For example, horizon
calculations can be performed with either type of variables:

a) in geometrical coordinates, they involve ratios of quantities taken at the same time
only, the event and the particle horizons being defined at time t1 as

%e =
∫ ∞
t1

c(t)dt
R(t)

(75)

and

%p =
∫ t1

0

c(t)dt
R(t)

; (76)

now, from (47) and (53),
c(t)
R(t)

∝ 1
t

(77)

whatever γ: there is no particle nor event horizon, and no need for inflation.
b) the same result is obvious in conformal coordinates (ϑ, λ) (here the lower limit of

integration in %p should be replaced by −∞, since conformal time extends to infinity, as
will be seen hereafter).

4. Relation between times t and ϑ

Integrating (51) between t0 and t, one gets

ϑ(t0, t) =
1
k

∫ t

t0

dt

t
=

1
k

ln
t

t0
(78)
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for the conformal time interval corresponding to the interval (t0, t) of cosmic time. This
implies, introducing a third instant t1:

ϑ(t0, t1) =
1
k

ln
t1
t0

(79)

and

ϑ(t1, t) =
1
k

ln
t

t1
, (80)

hence
ϑ(t0, t) = ϑ(t0, t1) + ϑ(t1, t) : (81)

conformal time is additive.
A cosmic time interval can be defined as an ordered pair (t1, t2) to be associated with

the ratio t2/t1 (or even R(t2)/R(t1)) – as in (71) for instance:

φ(t1, t2) =
t2
t1

. (82)

This defines on cosmic time intervals a multiplicative group law

φ(t0, t2) = φ(t0, t1)φ(t1, t2) (83)

isomorphic to the additive one specified by (78) and (81). And indeed, a theorem from
group theory states that every one - parameter connected differentiable group is isomorphic
to an additive one and that the additive parameter is unique [11, 12]: so ϑ only is additive,
and it can be identified with the linear time θ introduced by Misner [13] as

θ ∼ ln
R(t)
R(t0)

. (84)

Thus, the three possible time notions (cosmic, conformal and linear) of Lévy - Leblond
[11] reduce here to two ones only: cosmic time t, which is uniform, but not additive, and
conformal time ϑ, additive and, owing to (51) and the uniformity of t, non-uniform –
whereas classical time is endowed with both properties. As already seen, conformal time
(together with its associated proper time) can be measured and thus appears to coincide
with physical time, whereas, by lack of observability of its reference scale, cosmic time t
cannot. So one may wonder why not drop t: however, ϑ is not uniform and, if time is to be
geometrized, the existence of one chronological variable endowed with this property should
be granted. As results from (50, 51), t shows up as the dilation parameter of intervals of
cosmic time, in the same way as R(t) is the dilation parameter of intervals of length, so
that not only space, but space-time itself, is in expansion. It may be noted that this
interpretation of t already seems to be possible for Kepler’s third law: if the larger axis of
an orbit is multiplied by a factor R, the period must be multiplied by a factor t such that
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t2/R3 is constant, hence the possibility of interpreting the relation R ∼ t2/3 as a relation
between the scale parameters for space and time dimensions. Indeed, the third law ex-
presses the invariance of Kepler’s problem in the inhomogeneous dilation generated by the
infinitesimal operator

X = 3t
∂

∂t
+ 2xi

∂

∂xi
(85)

(N. H. Ibragimov [14]).
One notion of time only being classically used in physics, it seems interesting to

approximate the relation between ϑ and t by a linear function, that is to replace the
function ϑ(t) by its tangent in the neighbourhood of an instant t, thus shifting from t to
ϑ through a change of scale and origin which does not modify the equations of physics.

Substituting t1 + ∆t for t in (78), one gets:

ϑ =
1
k

ln
t1 + ∆t
t0

, (86)

hence

ϑ ' 1
k

(ln
t1
t0

+
∆t
t1

) (87)

or

ϑ ' 1
k

(ln
t1
t0

+
t

t1
− 1) . (87′)

Now, inverting (78),
t = t0 exp(kϑ) , (88)

gives in (47)

R(t) = R(t0) exp(
γ

γ + 1
kϑ) ; (89)

this expression can be approximated using (87) by

R(t) ' R(t1)(1 +
γ

γ + 1
∆t
t1

) (90)

(which might have been obtained directly from (47)): if t1 is large, (for instance corre-
sponding to present time, so that t1 is the ”age of the universe”), this approximation is
satisfactory even for large values of ∆t as soon as they are small relative to t1; if t1 is
small, in the neighbourhood of 0, the same linear approximation for ϑ, in the form (87’),
yields

R(t) ' R(t1) exp
[ γ

γ + 1
( t
t1
− 1
)]

(91)
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or

R(t) ∼ C exp
( γ

γ + 1
t

t1

)
, (92)

a result which is valid for t in the vicinity of t1 and which gives, when extended to larger
values of t, the same variation of R with cosmic time as in inflation theory (take for instance
t1 = 10−n s in (92)).

As a last remark, the relation between cosmic and conformal times might help under-
stand – if this is confirmed – why the oldest stars seem to be older than the universe itself.
It may be noted that, defining tM by

tM =
γ

γ + 1
RM
cM

, (93)

(51) can be given the form

dt =
t

tM
dϑ (94)

so that dt = dϑ at t = tM : the cosmic and the conformal times are in coincidence (have
the same scale) for t = tM . Equation (79) for example becomes with this notation

ϑ(t0, tM ) = tM ln
tM
t0

. (95)

Now, the age of a star leaving the main sequence of the H-R diagram is currently estimated
from the time it has spent on this sequence, which is the longest one in its lifespan. This
time is determined by dividing the total nuclear energy available on the main sequence
by the amount of energy used per time unit, and of course is computed as a conformal
time interval. The relation between this interval and the cosmic times tM and t0 which
respectively represent the age of the universe and the time the star entered the main
sequence is given by (95) for a star which leaves the main sequence presently; it can be
rewritten as

t0 = tM exp(−ϑ(t0, tM )/tM ) . (96)

Applying (96) to the results of Pierce et al [15], which imply tM ' 7.3 109 years for Ω = 1,
gives, with ϑ(t0, tM ) ' 16.5 109 years for the age of the oldest star clusters

t0/tM ' exp(−2.26) ' 0.1 , (97)

thus reducing to about 7 108 years the cosmic time at which these were formed.
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5. Euclidian subspaces in a constant negative curvature manifold

A well-known example of such a situation is that of 3-space in the space-time of steady-
state cosmology [9]. Schrödinger [16], remarking that curvature depends on the frame,
already studied such a case as the Lemâıtre-Robertson frame of the de Sitter universe,
represented as a one-shell hyperboloid H1

x2 + u2 + v2 + y2 − z2 = R2 (98)

embedded in a five dimensional space with a (1,4) Lorentzian metric

dσ2 = −dx2 − du2 − dv2 − dy2 + dz2 . (99)

What we need here – so as to have a negative curvature space and not space-time – is a
two-shell hyperboloid H2

x2 + u2 + v2 + y2 − z2 = −R2 (100)

embedded in the same Lorentz space, with the difference that this imbedding space is here
completely fictitious, so that, in particular, no coordinate system in it has to be interpreted
as including time as one of its components.

The Lemâıtre transformation leading to Euclidean subspaces of H1 reads

x̄ =
Rx
y + z

, (101)

ū =
Ru
y + z

, (102)

v̄ =
Rv
y + z

, (103)

θ̄ = ln
y + z

R
. (104)

With these new variables, the dσ2 (99) becomes

dσ2 = − exp(2θ̄)(dx̄2 + dū2 + dv̄2) +R2dθ̄2 (105)

as can be shown using the following relations deduced from (101 – 104):

x = x̄ exp(θ̄) , u = ū exp(θ̄) , v = v̄ exp(θ̄) , (106)

y + z = R exp(θ̄) , (107)

and

y − z = R exp(−θ̄)− r̄2

R
exp(θ̄) (108)
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where
r̄2 = x̄2 + ū2 + v̄2

and y − z has been computed from

y − z =
R2 − x2 − u2 − v2

y + z
.

It is clear from (105) that the subspaces (x̄, ū, v̄) are Euclidean.
The same Lemâıtre transformation leads to Euclidean subspaces of H2 with the only

differences that now

y − z =
−R2 − x2 − u2 − v2

y + z
= −R exp(−θ̄)− r̄2

R
exp(θ̄) (109)

and
dσ2 = − exp(2θ̄)(dx̄2 + dū2 + dv̄2)−R2dθ̄2 . (110)

The Euclidean subspaces (x̄, ū, v̄) ofH1 andH2 are the three dimensional generalizations of
the parabolae traced on their restrictions to the dimensions (x, y, z) by planes y+ z = C, a
constant, and it may be noted (as concerns H2) that when R varies with time (expansion),
θ̄ remains constant, so that these subspaces are preserved.

Now, depending on the value of C, there is an infinity of such subspaces and it seems to
be logical, so as to keep (as supposed from the beginning) a zero four dimensional density,
to associate to each subspace with density ρ another one with negative density −ρ in a
twofold structure with

ρ > 0 , G > 0 on the 1st sheet

and
ρ < 0 , G < 0 on the 2nd sheet

both of which possibilities being allowed as solutions of (43) (it may be noted that ρG
also, and not G alone, appears in the Einstein equations). ρ is an active gravitational mass
density, so that two masses should attract when in the same sheet and repel when not
if one keeps on identifying passive gravitational mass and inertial mass. Such a negative
density sheet has already been proposed as a candidate for dark matter in first simulations
of the large scale structure of the universe [17, 18].

6. The case of non-Euclidean subspaces

Such subspaces obviously exist (for k = −1, take for instance y2 constant in (100) and
for k = 1, z2 constant and larger than R2). However, supposing k = −1 in steps (24 – 30)
implies a zero density (hence the necessity to take n > 3), and k = 1 yields γ = 1/2 and
1 for the radiation and the matter dominated eras respectively, that is no correspondence
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with previous theories. Hence the Friedmann solution with k = 0 is the only one which
can be found following the present procedure.

7. Gauge relations

Since, in geometrical coordinates, c has been assumed to vary with time, this should
be the same for other physical constants also. This implies gauge relations which have been
proposed in [19, 20] for the case γ = 2 (equation (38)). Similar relations can be obtained
here, without a special treatment being required for Schrödinger’s equation. Assuming
every mass varies as M and the Bohr radius as R, as already supposed, and using (38)
yields for instance, if α (which is dimensionless) remains constant,

h̄ ≈ MR1− 1
γ . (111)

In the same way, starting from Newton’s formula for the two-body problem and still using
(38) gives for the Einstein constant

G

c2
≈ R

M
(112)

whatever γ. With no precision about the variance of masses, such relations are purely
kinematical – being derived from the variances of length and time intervals. One more
hypothesis has to be made to go further; for example, if G/c2 is to be a constant, this
implies

M ≈ R (113)

hence
h̄ ≈ R2− 1

γ (114)

and
G ≈ R−

2
γ , (115)

and so on, . . .
None of these variations can be detected in the laboratory since, as in the case of

length and time intervals, no permanent reference scale can be used for that. So, in the
physical world, constants are but constants, as light velocity cM in (56).

However, the above assumption about G/c2 is important: it allows the divergenceless
character of the energy-momentum tensor to be kept in the second member of Einstein’s
equations (2’). Moreover, substituting (47) into (41) yields for the energy density corre-
sponding to the equation of state (39)

ε =
3c2

8πG

( γ

γ + 1

)
t−2
0

( R
R0

)−2 γ+1
γ

(116)

so that a constant value of G/c2 implies

ε ∝ R−2 γ+1
γ (117)
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and for the energy contents of a covolume V ,

E ∝ R1− 2
γ (118)

so that during the radiation era (γ = 1),

ε ∝ R−4 (119)

and
E ∝ R−1 (120)

– hence, using the Planck formula, the same variation with R of the temperature of the ra-
diation gas, as also results from the classical treatment – and during the matter-dominated
era (γ = 2),

ε ∝ R−3 (121)

hence a constant energy for the massive particle contents of V .

8. Discussion and conclusion

So as to express the hypothesis of non-observability of permanent reference scales for
time and length intervals, we have assumed the scale parameter R(t) applies to any scale in
the universe – which implies the possibility of a variation with cosmic time of the constants
of physics. As many hypotheses, this one may be questioned and perhaps its best support
lies in a number of advantages offered by the resulting theory:

– 1) The model obtained is unique; it represents the universe as an Euclidean sub-
space of a negative curvature variety; it is equivalent, as concerns its density and its time
evolution, to the zero curvature Friedmann model, and this Euclidean character is in full
agreement with observation. Interestingly, as results from the resolution of the system (29,
30), the density corresponds to the curvature of n-space; the derivative of c with respect
to cosmic time appears in the pressure term only.

– 2) A clear distinction is made between the universe and the permanent scales with
respect to which its time and space charactistics (its age and its scale parameter) are
defined, so that these permanent scales are to be considered as external to the universe. As
opposed to what can be expected, this does not prevent the redshift from being obtained
in the resulting theory if one notes that cosmic time (and length) intervals – for which
permanent reference scales have to exist as soon as one writes down expressions (3 –
5) or (52) for the metric – are no longer measurable quantities. The physical quantities,
measurable from inside the universe, are from this viewpoint the proper time and the proper
distances associated with conformal time ϑ and comoving space coordinates λ in equation
(56). The cosmological and the gravitational redshifts both originate in the variations of
the g00 coefficient of the metric, the former with time, the latter with position in space –
although in both cases, the shift owes its existence in the phenomenon (the emission of a
radiation) being produced and observed as two distant events in space-time.
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– 3) In physical (i.e. conformal) time, due to the logarithmic dependence of ϑ on t,
the origin of the universe is shifted to −∞, corroborating the ideas developed by Lévy -
Leblond and Misner in [11] and [13]. This removes the question of knowing what existed
before the big bang and might help to solve the problem raised by the age of the oldest
star clusters. It may be noted that this physical time is defined in close conformity with
experiment, which contents itself with counting numbers of periods of a reference clock
without being able to compare two of these periods.

– 4) As contrasts with the classical theory, time and space are dealt with in the same
way: in the metric, both time and space differentials are provided with variable coefficients
and, as well as space, cosmic time expands; thus a time arrow arises naturally.

– 5) The fact that intervals of ϑ and λ only are physically measurable implies the
impossibility of directly observing any expansion – hence there is no problem about where
it stops. Nevertheless, of course, only experiment can decide whether this scale invariance
holds: structures such as atoms or galaxies may well withstand expansion owing to their
internal forces.

– 6) There are no horizon problems, hence no need for inflation, and this may supply
possibilities for an alternative to the scalar field which is evoked to justify this theory at
the microscopic level. As a geometric description of the universe, the usual theory appears
to be incomplete when compared with the present one, and this might be a reason why it
has to resort to inflation.

– 7) Derived from the variation of c with cosmic time t (not physical time), a set of
laws of variation of the physical constants with t is proposed; in the same way as for c itself,
these variations cannot be observed using physical time and length measurements, since
any period, length, mass, . . . varies according to the same law as the corresponding unit;
so, from the physical point of view, c and the other physical constants remain constant.
As a consequence of this, energy conservation is preserved with respect to cosmic time for
radiation, since no redshift would show up if t were measurable. This seems to be natural,
the cosmic time scale being uniform, and contrasts with what happens in the usual theory,
where there is no global energy conservation [21]. It may be noted that (as in the usual
theory) energy conservation also occurs for massive particles with respect to t as results
from (113) and (38) with γ = 2; this, of course, is true also with respect to ϑ.

The possibility of an objection to the model might be found in the identification of
terms involving a variable c with the energy-matter terms of another one (the Friedmann
model) which assumes the opposite. However, this variability applies to a coefficient of
the metric only (the observable light velocity in the new model is constant), and in the
usual model matter is represented through the energy-momentum tensor, whereas in the
new one this representation originates in the variable c metric, the presence of matter
being integrated into the geometry through this variability of c and of the other physical
constants, all of which characterize properties of matter or radiation. So these models
differ in two hypotheses, and not only in what is assumed about c in cosmic coordinates:
this is not more contradictory than accepting the possibility of doing physics either in the
framework of an Euclidean geometry with complex physical laws or using a non-Euclidean
geometry and simple physical laws. Moreover, it may be noted that if both sides of (2’) are
multiplied by c2, so that Rµν is replaced everywhere by c2Rµν , the Ricci tensor c2R(F ;1+3)

µν
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(equations (24) and (24’)) of the zero curvature Friedmann model (and of this one only)
does not depend on c. And the classical equations of this model write:

2
R′′

R
+
R′2

R2 = −8πG
c2

p (122)

and

3
R′2

R2 =
8πG
c2

ε , (123)

which can also be derived from (29) and (30) above: they involve G/c2 only when expressed
in terms of the density of energy ε. With G/c2 constant as chosen in § 7, there is no
contradiction in identifying the classical terms with those of the present model.

It may also be objected that, writing cMdt′ = c(t)dt, the present metric is equivalent to
Milne’s for time t′ and n space dimensions: indeed we have shown that Einstein’s equations
for the vacuum ((11) and (14)), instead of giving Milne’s solution (R a linear function of
t), corresponding to an empty universe, can yield a matter as well as a radiation universe
as soon as the g00 coefficient of the metric is allowed to be variable. Taking a constant g00
is in fact an arbitrary constraint, and can be considered as unnecessarily weakening the
metric [22].

As a last remark, it may be noted that the basic hypotheses we have started from
involve both general relativity and, through the expression of the Bohr radius, a funda-
mental result of quantum mechanics – which are both, at an elementary level, connected
with an inverse square law.
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