Curves spiraling towards the center of black holes are virtual geodesics
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Abstract : Geodesics are defined as the shortest paths. When a geometric structure is defined
by its metric, a system of Lagrange equations can be constructed, using a variational approach,
to represent these curves. If the Lagrange function contains derivatives with respect to the
element of length ds, the same system of equations is obtained by replacing ds with its square.
The resulting curves are then true geodesics, where the length is real, in the region of space
corresponding to the surface or hypersurface's definition space. Outside this region, we obtain
real curves, but with purely imaginary lengths, which we then call virtual geodesics. The torus
and sphere are given as examples. It is shown, in the case of the cosmological application of
the Schwarzschild exterior solution, that curves considered to spiral towards a central
singularity are in fact virtual geodesics, devoid of physical reality.

Consider a surface, or a hypersurface, defined by its metric:
(1) ds* = g, dxtdx¥
Let us define the domain where the variables are defined, real. We will simply assume that

they are real numbers, positive or negative. If we manage to express this metric in diagonal
form, in a suitable coordinate system:

(2) ds? = gtk dxk?
When the metric is diagonalyzed the series of signs affecting the terms g,,,, form its signature.

Consider a curve x(p) in this n-dimensional space, where the points are located using a
parameter p. The length between two points A and B on this curve corresponds to the equation

dxH dxV
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Posing :

() i=
This integral then has the form:

(5) o L(xh,xt) dp

L is then a Lagrange function and the curves representing extrema of the values of this
function, in particular minima, i.e. geodesics, are solutions of n Lagrange equations:



(6) (%) = o=

dp \ axt dxt

Now let's imagine that we are considering constructing the solution curves of the Lagrange
equations associated with the Lagrange function:

(7) A= L1

The corresponding Lagrange equations will be different because there will be an additional
term:

(8) 10L dL i(a’“)_a_’“
L 9xt dp dp \ axt oxt

What would it take for the equations associated with the Lagrange function A to be the same
as those derived from the function F? It would suffice for the function F to be constant along
all curves. And for this, there is a proven solution:

= The parameter defining the points on the curve must be precisely the length s.

Dividing (1) by ds?, we get:
1 = gy x#xY

In other words, if we are looking for the geodesics of the surface defined by the metric (1) we
can reason not with the length, but with the action constructed from the bilinear form:

(10) J = [pds = [ (gu 2"2") ds?

But, under these conditions, we will see that we can find portions of curves, quite real, but for
which the bilinear form has a negative value, that is to say, for which the length is purely
imaginary. We will call these curves pseudo-geodesics. Let's give a very clear example.
Consider the metric:

dr?
—R2+1y2-1r24+21rR

(11) ds? = r?de? +

With R > 1,>0

Consider the radial paths (d¢ = 0). The lenght becomes :

dr

ds =
J-R2+ 12 — 124+ 2rR

For it to be real, the following conditions must be met:
- Either r < R — 1y
- Eitherr > R + 1y

Which define the definition domain. The lenght s is :



= 252 r2
(12) s = f\/ reet —R%2+ 7192 —12+27R ds

But we know that we can construct geodesics of this 2-surface based on the Lagrange
equations derived from the Lagrange function:

(13) F(r,r,9) = r2¢? +

Write the Lagrange equation :

d ( oF oF
(14) E(ﬁ) =T =0
h being a constant, we get :
. h
(15) » ==

We do not need to write the second equation since we have the relationship:

r2
—R2+ 192 —-1r2+21rR

(16) 1= r2¢? +

Combining to (15) we get the following differential equation :

thdr

(17) de =

h
2 2 2 _ 42
rJ(R+r0 r+2rR)(1 r2)

Thanks to which we digitally construct the planar projections of geodesics, within the domain
of definition, which we will designate as real geodesics:
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Fig.1 : Real geodesics.

We will then construct what we will call virtual geodesics, that is to say real curves, derived
from Lagrange's equations, but for which the length is purely imaginary.
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Fig.2 : : Virtual geodesics.

The figure on the left shows some curves for r < R — ro. The direction of winding depends on
the sign of h. The geodesics are tangent to the limiting circle. They wind infinitely towards the
center where d¢/dr tends to infinity. The curves on the right give the curves for r > R + 0.
They also have spiral shapes, the direction of winding also depending on the sign of h. The
curves are tangent to the circle of radius r = R + ro. They then spiral to infinity. So what is this
surface defined by its metric? This object exhibits rotational symmetry (invariance under
translation along ¢). We can embed it in R3, described using cylindrical coordinates( r, ¢ , z),
which we translate as:

2 dT'Z
—R2+ 192 —1r2+2rR

(18) ds? = dr? + dz? = dg

We are going to construct the meridian line:

2 2 — dr? _ ar?
(19) dr® + dz" = —R2+102 —12427R 22
This equation is satisfied for:
(20) r = R + 1y cosO Z = 1y sinf

This meridian is a circle, and our surface is a torus. Its complete metric can be represented using
two angles, in a more familiar form:

(21) ds? = 12dO% + (R + 1y cosf)? dp?

The non-contractibility of the object appears when we consider paths with constant ¢ or
constant 8.

We have thus provided it with two sets of real curves, solutions to the system of Lagrange's
differential equations. But only the curves that correspond to the domain of definition have a
real length.
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Fig.3 : The torus, equipped with its real and virtual geodesics.

Consider this other metric:

2 2
(22) ds? = rde? +
Here again, we will take Lagrange's function as:
. R? 72
(23) rie? + ——
Where, once again :
. _ do ., _ ar
(24) ¢ = ds r= ds

Under these conditions, the Lagrange equations associated with this function yield curves
whose part such that ds > 0 are geodesics. But here again, we obtain pseudo-geodesics, real
curves corresponding to a description in polar coordinates, but equipped with a purely
imaginary length. As in the previous metric, one of these equations is:

hZ

r2

(25) ¢ =

By combining this with the following relation, which follows from (24):

. RZ 72
(26) 1=12? + —
We obtain the following differential equation:
h R dr

(27) de =

v J(RZ-r2)(rZ-h2)



The solutions h <r <R give the actual geodesics, and those for R <r <h give the pseudo-
geodesics. Below are the curves for R=1:
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Fig.4 : Projections of geodesics and pseudo-geodesics of a sphere of radius 0.5

Let's determine the nature of these curves. Let's write:

(28)

Posing :
(29)

(30)

(31)

(32)
The parameter R disappears.

(33)
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With 0 < e < 1, these curves are ellipses. Equation (27) shows that these curves are tangent to
the circle of radius R. The equation holds true both for h < r < R (true geodesics) and for
h >r > R. Thus, the virtual geodesics are also ellipses. What is this geometric object, defined

by the metric (22)?



Let's make the change of variable:
(34) r = Rsin@
We immediately obtain the metric of the sphere:

(35)
ds? = R? (d6? + sin?0 d¢?)

Fig.5 : Projection d’'une géodésiques et de pseudo-géodésiques de la sphére

Plane projections, approximated as virtual geodesics of the sphere, also tend towards infinity.
But unlike the virtual geodesics of the torus, which are spiral-shaped, those of the sphere are
ellipses. Such a study could be considered a curiosity, of little mathematical interest. All we
have demonstrated is that the plane projections of the virtual geodesics of the object associated
with the metric (22) are ellipses. But it takes on a completely different significance when
astrophysicists confuse what is real with what is imaginary.

In 1916, the Austrian mathematician Karl Schwarzschild published [1] the first exact solution
to Einstein's equation: a homogeneous, stationary, and spherically symmetric solution. He
located his solution in a space (t,x,y,z ), then quickly converted it to spherical coordinates
with:

(36) 7‘=\/xz+yz+z2
This implies that its coordinate r > 0.

The construction of his solution reveals a parameter o, which physical considerations dictate
must be positive. He then introduces an "intermediate quantity" R, defined by:

(37) R = (r3+ a®¥3 > qa.

And his solution is presented in the following form:



(38)
ds? = (1 - %)czdtz—

2

— R%(d6? + sin?0dp?) R =(r3+ a®)'/3
1 —

=e] N

The condition on R means that this hypersurface is inherently non-contractile. This can be
illustrated more clearly (which Schwarschild did not do at the time) by returning to coordinates
(t,r,0,9):
(39)

(r®’+a®>)3 - «a r* dr?

2 — 24¢2 —
ds GO G T O G O

— (3 + a®)?/3(d6? + sin?0d¢?)
Time passes and today this solution is presented in a form described as "standard", like this:

dr?

T r(df? + sin?0 de?)

(40) ds? = — (1 - %)czaltz +

Note the inversion of the signature, changing from (+ — — —) to (— + + +). This is an
error, pointed out by the mathematician Abrams in 2001 [2]. He attributes it to the
mathematician David Hilbert, in the article where he intends to integrate what he believes to be
the solution found by Schwarzschild in an article entitled "Foundations of Physics" [3]. In his
approach, Hilbert treats any solution to Einstein's equations not as a metric, defining a length
whose element is necessarily positive, but as a bilinear form. Furthermore, he develops his own
vision of relativity, which is that presented in 1902 by the mathematician Henri Poincaré, who
sees spacetime as a four-dimensional space where the space coordinates (X, y, z) are real, and
the fourth, the time coordinate, designated by the letter 1, is purely imaginary:

(41) [=it

Let us briefly digress here to explain the origin of Hilbert's error, pointed out by Abrams eighty-
five years later, in an article that had no impact on the community of those who henceforth
called themselves "cosmologists." Like Schwarzschild, Hilbert introduced what he believed to

be the most general solution to Einstein's stationary, spherically symmetric equation (presented
as a bilinear form):

(42) F(r)dr? + G(r) (d6? + sin?0 dp?) + H(r) dl?

He then equates the term G(r) to r?, which seems to him to be a simplification and to allow
easier convergence towards the fact that, for r tending towards infinity, this expression
converges, not towards the Lorentz metric, in spherical coordinates:

(43) ds? = c?dt? — dr? — r2(d6? + sin?0 de?)

Here is its bilinear form, as r tends towards infinity, with its sign convention:

(44) dr? + r2(d6? + sin?0 de?) + c?dP



Using this simplification, Hilbert then presents his solution, in bilinear form:
(45) G(dr,d8,dg,dl) = —dr? + r?d6? + r’sin®0 dg? ——dt’

In cosmology, length is proportional to proper time, which is necessarily positive. Hilbert then
introduces this as one of the two lengths he defines as follows. The first, associated with
"timelines," is designated by him as proper time:

(46) r=[ |-6(52)dp

dp

The second is :

(47) 1= |6 (%) dp

dp

Decades have passed. Today, all articles and books contain what is considered the "standard
form" of the Schwarzschild solution:

(48) ds? = — (1 — %)czalt2 + 1(1_% + r2(d6?% + sin?0 dg?)

The coordinate r is then considered a "radial variable", simply positive. The proper time t is
then defined by the relation (with ¢ = 1):

(49) dt? = —ds?

However, this geometry had been perfectly defined as early as 1916 by the mathematician
Ludwig Flamm [4]. He did not make Hilbert's mistake and explicitly started from the form (32),
from Schwarzschild's publication [1].

Since the solution is invariant under time translation, he considers that he must study the
geometry of a 3D hypersurface undergoing a translation along the time coordinate. He then
focuses on the spatial part of the metric, describing this 3D hypersurface, and performs a cut at
constant 6, and more precisely at 8 =n/2. He then obtains a two-dimensional object and observes
that it can be embedded in R*. He then constructs its meridian, which is a recumbent parabola,
whose equation is [4]:

(51) z2 =4a(r —a)

Below is a reproduction of the figure from his article:
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Figure 6 : The Flamm meridian [4] .

Literature now refers to such an object as a "Flamm surface":

Figure 7 : The Flamm surface.

Can virtual geodesics of such an object be constructed? The corresponding 2D metric is:

2
(52) ds? = <5 + r2de?

The length element is :
2
(53) ds = J ar? | r2qgp?
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Consider radial trajectories (dep = 0). If r < a, the element of length ds becomes purely
imaginary. We then leave the domain of definition; we are outside the surface. But if we start
from the action:

22
(54) ]:f<ﬁ+r2(p2)ds = g =2

ds ds

We can then write the Lagrange equations for this function, and we know that if the derivatives
are expressed with respect to the length s, which represents the position of the points, they will
give us curves that either lie within the domain of definition (r > a) or outside it (0 <r < a). One
of the Lagrange equations is:

d [ oF oF
(55) wlay) = 5 =
This equation gives us, where h is a constant:
. h
(56) » ==

As before, there's no need to write the second one. We can take advantage of the fact that the
action yields a unit length:

"2

(57) 1= —+ ¢’
This gives us the differential equation:

d h 1
(58) Lo

o a-H(0-5

From this equation we easily obtain the following curves:

4 \
b
2 .
\d
ol
/C
=k
=4}
22 =2 0 2 )

Fig.8 : Real and virtual geodesics.
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(b):(r>a;h<a).(c): (r>a;h=a).(e):(r<a;h<a)

Circle (a), in red, represents the apparent outline of the Schwarzschild sphere, with radius a.
The curve segments (b), (c), and (d), located within the domain of definition, are real geodesics.
The curves located inside the circle of radius a are outside the domain of definition and are
therefore these "virtual geodesics," real curves along which the length is purely imaginary. The
curve segments (c) and (d) that meet on the circle thus correspond to crossing the pass and the
transition to the second sheet, as shown in Figure (5). In 1992, S. Chandrasekhar published a
work [5] presenting the "standard" interpretation of the Schwarzschild solution.:

2
ds? = (1 —2TM> (dt)? —é‘%—ﬁ—ﬁ[(de)z +(dep)?sin?20].  (60)

This is the Schwarzschild metric in its most familiar form;

Fig. 9 : The "standard form” of the so-called "Schwarzschild solution".

Here the constant 2M = a. At that time, all cosmologists considered this to correspond to the
spherically symmetric stationary solution as presented by Schwarschild in January 1916, and
that the variable r was a "radial variable," likely to tend towards zero. It has been shown for
decades that the apparent singularity at r = 2M does not cancel the Kretschman scalar, and
therefore is not a true singularity but a coordinate singularity, which can be canceled by a simple
change of coordinates. Chandrasekhar then adopts the "standard form" of the construction of
geodesics:

19. The geodesics in the Schwarzschild space-time:
the time-like geodesics

We have shown in Chapter 1 (§6(a), equation (203)) that the equations
governing the geodesics in a space-time with the line element,

ds? = g;;dx"dx/, (78)

can be derived from the Lagrangian

dxidx’

2L =0y g ar

(79)
where 7 is some affine parameter along the geodesic. For time-like geodesics,
T may be identified with the proper time, s, of the particle describing the
geodesic.

For the Schwarzschild space-time, the Lagrangian is

1 2M) ., 72 242 (12 cin2 B2
g_§[<1__r_>z _I——ZM—/r_r 0% — (r* sin?0)¢? |, (80)

where the dot denotes differentiation with respect to t.

Fig. 10 : The standard method for determining geodesics of Schwarzschild spacetime[5].
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We see that he constructs the action not as the length of a curve arc, to be minimized for it to
acquire the status of a geodesic, but as an action constructed with a Lagrange function that is
no longer constructed from the length element, but from its square. As it is explicitly stated that
the derivatives are taken with respect to proper time t, that is, and this is specified, with respect
to s, this technique will indeed give geodesics in the region where they are defined, where the
length element is real. But these equations will give, outside this domain of definition, real
curves, but endowed with an imaginary length, therefore pseudo-geodesics, without real
physical existence. Before presenting the curves obtained by Chandrasekhar, who first made
this shift in the choice of the Lagrange function? It was Hilbert in 1916 [3]:

1034 DAVID HILBERT

The differential equations of geodesic lines for the centrally symmetric gravita-
tional field (45) arise from the variational problem

(Lo (%) +2(2D) "+ rsinno(29) - =241 Yap - o,

Fig.11 : The action used by Hilbert to obtain the geodesics:

Can we blame him for this, as with the change of variable where, unbeknownst to him, his
variable r is in fact the intermediate variable of Schwarzschild's R? Let us remember that this
is 1916 and that Schwarzschild, Einstein, and Hilbert knew perfectly well that what would later
be called the "Schwarzschild radius," that is, the integration constant a (or 2M), is, for the Sun,
3 kilometers! It was only in the 1970s that Oppenheimer and Snyder [6] proposed using the
solution of Schwarzschild's exterior metric to describe an object that J.A. Wheeler [7] would
name a "Black Hole." In 1992, Chandrasekhar presented, in his book [5], "The Mathematics of
Black Holes." He included numerous images of geodesics. First, there are those which, by
grazing the Schwarzschild sphere, reflect the advance of the perihelion, very small for the orbit
of Mercury around the Sun (starting point of the construction by Einstein, of his general
relativity).
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Fig. 12 : Near-elliptical trajectory with advance of perihelion

We then have trajectories that reflect a simple deflection, corresponding for example to the

passage of a very fast comet:

| |
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We then have trajectories that intersect, which Chandrasekhar places in the same layer, whereas,
tangent to the circle, they reflect a change of layer on the Flamm surface

(@ P=1,M=
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Fig .13 : Simple deflection.
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Fig.14 : Gamma letter projection of a geodesic.

Finally, there are curves that spiral indefinitely towards what Chandrasekhar and all
cosmologists consider to be "the central singularity":

-3 | | | | |
-3 -2 -1 0 1 2 3
1

(c) e=0.001i, £=1, M=?

Fig.15 : Chandrasekhar: trajectory of a witness mass plunging
towards the "central singularity".

According to what has just been shown above, the portion of the curve inside the circle,
endowed with a purely imaginary length, is merely an artifact resulting from the choice of the
Lagrange function. It is therefore outside the solution hypersurface. But countless articles have
been published concerning this region, as well as theorems have been established concerning
this central singularity which arises from the chimerical interpretation that has been made of
this Schwarzschild solution [1].
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