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Curves spiraling towards the center of  black holes are virtual geodesics  
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Abstract : Geodesics are defined as the shortest paths. When a geometric structure is defined 
by its metric, a system of Lagrange equations can be constructed, using a variational approach, 
to represent these curves. If the Lagrange function contains derivatives with respect to the 
element of length ds, the same system of equations is obtained by replacing ds with its square. 
The resulting curves are then true geodesics, where the length is real, in the region of space 
corresponding to the surface or hypersurface's definition space. Outside this region, we obtain 
real curves, but with purely imaginary lengths, which we then call virtual geodesics. The torus 
and sphere are  given as examples. It is shown, in the case of the cosmological application of 
the Schwarzschild exterior solution, that curves considered to spiral towards a central 
singularity are in fact virtual geodesics, devoid of physical reality. 
 

__________________________________________________________________________ 
 
Consider a surface, or a hypersurface, defined by its metric: 
 

(1)                                                        𝑑𝑠! 	= 	𝑔"# 	𝑑𝑥"𝑑𝑥# 
 
Let us define the domain where the variables are defined, real. We will simply assume that 
they are real numbers, positive or negative. If we manage to express this metric in diagonal 
form, in a suitable coordinate system: 
 

(2)                                                              𝑑𝑠! 	= 	𝑔"" 	𝑑𝑥"! 
 

When the metric is diagonalyzed  the series of signs affecting the terms 𝑔"" 	 form its signature. 
Consider a curve 𝑥𝑖(𝑝) in this n-dimensional space, where the points are located using a 
parameter p. The length between two points A and B on this curve corresponds to the equation 
 

(3)                         ∫ 𝑑𝑠$%& 	= 	∫ )	𝑔"# 	𝑑𝑥"𝑑𝑥# 	 	= 		 ∫ *	𝑔"# 	
'(!

')
'("

')
	𝑑𝑝		$%&$%&    

Posing :  

(4)                                                          𝑥*̇ 	 = 	 '	(
#

')
 

 
This integral then has the form: 
 

(5) 																																																									∫ 𝐿(	𝑥, , 𝑥*̇ 	)	𝑑𝑝$%&  
 
L is then a Lagrange function and the curves representing extrema of the values of this 
function, in particular minima, i.e. geodesics, are solutions of n Lagrange equations: 
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(6)                                                         '
')
0	 -.
	-(̇#
1 	= 	 -.

-(#
 

 
Now let's imagine that we are considering constructing the solution curves of the Lagrange 
equations associated with the Lagrange function: 
 
(7)                                                                         Λ	 = 	𝐿0 

 
The corresponding Lagrange equations will be different because there will be an additional 
term: 
(8)                                                             1

.
	 -.
-(̇#
	'.
')
	+ '

')
0	 -.
	-(̇#
1 	= 	 -.

-(#
 

	 
What would it take for the equations associated with the Lagrange function λ to be the same 
as those derived from the function F? It would suffice for the function F to be constant along 
all curves. And for this, there is a proven solution:  
 
à    The parameter defining the points on the curve must be precisely the length s.  
 
Dividing (1) by ds², we get: 

1	 = 	𝑔"# 	𝑥̇"𝑥̇# 
 
In other words, if we are looking for the geodesics of the surface defined by the metric (1) we 
can reason not with the length, but with the action constructed from the bilinear form: 
 

(10)                                𝐽	 = 	 ∫ 𝑑𝑠$%& 	= 	 ∫ (	𝑔"# 	𝑥̇"𝑥̇# 	)	𝑑𝑠!	$%&    
 

 But, under these conditions, we will see that we can find portions of curves, quite real, but for 
which the bilinear form has a negative value, that is to say, for which the length is purely 
imaginary. We will call these curves pseudo-geodesics. Let's give a very clear example. 
Consider the metric: 
 

 (11)                                              𝑑𝑠! 	= 	 𝑟!𝑑𝜑! 	+ 	 '2$

34$5	2%$	3	2$5	!	2	4
 

 
With   	𝑅	 > 	 𝑟6 > 0  
 
Consider the radial paths  (	𝑑𝜑	 = 	0). The lenght becomes  :  
 

𝑑𝑠	 = 	
𝑑𝑟

)−𝑅! +	𝑟6! 	− 	𝑟! + 	2	𝑟	𝑅
 

 
For it to be real, the following conditions must be met: 
 

- Either   𝑟	 < 	𝑅	 −	𝑟6 
 

- Either  𝑟	 > 	𝑅	 +	𝑟6 
  
Which define the definition domain.  The lenght s is  :  
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(12)                                            𝑠	 = 	 ∫*		𝑟!𝜑̇! 	+ 	 2$̇

34$5	2%$	3	2$5	!	2	4
				𝑑𝑠 

 
But we know that we can construct geodesics of this 2-surface based on the Lagrange 
equations derived from the Lagrange function: 
 

(13)                                          𝐹	(	𝑟	, 𝑟	, 𝜑̇	) 	=	̇ 		𝑟!𝜑̇! 	+ 	 2$̇

34$5	2%$	3	2$5	!	2	4
 

 
Write the Lagrange equation : 
(14)                                                             '

'7
0	-8
-9̇	
1 	= 	 -8

-9
	= 	0	 

 
h being a constant, we get  :  
(15)                                                                           𝜑̇ 	= 	 :

2$
 

 
We do not need to write the second equation since we have the relationship: 
 

(16)                                                     1	 = 	 		𝑟!𝜑̇! 	+ 	 2$̇

34$5	2%$	3	2$5	!	2	4
 

 
Combining to (15) we get the following differential equation :  
 
(17)                                               𝑑	𝜑	 = 		 ±	:	'2

	2$<(34$5	2%$	3	2$5	!	2	4)?	1	3	
&
'$
@	

 

 
Thanks to which we digitally construct the planar projections of geodesics, within the domain 
of definition, which we will designate as real geodesics: 
 

 
Fig.1 : Real geodesics. 

 
We will then construct what we will call virtual geodesics, that is to say real curves, derived 
from Lagrange's equations, but for which the length is purely imaginary. 
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Fig.2 : : Virtual geodesics. 
 

The figure on the left shows some curves for r < R – r0. The direction of winding depends on 
the sign of h. The geodesics are tangent to the limiting circle. They wind infinitely towards the 
center where	𝑑𝜑/𝑑𝑟 tends to infinity. The curves on the right give the curves for r > R + r0. 
They also have spiral shapes, the direction of winding also depending on the sign of h. The 
curves are tangent to the circle of radius r = R + r0. They then spiral to infinity. So what is this 
surface defined by its metric? This object exhibits rotational symmetry (invariance under 
translation along 𝜑). We can embed it in ℝA, described using cylindrical coordinates(	𝑟	, 𝜑	, 𝑧), 
which we translate as: 
 

(18)                              𝑑𝑠! 	= 	𝑑𝑟! 	+ 	𝑑𝑧! = 	𝑑𝜑! 	+ 	 '2$

34$5	2%$	3	2$5	!	2	4
 

 
We are going to construct the meridian line: 
 

(19)                                               				𝑑𝑟! 	+ 	𝑑𝑧! =	 '2$

34$5	2%$	3	2$5	!	2	4
	= 	 '2

$

B$
 

 
This equation is satisfied for: 
 
(20)                                                  𝑟	 = 	𝑅	 +	𝑟6	𝑐𝑜𝑠𝜃															𝑧	 = 	 𝑟6	𝑠𝑖𝑛𝜃 
 
This meridian is a circle, and our surface is a torus. Its complete metric can be represented using 
two angles, in a more familiar form: 
 
(21)                                               𝑑𝑠! 	= 	 𝑟6!	𝑑𝜃! +	(	𝑅	 +	𝑟6	𝑐𝑜𝑠𝜃	)!	𝑑𝜑! 
 
The non-contractibility of the object appears when we consider paths with constant 𝜑 or 
constant 𝜃. 
 
We have thus provided it with two sets of real curves, solutions to the system of Lagrange's 
differential equations. But only the curves that correspond to the domain of definition have a 
real length. 
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Fig.3 : The torus, equipped with its real and virtual geodesics. 

 
Consider this other metric: 
(22) 																																																										𝑑𝑠! 	= 	 𝑟!𝑑𝜑! 	+ 	4

$	'2$

4$32$
 

 
Here again, we will take Lagrange's function as: 
 

(23)                                                                	𝑟!𝜑̇! 	+ 	 4
$	2̇$

4$32$
	 

 
Where, once again : 
 
(24)                                                   𝜑̇ 	= 	 '9

'7
																						 𝑟̇ 	= 	 '2

'7
 

 
Under these conditions, the Lagrange equations associated with this function yield curves 
whose part such that ds > 0 are geodesics. But here again, we obtain pseudo-geodesics, real 
curves corresponding to a description in polar coordinates, but equipped with a purely 
imaginary length. As in the previous metric, one of these equations is: 
 

(25)                                                                     𝜑̇ 	= 	 :
$

2$
 

 
By combining this with the following relation, which follows from (24): 
 

(26)                                                            1	 = 		 𝑟!𝜑̇! 	+ 	 4
$	2̇$

4$32$
	 

 
We obtain the following differential equation: 
 
(27)                                                  𝑑	𝜑	 = 		 :	4

2
	'2

	C(4$	3	2$)(	2$	3	:$)	
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The solutions h < r < R give the actual geodesics, and those for R < r < h give the pseudo-
geodesics. Below are the curves for R=1: 
 

 
 

Fig.4 : Projections of geodesics and pseudo-geodesics of a sphere of radius 0.5 
 

Let's determine the nature of these curves. Let's write: 
 
(28)                                                     '2

'9	
	= 	 2

:	4	
	)	(	𝑟! −	ℎ!)	(	𝑅! −	𝑟!)		 

 
Posing : 
(29)                                                                              𝑟	 = 	 1

D
 

 

(30)                                                      −		'9
'D
	= 	 1

:	4	
	*	(	1	 −	ℎ!𝑢!)	(	𝑅!𝑢! −	 11

D$
	)			 

 

(31)                                                          '
$D

'9$
	+ 	𝑢	 = 	 1

:$
 

 
(32)                                                         𝑢	 = 	 1

:$
	+ 	𝐴	𝑐𝑜𝑠	(	𝜑	 −	𝜑6) 

 
The parameter R disappears. 
 

(33)                                                          𝑟	 = 	 :$

1	5	E	FG7	(	9	3	9%)			
 

 
With 0 < e < 1, these curves are ellipses. Equation (27) shows that these curves are tangent to 
the circle of radius R. The equation holds true both for h < r < R (true geodesics) and for  
h > r > R. Thus, the virtual geodesics are also ellipses. What is this geometric object, defined 
by the metric (22)?  
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Let's make the change of variable: 
 
(34)                                                                      𝑟	 = 	𝑅	𝑠𝑖𝑛	𝜃 
 
We immediately obtain the metric of the sphere: 
 
(35)  

𝑑𝑠! 	= 	𝑅!	(𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!) 
 
 

 
Fig.5 : Projection d’une géodésiques et de pseudo-géodésiques de la sphère 

 
Plane projections, approximated as virtual geodesics of the sphere, also tend towards infinity. 
But unlike the virtual geodesics of the torus, which are spiral-shaped, those of the sphere are 
ellipses. Such a study could be considered a curiosity, of little mathematical interest. All we 
have demonstrated is that the plane projections of the virtual geodesics of the object associated 
with the metric (22) are ellipses. But it takes on a completely different significance when 
astrophysicists confuse what is real with what is imaginary. 
 
In 1916, the Austrian mathematician Karl Schwarzschild published [1] the first exact solution 
to Einstein's equation: a homogeneous, stationary, and spherically symmetric solution. He 
located his solution in a space (	𝑡	, 𝑥	, 𝑦	, 𝑧	), then quickly converted it to spherical coordinates 
with: 
 
(36)                                                    𝑟	 = 	)	𝑥! +	𝑦! +	𝑧!	 
 
This implies that its coordinate  𝑟	 ≥ 	0	.  
 
The construction of his solution reveals a parameter α, which physical considerations dictate 
must be positive. He then introduces an "intermediate quantity" R, defined by: 
 
(37)                                                      𝑅	 = 	 (	𝑟A +	𝛼A)1/A 		≥ 		𝛼.  
 
And his solution is presented in the following form: 
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(38)  

𝑑𝑠! 	= 	 0	1	 −	
𝛼
𝑅	1 𝑐

!𝑑𝑡! −	
𝑑𝑅!

1	 −	𝛼𝑅
	−	𝑅!(	𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!	)								𝑅	 = (	𝑟A +	𝛼A)1/A			 

 
The condition on R means that this hypersurface is inherently non-contractile. This can be 
illustrated more clearly (which Schwarschild did not do at the time) by returning to coordinates 
(𝑡	, 𝑟, 𝜃	, 𝜑) :  
(39)  

𝑑𝑠! =		
(	𝑟A + 𝛼A)1/A − 	𝛼
(	𝑟A + 𝛼A)1/A 𝑐!𝑑𝑡! 	− 	

𝑟I	𝑑𝑟!

(	𝑟A + 𝛼A)[(	𝑟A + 𝛼A)1/A − 	𝛼] 

 
																																																													−	(	𝑟A + 𝛼A)!/A(	𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜑!) 

 
Time passes and today this solution is presented in a form described as "standard", like this: 
 

(40)                              𝑑𝑠! 	= 	−	0	1	 −	J
2
	1 𝑐!𝑑𝑡! 	+ 	 '2

$

1	3	('
	+ 	𝑟(	𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!	) 

 
Note the inversion of the signature, changing from (	+	−	−	−	) to (	−	+	+	+	). This is an 
error, pointed out by the mathematician Abrams in 2001 [2]. He attributes it to the 
mathematician David Hilbert, in the article where he intends to integrate what he believes to be 
the solution found by Schwarzschild in an article entitled "Foundations of Physics" [3]. In his 
approach, Hilbert treats any solution to Einstein's equations not as a metric, defining a length 
whose element is necessarily positive, but as a bilinear form. Furthermore, he develops his own 
vision of relativity, which is that presented in 1902 by the mathematician Henri Poincaré, who 
sees spacetime as a four-dimensional space where the space coordinates (x, y, z) are real, and 
the fourth, the time coordinate, designated by the letter l, is purely imaginary: 
 
(41)																																																																										l	=	it 
 
Let us briefly digress here to explain the origin of Hilbert's error, pointed out by Abrams eighty-
five years later, in an article that had no impact on the community of those who henceforth 
called themselves "cosmologists." Like Schwarzschild, Hilbert introduced what he believed to 
be the most general solution to Einstein's stationary, spherically symmetric equation (presented 
as a bilinear form): 
 
(42)       																										𝐹(𝑟)	𝑑𝑟! 	+ 	𝐺(𝑟)	(𝑑𝜃! + 𝑠𝑖𝑛!𝜃	𝑑𝜑!) 	+ 	𝐻(𝑟)	𝑑𝑙! 
 
He then equates the term G(r) to r2, which seems to him to be a simplification and to allow 
easier convergence towards the fact that, for r tending towards infinity, this expression 
converges, not towards the Lorentz metric, in spherical coordinates: 
 
(43) 																																			𝑑𝑠! 	= 	 𝑐!𝑑𝑡! − 	𝑑𝑟! 	− 	𝑟!(	𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!	)		 
 
Here is its bilinear form, as r tends towards infinity, with its sign convention: 
 
(44)                                   	𝑑𝑟! 	+ 		𝑟!(	𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!	) 		+ 		𝑐!dl2 
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Using this simplification, Hilbert then presents his solution, in bilinear form: 
 
(45) 																𝐺(𝑑𝑟, 𝑑𝜃, 𝑑𝜑, 𝑑𝑙) = 2

23J
𝑑𝑟! + 𝑟!𝑑𝜃! + 𝑟!𝑠𝑖𝑛!𝜃	𝑑𝜑! − 23J

2
𝑑𝑡! 

 
In cosmology, length is proportional to proper time, which is necessarily positive. Hilbert then 
introduces this as one of the two lengths he defines as follows. The first, associated with 
"timelines," is designated by him as proper time: 
 

(46)                                                              𝜏 = ∫*−𝐺 0'()')
1𝑑𝑝 

	
The	second	is	:		

(47)																																																															𝜆 = ∫*𝐺 0'()')
1 	𝑑𝑝	

	
Decades have passed. Today, all articles and books contain what is considered the "standard 
form" of the Schwarzschild solution: 
	
(48)																														𝑑𝑠! 	= 	−	0	1	 −	J

2
	1 𝑐!𝑑𝑡! +	 '2

$

1	3	('
	+ 	𝑟!(	𝑑𝜃! + 	𝑠𝑖𝑛!𝜃	𝑑𝜑!	)									

	
The coordinate r is then considered a "radial variable", simply positive. The proper time τ is 
then defined by the relation (with c = 1): 
 
(49)                                                                       𝑑𝜏! 	= 	−	𝑑𝑠! 
 
However, this geometry had been perfectly defined as early as 1916 by the mathematician 
Ludwig Flamm [4]. He did not make Hilbert's mistake and explicitly started from the form (32), 
from Schwarzschild's publication [1]. 
 
Since the solution is invariant under time translation, he considers that he must study the 
geometry of a 3D hypersurface undergoing a translation along the time coordinate. He then 
focuses on the spatial part of the metric, describing this 3D hypersurface, and performs a cut at 
constant θ, and more precisely at θ = π/2. He then obtains a two-dimensional object and observes 
that it can be embedded in ℝ³. He then constructs its meridian, which is a recumbent parabola, 
whose equation is [4]: 
 
(51)                                                            𝑧! 	= 	4	𝛼	(	𝑟	 − 	𝛼	) 
 
Below is a reproduction of the figure from his article: 
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Figure 6 : The Flamm meridian	[4]		. 
 
Literature now refers to such an object as a "Flamm surface": 
 

 
 

Figure 7 : The Flamm surface.  
 
Can virtual geodesics of such an object be constructed? The corresponding 2D metric is: 
 

(52)                                                      𝑑𝑠! 	= 	 '2
$

1	3	('
	+ 	𝑟!𝑑𝜑!								 

 
The length element is  :  

(53)                                                    𝑑𝑠	 = 	*	
'2$

1	3	('
	+ 	𝑟!𝑑𝜑!	 
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Consider radial trajectories (	𝑑𝜑	 = 	0	). If	𝑟	 < 	𝛼, the element of length ds becomes purely 
imaginary. We then leave the domain of definition; we are outside the surface. But if we start 
from the action: 

(54)                                          𝐽	 = 	∫ b	 2̇
$

1	3	('
	+ 	𝑟!𝜑̇!	c 𝑑𝑠         𝑟̇ 	= 	 '2

'7
            𝜑̇ 	= 	 '9

'7
 

 
We can then write the Lagrange equations for this function, and we know that if the derivatives 
are expressed with respect to the length s, which represents the position of the points, they will 
give us curves that either lie within the domain of definition (r > α) or outside it (0 < r < α). One 
of the Lagrange equations is: 
(55)                                                             '

'7
0	-8
-9̇	
1 	= 	 -8

-9
	= 	0	 

 
This equation gives us, where h is a constant:  
(56)                                                                           𝜑̇ 	= 	 :

2$
 

 
As before, there's no need to write the second one. We can take advantage of the fact that the 
action yields a unit length: 
 

(57)                                                               1	 = 	 2̇$

1	3	('
	+ 	𝑟!𝜑̇! 

 
This gives us the differential equation: 
 

(58)																																																
𝑑𝜑
𝑑𝑟 = ±

ℎ
𝑟!

1

*	01	 −	∝𝑟 	1 b	1	 −	
ℎ!
𝑟!c

 

 
From this equation we easily obtain the following curves: 
 

 
Fig.8 : Real and virtual geodesics.  
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(b) : ( r > 𝛼 ; h < 𝛼 ). (c):  ( r > 𝛼 ; h = 𝛼 ) . (e) : ( r < 𝛼 ; h < 𝛼 )  
 
Circle (a), in red, represents the apparent outline of the Schwarzschild sphere, with radius α. 
The curve segments (b), (c), and (d), located within the domain of definition, are real geodesics. 
The curves located inside the circle of radius α are outside the domain of definition and are 
therefore these "virtual geodesics," real curves along which the length is purely imaginary. The 
curve segments (c) and (d) that meet on the circle thus correspond to crossing the pass and the 
transition to the second sheet, as shown in Figure (5). In 1992, S. Chandrasekhar published a 
work [5] presenting the "standard" interpretation of the Schwarzschild solution.:	 
	

 
 

Fig. 9 : The "standard form” of the so-called "Schwarzschild solution". 
 

Here the constant 2M = α. At that time, all cosmologists considered this to correspond to the 
spherically symmetric stationary solution as presented by Schwarschild in January 1916, and 
that the variable r was a "radial variable," likely to tend towards zero. It has been shown for 
decades that the apparent singularity at r = 2M does not cancel the Kretschman scalar, and 
therefore is not a true singularity but a coordinate singularity, which can be canceled by a simple 
change of coordinates. Chandrasekhar then adopts the "standard form" of the construction of 
geodesics: 
 

 
 

Fig. 10 : The standard method for determining geodesics of Schwarzschild spacetime[5]. 
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We see that he constructs the action not as the length of a curve arc, to be minimized for it to 
acquire the status of a geodesic, but as an action constructed with a Lagrange function that is 
no longer constructed from the length element, but from its square. As it is explicitly stated that 
the derivatives are taken with respect to proper time τ, that is, and this is specified, with respect 
to s, this technique will indeed give geodesics in the region where they are defined, where the 
length element is real. But these equations will give, outside this domain of definition, real 
curves, but endowed with an imaginary length, therefore pseudo-geodesics, without real 
physical existence. Before presenting the curves obtained by Chandrasekhar, who first made 
this shift in the choice of the Lagrange function? It was Hilbert in 1916 [3]: 
 
 

 
Fig.11 : The action used by Hilbert to obtain the geodesics: 

 
Can we blame him for this, as with the change of variable where, unbeknownst to him, his 
variable r is in fact the intermediate variable of Schwarzschild's R? Let us remember that this 
is 1916 and that Schwarzschild, Einstein, and Hilbert knew perfectly well that what would later 
be called the "Schwarzschild radius," that is, the integration constant α (or 2M), is, for the Sun, 
3 kilometers! It was only in the 1970s that Oppenheimer and Snyder [6] proposed using the 
solution of Schwarzschild's exterior metric to describe an object that J.A. Wheeler [7] would 
name a "Black Hole." In 1992, Chandrasekhar presented, in his book [5], "The Mathematics of 
Black Holes." He included numerous images of geodesics. First, there are those which, by 
grazing the Schwarzschild sphere, reflect the advance of the perihelion, very small for the orbit 
of Mercury around the Sun (starting point of the construction by Einstein, of his general 
relativity). 
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Fig. 12 : Near-elliptical trajectory with advance of perihelion 
 
We then have trajectories that reflect a simple deflection, corresponding for example to the 
passage of a very fast comet: 
 

 
 

Fig .13 : Simple deflection. 
 

 
We then have trajectories that intersect, which Chandrasekhar places in the same layer, whereas, 
tangent to the circle, they reflect a change of layer on the Flamm surface 
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Fig.14 : Gamma letter projection of a geodesic. 
 

 
Finally, there are curves that spiral indefinitely towards what Chandrasekhar and all 
cosmologists consider to be "the central singularity": 
 

 
 

Fig.15 : Chandrasekhar: trajectory of a witness mass plunging  
towards the "central singularity". 

 
According to what has just been shown above, the portion of the curve inside the circle, 
endowed with a purely imaginary length, is merely an artifact resulting from the choice of the 
Lagrange function. It is therefore outside the solution hypersurface. But countless articles have 
been published concerning this region, as well as theorems have been established concerning 
this central singularity which arises from the chimerical interpretation that has been made of 
this Schwarzschild solution [1]. 
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