Michael Bahrman, P.E.
IEEE PSCE
Atlanta, November 1, 2006



### **HVDC Transmission**









#### **HVDC Transmission**





#### Applications

- Long-distance, bulk-power OVHD transmission
- Sea and land cable transmission
- Asynchronous interconnections
- Power flow control
- Congestion relief

#### Ratings

- Power range up to 4000 MW at ± 500 kV
- Power range up to 4800 MW at ± 600 kV
- Voltage range increasing to ± 800 kV for 2009 operation
- Power range up to 6400 MW at ± 800 kV
- MIND Cables



#### **Long-Distance Bulk Power Transmission**



#### Generator Outlet Transmission

- More power on fewer lines
- Improved stability
- Lower installed cost
- Reduced losses
- Double circuit (bipolar line)
- Reduced ROW
- One line vs. two e.g. IPP, CU, Square Butte

#### Interconnections

- Firm capacity
- Bypass congestion
- Avoid loop flow
- No limit due to parallel paths
- Interconnect diverse regions



#### **Cost Comparison of 3000 MW Transmission Systems**

|                                                | DC Alternatives                         |           |         |         | AC Alternatives |            |              | Hybrid AC/DC Alternative |            |         |
|------------------------------------------------|-----------------------------------------|-----------|---------|---------|-----------------|------------|--------------|--------------------------|------------|---------|
| Alternative                                    | ± 500 kV 2 x ± 500 kV ± 600 kV ± 800 kV |           |         |         | 500 kV          | 500 kV     | 765 kV       | ± 500 kV                 | 500 kV     | Total   |
|                                                | Bipole                                  | 2 Bipoles | Bipole  | Bipole  | 2 Single Ckt    | Double Ckt | 2 Single Ckt | Bipole                   | Single Ckt | AC+DC   |
| Capital Cost                                   |                                         |           |         |         |                 |            |              |                          |            |         |
| Rated Power (MW)                               | 3000                                    | 4000      | 3000    | 3000    | 3000            | 3000       | 3000         | 3000                     | 1500       | 4500    |
| Station costs including reactive compenstation | \$420                                   | \$680     | \$465   | \$510   | \$542           | \$542      | \$630        | \$420                    | \$302      | \$722   |
| Transmission line cost (M\$/mile)              | \$1.60                                  | \$1.60    | \$1.80  | \$1.95  | \$2.00          | \$3.20     | \$2.80       | \$1.60                   | \$2.00     |         |
| Distance in miles                              | 750                                     | 1,500     | 750     | 750     | 1,500           | 750        | 1,500        | 750                      | 750        | 1,500   |
| Transmission Line Cost (M\$)                   | \$1,200                                 | \$2,400   | \$1,350 | \$1,463 | \$3,000         | \$2,400    | \$4,200      | \$1,200                  | \$1,500    | \$2,700 |
| Total Cost (M\$)                               | \$1,620                                 | \$3,080   | \$1,815 | \$1,973 | \$3,542         | \$2,942    | \$4,830      | \$1,620                  | \$1,802    | \$3,422 |
| Annual Payment, 30 years @10%                  | \$172                                   | \$327     | \$193   | \$209   | \$376           | \$312      | \$512        | \$172                    | \$191      | \$363   |
| Cost per kW-Yr                                 | \$57.28                                 | \$81.68   | \$64.18 | \$69.75 | \$125.24        | \$104.03   | \$170.77     | \$57.28                  | \$127.40   | \$80.66 |
| Cost per MWh @ 85% Utilization Factor          | \$7.69                                  | \$10.97   | \$8.62  | \$9.37  | \$16.82         | \$13.97    | \$22.93      | \$7.69                   | \$17.11    | \$10.83 |
| Losses @ full load                             | 193                                     | 134       | 148     | 103     | 208             | 208        | 139          | 106                      | 48         | 154     |
| Losses at full load in %                       | 6.44%                                   | 3.35%     | 4.93%   | 3.43%   | 6.93%           | 6.93%      | 4.62%        | 5.29%                    | 4.79%      | 5.12%   |
| Capitalized cost of losses @ \$1500 kW (M\$)   | \$246                                   | \$171     | \$188   | \$131   | \$265           | \$265      | \$177        | \$135                    | \$61       | \$196   |

#### Parameters:

Interest rate % 10%
Capitalized cost of losses \$/kW \$1,500

#### Note:

AC current assumes 94% pf Full load converter station losses = 0.75% per station

Total substation losses (transformers, reactors) assumed = 0.5% of rated power



#### **Comparison to Rail Transport of Coal**

- 3000 MW power plant
- Coal haul distance 900 miles
- Fuel sub-bituminous coal 8500 BTU/lb
- Plant heat rate 8500 BTU/kWh, 85% load factor
- 3 unit trains per day (100, 100 ton cars/train)
- Annual hauling cost \$560 M at \$50 per ton
  - \$186 per kW-yr
  - \$25 per MWh
  - 20 million gallons of diesel fuel per year
     © 500 net ton miles per gallon
- Subject to escalation, congestion
- Cannot deliver energy from renewable resources



#### The HVDC Classic Converter Station





#### **The HVDC Classic Converter Station**





### **HVDC Converter Station Design**



#### **HVDC Operating Configurations and Modes**



#### **HVDC Classic Control**







#### **Asynchronous Interconnections**



#### Economic

- Firm transactions
- Shared reserves
- Increase diversity
- Economy energy trade

#### Reliability

- Emergency power support
- Mutual assistance
- Isolate disturbances
- 'Fire-wall' against cascading outages
- Reserve sharing



#### The CCC\* Converter Station





#### Modular Back-toBack CCC Asynchronous Tie





© HVDC Transmission - Page 13

#### **HVDC Light Transmission – Voltage Source Converters**





#### Applications

- Underground and sea cable transmission
- Off-shore platforms, islands
- Urban in-feed
- Constrained ROW
- Virtual generator for replacement of RMR generation
- Integration of remote renewable generation
- Improved voltage stability

#### Ratings

- Power range 50-1100 MW
- Voltages ± 80, ± 150 and ± 300 kV
- Extruded cables with prefabricated joints



#### **HVDC Solid State Converter Development**





#### **HVDC Light Station**



© HVDC Transmission - Page 16

#### **HVDC** Converter Arrangements



Conventional **HVDC** 



**VSC Based HVDC** 



#### **Underground Cable Systems with HVDC Light**



#### Economic

- No distance limitation
- Full utilization no reactive power
- Two cables v three cables for AC
- Light, flexible and simpler design
- Timely permitting
- No induced circulating currents
- Half the losses
- Easier transport and installation

#### Reliability

- No cable overloads possible
- Dynamic reactive power support
- Congestion relief
- Isolate disturbances
- Share ROW without increasing exposure
- Black-start capability



### **HVDC Light Converter Station**





#### **HVDC Transmission with Voltage Source Converters**



© HVDC Transmission - Page 20

Simplified Single Line Diagram (SLD)



#### **HVDC Light Converter Station**





#### **Control of VSC Based HVDC Transmission**





### **Offshore Applications of HVDC Light**









#### **Comparison of Reactive Power Characteristics**





