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Abstract

We discuss the fully non-linear formulation of multigravity. The concept of universality

classes of effective Lagrangians describing bigravity, which is the simplest form of multi-

gravity, is introduced. We show that non-linear multigravity theories can naturally arise in

several different physical contexts: brane configurations, certain Kaluza-Klein reductions

and some non-commutative geometry models. The formal and phenomenological aspects of

multigravity (including the problems linked to the linearized theory of massive gravitons)

are briefly discussed.
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1 Introduction

One of the most important problems which is facing theoretical physics now is the blending

of the Standard Model (SM) with General Relativity (GR). Whatever way we choose (the

most popular ones nowadays are based on some multidimensional constructions involving

extended objects), nobody doubts that it will definitely modify physics at short scales. On

the other hand, the current general paradigm is to keep General Relativity unchanged at

large scales, but to add new forms of gravitating matter beyond the Standard Model (dark

matter, dark energy) for explaining pressing astrophysical and cosmological facts such as

galactic rotational curves and the accelerating universe. In the present paper, we consider

an alternative paradigm: a modification of General Relativity at large scales as a possible

explanation of some pressing cosmological issues (notably cosmic acceleration).

The modification of GR that we are going to consider is linked to the issue of “massive

gravity” (for very light gravitons, with Compton wavelength of cosmological scale). A

generic prediction of multidimensional constructions is the existence of massive gravitons.

In particular, any Kaluza-Klein (KK) model predicts, besides a massless graviton, the

presence of an infinite tower of massive gravitons. However, it seems impossible to use the

tower of massive KK gravitons to modify gravity at large scales. Indeed, its spectrum is

generically regularly spaced (as illustrated on Fig. 1a), so that, even if the first mode were

very light (i.e. of cosmological Compton wavelength), there would exist no regime where the

first mode (or first few modes) would be important, and where one could truncate away the

rest of the tower of massive states. In other words, as soon as the first mode is important,

we open the extra KK dimensions (see, however, below). The situation is, however, different

in some brane models. In particular, Refs. [1]-[4] discovered the possibility (illustrated in

Fig. 1b or Fig. 1c) of having a hierarchical gap, m1 ≪ m2, between the first mode (or

first group, or even band, of modes) and the tower of higher modes. This situation, called

multigravity (see [5] for a review and [6] for detailed presentation), makes it possible to

envisage an effective four-dimensional theory which contains only the massless and ultra-

light gravitons and discards the states of mass m ≥ m2. The constructions [1]-[4] predict

see-saw-like spectra, m1M
1+γ
Planck ∼ m2+γ

2 , with γ interpolating [5] between 0 [1] and 1 [2].

Such spectra are naturally compatible with the phenomenologically interesting situation

where m−1
1 is of cosmological order, while m−1

2 is smaller than the millimetre scale.

So far multigravity was only analyzed in the linearized approximation. The main em-
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Figure 1: Regular spectrum on (Fig.1 a) versus bigravity (Fig.1 b) or quazi-localized gravity
(Fig. 1 c). The last spectrum is continuous but the first band is very narrow in comparison
with the gap between bands.

phasis of this paper is to provide a fully non-linear formulation of multigravity, i.e. to write

down, and analyze, a class of consistent effective four-dimensional Lagrangians, describ-

ing, in some limit, the light-mode truncation of the hierarchical spectra of Figs. 1b or 1c.

Though we shall illustrate below our approach in the context of particular multidimensional

realizations (notably brane models exhibiting multilocalization [1],[7] or quasi-localization

[2], [8], [9]), we view our considerations as concerning a very general phenomenon: the con-

cept of Weakly Coupled Worlds (WCW). The concept of WCW is very simple: one assumes

that there are several Universes (labelled by i = 1, . . . , N), each endowed with its own

metric g(i)µν and set of matter fields {Φi}, which are coupled only through some mixing

of their gravitational fields. We require that the theory describing the WCW be near a

point of enhanced symmetry, in the sense that there exists a limit (say as some parameter

λ → 0) where the theory contains N diffeomorphism-like symmetries, corresponding to N

massless gravitons. A recent theorem [10] has proven that the only consistent non-linear
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theory involving N massless gravitons is the sum of N decoupled GR-type actions

S0 =
N∑

i=1

S[gi,Φi] , (1)

with (we use the signature −+++)

S[gi,Φi] =
∫

d4x
√−gi [M

2
i R(gi)− Λi + L(gi,Φi)] . (2)

Therefore, the only consistent action for a theory of worlds coupled only through gravity is

of the form

Stot =
N∑

i=1

S[gi,Φi] + λSint(g1, g2, . . . , gN) . (3)

When λ → 0, the N worlds are non interacting (which implies that, from the point of view

of any observer in one world, the other worlds have only a meta-physical existence), and the

theory has the enormous symmetry ΠiDiff(i), where each diffeomorphism group Diff(i) acts

separately on its own metric g(i)µν and matter fields {Φi}. In the interacting case, λ 6= 0,

the symmetry of the full action must (again because of the theorem [10]) be reduced to

(at most) one group of diffeomorphisms: the diagonal group of common diffeomorphisms

transforming all metrics as

δ g(i)µν = ǫλ ∂λ g
(i)
µν + ∂µ ǫ

λ g
(i)
λν + ∂ν ǫ

λ g
(i)
µλ ≡ D(i)

µ ǫν +D(i)
ν ǫµ . (4)

This symmetry restricts the interaction term λSint(g1, . . . , gN) to depend only on the invari-

ants one can make with several metrics. This even leaves room for extra kinetic terms built

from covariant derivatives such as gµν(i) D
(j)
λ g(k)µν (such terms do not exist in the case of one

metric because D
(i)
λ g(i)µν ≡ 0). However, in view of the many potential diseases associated to

modifications of the standard Einsteinian kinetic terms, and in the spirit of describing the

class of interaction terms most relevant at large scales,3 i.e. containing the lowest possible

number of derivatives ( namely zero, as expected from a generalization of the mass terms

that appear in linearized multigravity), we shall only consider ultra-local interaction terms,

i.e.

λSint = −µ4
∫
d4xV(g1(x), . . . , gN(x)) , (5)

3See Section 2.1 below for further discussion about extra kinetic terms.
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where µ is a mass scale (henceforth replacing λ as “small parameter”) and where V is a

scalar density made out of the values of the N metrics at the same “point”. We assume,

for simplicity, that the N weakly coupled worlds “live” on the same abstract manifold,

i.e., in other terms, that one is given a family of (smooth) canonical one-to-one maps:

world(i) → world(j).

The aim of this paper is threefold: (i) to motivate the possibility of the effective action

(3), (5) by considering several different specific models (brane models, Kaluza-Klein mod-

els and non-commutative geometry ideas); (ii) to delineate and parametrize the various

“universality classes” of non-linear multigravity; and (iii) to sketch the main qualitative

consequences of such non-linear multigravity theories and to contrast them with the usual

paradigm of “massless plus massive gravitons” which is based on a linearized approximation.

It should be noted that theories defined by (3), (5) (in the “bigravity” case: N = 2) were

first introduced in the seventies [11] as a model for describing a sector of hadronic physics

where a massive spin-2 field (the “f meson”, with “Planck mass” Mf ∼ 1GeV in Eq. (2))

plays a dominant role. It was then called “strong gravity” or the “f -g theory”. Our work not

only proposes to revive, within a new (purely “gravitational”) physical context, this early

proposal, but initiates the task of systematically studying the general phenomenological

consequences of the action (3), (5). The present paper will only briefly sketch the new

physical paradigm following from such actions. In subsequent papers, we shall discuss

in detail the cosmological consequences of such theories [12], as well as its strong-field

phenomenology [13].

2 Universality Classes of Bigravity Effective

Lagrangians

For simplicity, we focus, in this paper, on the case of “bigravity”, i.e. N = 2. Understanding

this case is a prerequisite for understanding the general multigravity case (N > 2). Let us

note also that the bigravity “potentials” that we discuss here can be immediately used in

the general case. Indeed a rather general class of “N -metric potentials” V(g(1), . . . , g(N)),

Eq. (5), is the class containing only “two-metric interactions”: V =
∑
i 6=j V(g(i), g(j)). For

instance, one can define a “crystal-like” many-world with “nearest neighbour” interactions

only V =
∑
i V(g(i), g(i+1)). It is interesting to note that the continuum limit (N → ∞) for

some suitable “nearest neighbour” interactions can mimic the propogation of gravity in a
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higher-dimensional space, i.e. the term
∫
dya4(y)

√
−g(x, y) [tr(g−1 ∂y g)

2 − (tr g−1 ∂y g)
2] .

as in (29) below. See [12] for further discussion of this subject.

2.1 Parametrization of invariants

Using, when N = 2, the notation g(1) = gL (for “Left”) and g(2) = gR (for “Right”), and

factoring a conventional “average volume factor” (gL gR)
1/4 out of the scalar density V 4,

the generic bigravity action reads

S =
∫
d4x

√−gL
(
M2

LR(gL)− ΛL
)
+
∫

d4x
√−gL L(ΦL, gL) +

∫
d4x

√−gR
(
M2

RR(gR)− ΛR
)
+
∫
d4x

√−gR L(ΦR, gR)

−µ4
∫

d4x (gR gL)
1/4 V (gL, gR) . (6)

Note that the bigravity action (6) contains 5 dimensionfull parameters: two “Planck masses”

ML and MR, two cosmological constants ΛL, ΛR (with dimensions M4), and the “coupling

mass scale” µ.

Before proceeding, we note that the mass scale µ, entering Eq. (6), will be treated here

as a constant parameter determining the coupling of the two worlds. However, one should

keep in mind the possibility that it be replaced by a fluctuating field. This is suggested,

in particular, by the brane realizations of bigravity where the value of µ depends on the

physical distance between the branes, which is controlled by dilaton/radion fields. A more

general model where µ → µ(x), and where one adds a kinetic term for µ(x), may play an

important role in addressing crucial cosmological issues (such as inflation) in the context

of multigravity theories.

Before we shall proceed further let us make two additional comments

• We shall treat V as a potential here, i.e. as an ultra-local function of gL and

gR. As already mentioned above one could also include extra kinetic terms like

gµνDL,R
µ gσρR,LD

L,R
ν gL,R σρ, etc. For example mixed terms like

√−gLR(gR) or
√−gRR(gL)

are of these type. However, let us emphasise again that the fundamental concept of

WCW explored here is that one is required to be near the point of enhanced symmetry

4We could, instead, have factored out of V the other natural symmetric density:
√−gL +

√−gR.
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and according to the theorem proven in [10] in this point mixing of different metrics

is forbidden. Because of this all higher derivative terms mixing different metrics must

be supressed by the small parameter µ4 and enter as µ4f(D2g/M2). One can see that

in the long-wave limit D2g/M2 ∼ k2/M2 << 1 one can neglect their contribution in

comparison with a potential term.

• Let us stress that we did not introduce any direct coupling between the two worlds

exept the indirect one mediated by gravity. It means that all matter which can be

observed by any observer is locally coupled only to one world or the other one. Thus

any local experimental check of the equivalence principle is the same as in the General

Relativity - all locally mutually observable matter moves in the same metric. One

can consider other cases but such a study will be left for future publications.

The common diffeomorphism invariance (4) restricts the scalar potential V (gL, gR) en-

tering Eq. (6) to depend only on the invariants of the mixed tensor H ≡ g−1
L gR, i.e.

Hµ
ν ≡ gµσL gRσν . (7)

In 4 dimensions, there are (because of Cayley’s theorem) only 4 independent scalar invari-

ants which can be made from H . For instance, using a matrix notation for H , one can take

the first 4 traces of the powers of the matrix H , say

τn ≡ tr(Hn) ; n = 1, 2, 3, 4 . (8)

Let us introduce the 4 eigenvalues λa (a = 0, . . . , 3) of Hµ
ν , i.e. the 4 eigenvalues of the

metric gR with respect to gL. They can be defined either by τn = Σa λ
n
a , or by writing the

two metrics in a special bi-orthogonal vierbein eaµ such that

gLµν = −e0µ e
0
ν + e1µ e

1
ν + e2µ e

2
ν + e3µ e

3
ν ,

gRµν = −λ0 e
0
µ e

0
ν + λ1 e

1
µ e

1
ν + λ2 e

2
µ e

2
ν + λ3 e

3
µ e

3
ν . (9)

It is easily seen that, apart from an exceptional case (where two eigenvalues coincide,

and correspond to a null eigenvector), it is generically possible to write Eq. (9), though

maybe with a complex vierbein eaµ. Indeed, two (but at most two) eigenvalues, say λ0, λ1

(one of which necessarily corresponds to a time-like direction) can become complex. We

shall focus on the case where the 4 eigenvalues λ0, λ1, λ2, λ3 are real and positive. As
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we shall only deal with symmetric functions of the eigenvalues, this restriction is mainly a

notational convenience which can be relaxed by analytic continuation. It is then convenient

to parametrize the invariants of H = g−1
L gR by means of the logarithms of the eigenvalues

of H :

µa ≡ ln λa ; λa ≡ eµa , (10)

(the µa’s should not be confused with the mass scale µ4 in front of V ) and to introduce, as

basis of independent scalars, the 4 symmetric polynomials

σn ≡
∑

a

µna . (11)

With this notation, our first result is that the most general (densitized) potential can

be written as

µ4 V(gL, gR) = µ4(gL gR)
1

4 V (σ1, σ2, σ3, σ4) , (12)

where V is an arbitrary function of the 4 σa’s.

2.2 Universality classes

In the same way as the various mathematical forms of the Landau free energy define uni-

versality classes of phase transitions, we can define universality classes of bigravity theories

by considering as equivalent the functions V (σa) leading to (essentially) the same multi-

gravitational phenomenology. As we shall see below and in [12, 13], some of the important

qualitative features of the function V (σa) are: (i) its behaviour near σa → 0, (ii) its be-

haviour when σa → ∞, and (iii) the existence or non-existence of “critical points” where

some derivatives ∂V/∂σa vanish.

As a first example of a universality class, we can define the class of V ’s which reduce (in

absence of cosmological constants in (6), i.e. ΛL = ΛR = 0), in the linearized approximation,

to the Pauli-Fierz mass term ∼ hµν h
ν
µ − hµµ h

ν
ν . The linearized approximation corresponds

to the particular case where gLµν and gRµν are both near the same flat metric ηµν , i.e.

gLµν = ηµν+hLµν , gRµν = ηµν+hRµν , with hL ≪ 1 and hR ≪ 1. In this limit the above object

H = g−1
L gR reads Hµ

ν ≃ δµν +hµRν −hµLν (where the indices on hR and hL are raised by ηµν).

It is then seen that the eigenvalues of H are λa ≃ 1+µa, where µa ≪ 1 are the eigenvalues

of hµRν − hµLν . With the identification of the massive graviton mode hµν as hµν = hRµν − hLµν

(see below), one then sees that the Pauli-Fierz mass term ∼ hµν h
ν
µ−hµµ h

ν
ν is obtained if the

7



function V (σa) behaves (modulo a positive factor that can be absorbed in the mass scale

µ4) as

V (σa) ≃ σ2 − σ2
1 =

∑

a

µ2
a −

(
∑

a

µa

)2

, when µa → 0 . (13)

The behaviour (13) near µa → 0 defines the universality class of “Pauli-Fierz-like” bigravity.

Note that one can imagine a case where the potential V does not have quadratic terms

when µa → 0. In the linearized approximation, one would see two massless gravitons, while

the full theory would contain two interacting metric field gL, gR (and only one common

diffeomorphism invariance).

As a second example of the concept of universality class, we can define the class of

potentials V(gL, gR) which are symmetric under the exchange gL ↔ gR. It is easily seen

that under the exchange L ↔ R, the eigenvalues λa get inverted (λa → λ−1
a ) so that

the logarithmic eigenvalues µa change sign: µa → −µa. The class of exchange-symmetric

potentials therefore corresponds to the class of functions V (µa) which are even in the µa’s.

In terms of the σ’s this becomes V (σ1, σ2, σ3, σ4) = V (−σ1, σ2,−σ3, σ4).

As a further example of universality class, we can consider the class of functions which

depend only on the first two invariants σ1 ≡ ∑
a µa and σ2 =

∑
a µ

2
a : V = V (σ1, σ2).

We shall see that this class appears naturally in brane models, and our (preliminary)

investigations suggest that this class might be general enough to describe all the possible

qualitative features of a general bigravity theory.

2.3 Equations of motion

The equations of motion derived from the bigravity action read

2M2
L

(
Rµν(g

L)− 1

2
gLµν R(gL)

)
+ ΛL g

L
µν = tLµν + TL

µν ,

2M2
R

(
Rµν(g

R)− 1

2
gRµν R(gR)

)
+ ΛR gRµν = tRµν + TR

µν . (14)

Here T µν
L ≡ 2(−gL)

−1/2 δ SLmatter/δ g
L
µν denotes the stress-energy tensor of the matter on the

left brane (SLmatter =
∫
d4x

√−gL L(ΦL, gL)), while tµνL ≡ gµαL gνβL tLαβ denotes the effective

stress-energy tensor (as seen on the left brane) associated to the coupling term Sint ≡

8



−µ4
∫
d4x(gR gL)

1/4 V (gL, gR):

tµνL ≡ 2√−gL

δ Sint(gL, gR)

δ gLµν
= −2µ4

(
gR
gL

) 1

4
[
gµνL

V

4
+

∂ V (gL, gR)

∂ gLµν

]
. (15)

The corresponding expressions for the right brane are obtained by the exchange L ↔ R.

For instance

tµνR = −2µ4

(
gL
gR

) 1

4
[
gµνR

V

4
+

∂ V (gL, gR)

∂ gRµν

]
. (16)

The Bianchi identities
(
Dν
L

(
RL
µν − 1

2
RL gLµν

)
≡ 0

)
, and the conservation of the material

energy tensor (Dν
L T

L
µν = 0; when the matter equations of motion are satisfied) imply the

constraints:

Dν
L t

L
µν = 0 and Dν

R tRµν = 0 . (17)

Actually these two constraints are not independent because the invariance of Sint under the

unbroken diagonal diffeomorphism group implies the identity

√−gLD
ν
L t

L
µν +

√−gRD
ν
R tRµν ≡ 0 .

The explicit expressions of the derivative terms ∂ V/∂ gL,Rµν in Eqs. (15), (16) tends to be

rather complicated. However, they acquire a simple form when written in the special

frames with respect to which both gLµν and gRµν are diagonalized (such as in Eq. (9)). The

mixed components of tLµν and tRµν with respect to any such frame (which can differ from the

particular eaµ of (9) by arbitrary rescalings eaµ → ζa eaµ, because such rescalings leave taLa and

taRa invariants) take the simple form: (no summation on the frame index a)

taLa = −2µ4 e
1

4
σ1

(
V

4
− ∂ V

∂ µa

)
,

taRa = −2µ4 e−
1

4
σ1

(
V

4
+

∂ V

∂ µa

)
, (18)

with vanishing of the off-diagonal components (we recall: σ1 ≡
∑
b µb).

Here, we considered the scalar potential as a function of the µa’s. If V is given as a

function of the σn’s, Eq. (11), the derivative entering Eqs. (18) takes the explicit:

∂ V (σ1, . . . , σ4)

∂ µa
=

∂ V

∂ σ1

+ 2µa
∂ V

∂ σ2

+ 3µ2
a

∂ V

∂ σ3

+ 4µ3
a

∂ V

∂ σ4

. (19)

9



This explicit expression illustrates the third type ((iii)) of universality class mentioned

above: If there exist “critical points” where ∂σ2 V = ∂σ3 V = ∂σ4 V = 0 (without restriction

on ∂σ1 V ), such points give rise to a tµLν and a tµRν with the local “equation of state”

t0L0 = t1L1 = t2L2 = t3L3 (and similarly for tR), i.e. such that tLµν ∝ gLµν and tRµν ∝ gRµν . In some

cases, such critical points can be “fixed points” and can give rise (in the “vacuum case”,

i.e. in absence of “material” TL,R
µν ) to bi-(A)dS solutions of the coupled field equations.

Note in this respect that the “perturbative limit” µa = 0 is a critical point in the sense

that ∂µa V = ∂σ1 V , independently of the value of a, so that µa = 0 (i.e. gLµν = gRµν) can be

a (perturbative) fixed point of the coupled vacuum equations, corresponding to a bi-(A)dS

solution, if the corresponding (constant) curvature λ (Rµ
Lν = λ δµν = Rµ

Rν) satisfies the two

equations

−2 λM2
L + ΛL = −2µ4

[
V

4
− ∂σ1 V

]

µa=0
,

−2 λM2
R + ΛR = −2µ4

[
V

4
+ ∂σ1 V

]

µa=0
. (20)

In the “Pauli-Fierz” universality class the right-hand sides of Eqs. (20) vanish and one has

the usual relation λ = ΛL/(2M
2
L) (with the constraint ΛL/M

2
L = ΛR/M

2
R). In more general

classes the coupling between the two worlds can modify the usual link between λ and ΛL,R.

2.4 Single “massive graviton” as a limiting case of bigravity

Let us consider the formal limit MR → ∞ in the action (6) (and the field equations

(14)). In this limit the metric gR is (formally) frozen into some given “background” metric

Gµν : gR → G, with Gµν solution of Rµν(G) = λGµν , where λ = lim(ΛR/(2M
2
R)) can be

zero, or can be arranged to take any fixed real value. This leaves us with an action for a

single dynamical metric g ≡ gL of the form

S =
∫

d4x
√
−g (M2

LR(g)− ΛL)− µ4
∫

d4x (g G)
1

4 V (G−1 g) . (21)

If V belongs to the Pauli-Fierz universality class, gµν = Gµν is a solution of the equations of

motion (if λ = ΛL/(2M
2
L)), and the small excitations of gµν around Gµν describe a “massive

graviton” (propagating in an Einstein space). But the behaviour of the large excitations of

gµν are described by the non-linear action (21) instead of the usual quadratic Pauli-Fierz

action.

10



The action (21) is (formally) generally covariant: when g is transformed as (4), the

frozen metric G must also be transformed as δ Gµν = DG
µ ǫν + DG

ν ǫµ. These fluctuations

of G (which do not change the background curvature invariants) are playing the same role

as the Goldstone degrees of freedom in the Higgs mechanism for gauge fields. In a recent

paper [14] these Goldstone degrees of freedom were discussed for the single AdS4 brane case,

using an holographic description of five-dimensional gravity in terms of a four-dimensional

CFT, and it was shown that there is indeed a vector field which provides extra components

to the graviton.

3 Specific Examples of Bigravity Effective

Lagrangians

After having discussed general possible structural features of bigravity effective Lagrangians,

we shall consider specific physical models in which such Lagrangians arise. We consider in

turn: (i) brane models, (ii) Kaluza-Klein models, and (iii) non-commutative-type models.

Beforehand let us note that the work in the seventies that first considered bigravity models

did not have any underlying physical models from which they could derive some specific

potentials V (gL, gR). They made up some non-linear generalizations of the quadratic Pauli-

Fierz mass term. For instance, they particularly considered the one-parameter family of

models with

V (gL, gR) ∝
(
gR
gL

)a
(gLαµ g

L
βν − gLαβ g

L
µν)(g

αβ
R − gαβL )(gµνR − gµνL ) . (22)

3.1 Brane models

Let us start by briefly recalling why (multi-)brane models naturally give rise to “multi-

gravity”. For more details the reader is advised to look at the original papers, and/or

at reviews such as, [15], [5]. Before explaining how several worlds can be gravitationally

“weakly coupled”, let us recall that the paradigmatic brane example of a separate (gravita-

tionally decoupled) brane world is a Randall-Sundrum (RS) scenario, i.e. a flat 3-brane in

AdS(5), with jump conditions on the brane (coming from an assumed Z2 symmetry) able

to “localize” the 5-dimensional graviton as a massless excitation propagating (as a “surface

wave”) in the vicinity of the brane [16], [17]. Putting the brane at the point y = 0 (where
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y is the “fifth”, transversal coordinate, and where one requires the Z2 symmetry y → −y),

the background 5-dimensional geometry is (see Fig. 2a)

ds2 = e−2σ(y)ηµνdx
µdxν + dy2 = e−2σ(z)

[
ηµνdx

µdxν + dz2
]
. (23)

The warp factor behaves as σ(y) ∼ |y| ∼ ln(1 + |z|). The fluctuations near the background

metric are studied by writing:

ds2 = e−2σ(z)
[
(ηµν + hµν(x, z)) dx

µdxν + dz2
]
. (24)

The field hµν(x, z) is expanded in terms of the graviton and KK plane wave states :

hµν(x, z) =
∑∞
n=0 exp

(
3
2
σ
)
h(n)
µν (x)Ψn(z) where the exp

(
3
2
σ
)
factor in the expansion is

necessary for the functions Ψ(n)(z) to obey an ordinary Schrödinger equation:

{
−∂2

z + V (z)
}
Ψn(z) = m2

nΨn(y) . (25)

Here the potential V (z) = (dA/dz)2−d2A/dz2 where A = 3σ(z)/2. Qualitatively it is made

up of an attractive δ-function potential plus a smoothing term (due to the AdS geometry)

that gives the attractive potentials a “volcano” form. An interesting characteristic of this

potential is that it gives rise to a (massless) normalizable zero mode

Ψ0(z) = exp[−A(z)] = exp[−3

2
σ(z)] (26)

One can show (see for details [18] and references therein) that the normalization factor
∫
dzΨ2

0 =
∫
dz exp[−3σ(z)] also relates the fundamental five-dimensional mass scale M5 to

the four-dimensional Planck mass Mp, namely M2
p = M3

5

∫
dz exp[−3σ(z)].

One can consider now multibrane configurations where the warped metric is a bounce

as on Fig. 2b. By analysing the spectrum in this case one can easily see that in the case of

an infinitely large separation between the branes massless gravitons are localized on both

of them. But then, according to basic properties of the Shrödinger equation, when the

separation is finite, the degeneracy between the two massless modes is removed and one

ends up with one massless and one ultralight massive graviton. The prototype model of this

class was the “+−+ bigravity” model [1] with two positive tension flat branes (′′+′′ branes)

separated at the bounce position L1 by one intermediate negative tension flat brane (′′−′′

brane) in an AdS5 bulk. The task of finding the KK spectrum reduces to a simple quantum
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Figure 2: Warped metric for single flat brane (Fig. 2a) and bounce for a two-brane configu-
ration (Fig. 2b). L2 is the separation between branes and L1 is the position of the bounce.
If L1 ≪ L2 the metric is mostly concentrated on a right brane and if L2 −L1 ≪ L1 then it
is concentrated on the left brane.

mechanical problem. It is simple to see that the model (as every compact model) has a

massless graviton that corresponds to the ground state of the system whose wave function

follows the “warp” factor. Then it is easy to see that (say, for simplicity, in the symmetric

case L2 = 2L1) there should be a state with wave function antisymmetric with respect to

the minimum of the “warp” factor, whose mass splitting from the massless graviton will

be very small compared to the masses of the higher levels. Because the “warp” factor is

exponential the difference in mass behaviour of the first and the rest of the KK states is also

exponential. This allowed for the construction of a linear “bigravity” model in which the

remainder of the KK tower does not affect gravity beyond the millimetre bound. Soon after

this model, other models were discussed. Some of them, for example the “quasi-localized”

GRS model [2] and a more general +−−+ multigravity model [3], [4] also used dynamical

negative tension branes. In other models, like the ++ model with two AdS4 branes [19] (or

the limiting case of one single AdS4 brane when the second one is moved to infinity [20])

or in a six-dimensional case [21], there are no negative tension branes and so no problems

emerge with ghost-like radion states. Models with moving branes in which one also can

get “warped” factors were discussed in [22]-[23]. Finally there is a whole zoo of different

models in which one can get modification of gravity at large scales.

To be specific, let us consider the +−+ model and let us now derive the fully non-linear

bigravity action it gives rise to in the weak-coupling limit where we keep only the dominant

13



terms in the exponentially small (“tunnelling”) coupling between the two positive tension

branes. We are going to ignore the fact that there is a ghost-like radion field due to the

existence of the negative tension brane in this model [24]. Anyway we freeze all dilaton and

radion degrees of freedom.

The action describing the full 5-dimensional configuration is (in units where the five-

dimensional Planck mass is set to one)

S =
∫
d4x

∫
dy

√
−G

[
R(G)− Vb −

∑

i

Vi δ(y − yi)

]
. (27)

Here, G denotes the 5-dimensional metric, Vb the bulk cosmological constant, and Vi the

tensions of the branes (the index i takes, in our case, three values corresponding to the three

branes: e.g. V1 = VL > 0, V2 < 0 and V3 = VR > 0). We generalize the linear fluctuation

ansatz (24) by writing the 5-dimensional metric as (µ, ν = 0, 1, 2, 3)

ds25 = a2(y) gµν(x, y) dx
µ dxν + dy2 , (28)

where a2(y) = e−2σ(y) is the background warp factor. We assume here that the degrees

of freedom associated to the fluctuations of: (i) the warp factor (“dilaton”), and (ii) the

distance between the branes (“radions”) are all frozen. The detailed mechanism of how

to do that is not important for us now. For example, one can add extra terms in the

action (27) that give large enough mass terms to these fluctuations (say with submillimeter

Compton wave length) following [25] (of course for those radion fields which are ghost-like

one has to add tachyonic mass terms). The fluctuations of the mixed components gµy can be

consistently set to zero, because of the Z2 symmetry requirement. Inserting the ansatz (28)

into the action (27) yields, after integration by parts and use of the background equations

of motion for the warp factor (which allow one to dispose of all terms containing y-gradients

of a(y)) the following action for gµν(x, y)

S =
∫

d4x
∫

dy
√
−g(x, y)

{
a2(y)R(g(x, y))− 1

4
a4(y)

[
tr(g−1 ∂y g)

2 − (tr g−1 ∂y g)
2
]}

.

(29)

Here, trh2−(tr h)2 ≡ hµν h
ν
µ−(hµµ)

2 where hµν ≡ (g−1 ∂y g)
µ
ν = gµσ ∂y gσν . Note that this exact

(after freezing the dilaton and the radions) action for the nonlinear dynamics of gµν(x, y)

is still 5-dimensional. Note also that all explicit coupling to the branes have disappeared
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(thanks to integration by parts). The crucial feature of (29) for our discussion of an effective

4-dimensional bigravity action is the presence of the warp-factor dependent coefficients

a2(y) and a4(y). It is the fact that these factors are exponentially localized on the two

positive-tension branes (as shown in Fig. 2b which plots a2(y) = e−2σ(y)) which will allow

for the derivation of an approximate 4-dimensional action. Though Eq. (29) was derived

from an explicit 5-dimensional model, we expect that the general structure of Eq. (29),

namely to have a curvature term with a weight function (here a2(y) dy) which localizes it

on some branes, and a transverse-gradient term which also comes with a similarly localized

weight function (here a4(y) dy), will hold in more general situations, like, for instance, the

6-dimensional model of [21] (which is free from negative tension branes). Probably, in the

latter model, if we assume that the excitations related to gradients in the sixth “angular

type” direction θ are frozen (i.e. massive enough), we shall get an effective action of the

type (29) but, possibly, with weight factors which are somewhat modified (by the y-varying

volume of the sixth circular dimension). To enhance the generality of our discussion, and

cover such cases, we shall henceforth work with an action of the form (29) but with the

replacements a2(y) → a2(y), a
4(y) → a4(y), where a2(y) and a4(y) are two (unrelated)

“weight” functions which are strongly localized around two branes. The generalization to

the case of N branes is obvious. The essential features of a2(y) and a4(y) that will be needed

in the following is that they are both positive and that: (i) a2(y) reaches maxima which

are sharply localized on two branes, while (ii) a−1
4 (y) reaches a sharp maximum somewhere

between the two branes. The crucial point is to realize that these generic conditions imply

the following specific y-dependence of gµν(x, y): as a function of y, g(y) is nearly constant

everywhere, except in a “transition layer”, located around the minimum of a4(y), where

g(y) has a fast variation with y. In other words g(y) is a smoothed version of a Heaviside

step function: g(y) ≃ g1 θ(y∗ − y) + g2 θ(y− y∗) where y∗ is the location of the minimum of

a4(y) and where g1 and g2 are two different asymptotic values (which depend on xµ when

putting back everywhere the x-dependence). It is this transition-layer behaviour which

allows us to derive an approximate 4-dimensional action for g1(x), g2(x).

To understand intuitively this transition-layer behaviour we can assume that we normal-

ize a−1
4 (y) so that it takes the value a−1

4 (y∗) = 1 at its maximum and then decreases to very

small values as y gets away from y∗ (either way). Let us view the action (29) (with a2 → a2,

a4 → a4) as a “mechanical” Lagrangian for the motion of the particle g, when thinking of

y as being “time”. The “kinetic” terms are the last two terms quadratic in y-derivatives.
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We then view a4(y) as the “mass” of the g-particle. This mass is of order unity around

y = y∗, and then increases to very large values on both sides. In other words, the g-particle

is extremely “heavy” everywhere away from y∗, and becomes relatively “light” only around

y∗, which makes it clear that g(y) will “move” very little away from y∗, and that all “y-

motion” will take place only around y∗. Another way of seeing that what is important is

to have separate maxima in a2(y) and a−1
4 (y) would be to consider the y-Hamiltonian, (in

terms of the y-momentum π = ∂L/∂(∂y g)) which is of the symbolic form: a2R + a−1
4 π2.

One can technically analyze the behaviour of g(y) in the transition-layer by zooming on the

exact solution of the only relevant part of the “dynamics” near y = y∗, namely the “kinetic

terms” ∼ a4(∂y g)
2 ∼ a−1

4 π2. Note that a2 takes very small values around y∗, so that we

can, in first approximation, neglect a2R with respect to a−1
4 π2. This can be done exactly

by changing the “time variable”. Indeed, in terms of the new “time” t, defined by

dt ≡ a−1
4 (y) dy , (30)

the “kinetic” part of the action (29) reads simply

Sk = −
∫

d4x I , (31)

where

I ≡ 1

4

∫
dt
√
− det g(t)

[
tr(g−1 ġ)2 − (tr g−1 ġ)2

]
. (32)

Here ġ ≡ ∂g/∂t, and we leave implicit the x-dependence of g. Actually, (31) does not couple

anymore t- and x-derivatives. Therefore we can solve the equations of motion derived from

(31) separately for each point x, i.e. it is enough to solve (32) at each x. The action (32)

is still a very non-linear action for the t-dynamics of a 4 × 4 matrix gµν(t). However, it

is exactly integrable. This is seen by exploiting the symmetries of I: (i) invariance under

rigid SL(4) transformations of gµν , and (ii) invariance under time translations. Note that

we only have an SL(4) symmetry, and not a GL(4) one because of the presence of det g. In

other words, the action is invariant under gµν → g′µν = Λαµ Λ
β
ν gαβ only when det Λ = 1. The

first symmetry leads to the traceless mixed tensor constant of motion (in any spacetime

dimension D)

Cµ
ν = πµν −

1

D
πσσ δ

µ
ν . (33)
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Here πµν ≡ gνσ π
µσ where πµν is the “momentum” conjugate to gµν , namely

πµν =
δ I

δ ġµν
=

√−g (Kµν −K gµν) (34)

where Kµν ≡ gµα gνβKαβ with Kαβ = 1
2
ġαβ being the usual “second fundamental form”.

The second symmetry leads to the constancy of the “energy”:

E =
1

4

√
−g

[
tr(g−1 ġ)2 − (tr g−1 ġ)2

]
=

√
−g (Kµ

ν K
ν
µ −K2) . (35)

Contrary to what happens in the well-known Kasner solutions, we are not restricted here to

the “zero-energy” shell (because of the influence of the curvature term a2R which changes

the asymptotic behaviour of g on both sides of the “transition layer” that we are currently

zooming into). This implies that the exact solution gµν(t) is different from, and more

complicated than, a Kasner solution.

The exact solution is obtained by decomposing gµν in its determinant (or better w ≡
√
− det g) and its unimodular part, say γµν/(− det g)1/D. Eq. (33) simply says that w γ−1 γ̇

is the constant matrix 2Cµ
ν . This is immediately integrated to the matrix equation

γ(t) = γ(t0) exp

(
2C

∫ t

t0

dt

w(t)

)
. (36)

To complete the solution for g(t) we need to know how its determinant − det g ≡ w2 depends

on t. This is obtained by combining (33) with (35). This yields a first order differential

equation for w(t):

D − 1

D
ẇ2 = c2 −E w ; c2 ≡ trC2 = Cµ

ν C
ν
µ . (37)

In terms of the new parameter

x ≡ 1

c



√

D

D − 1

E

2
t− B


 , (38)

where B is a constant of integration we get the solution

w =
√
− det g =

c2

E
(1− x2) ,
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dt

w
=

2

c

√
D − 1

D

dx

1− x2
. (39)

This allows one to express the matrix g as an explicit function of x:

g(x) =

(
1− x2

1− x2
0

) 2

D

g(0) exp


4

√
D − 1

D
Ĉ
∫ x

x0

dx

1− x2


 , (40)

where the matrix Ĉ is Ĉµ
ν ≡ c−1Cµ

ν , i.e. is normalized so that tr Ĉ2 = 1.

The above exact solution for g(x), i.e. g(t), using (38), does not seem to involve any

transition-layer behaviour. The transition-layer behaviour appears when we express g in

terms of the original transverse variable y (which is the proper distance orthogonally to the

branes). Indeed, when (qualitatively) integrating Eq. (30) to express t as a function of y, the

sharp maximum of a−1
4 (y) around y∗ means that t(y) behaves essentially as a (smoothed)

step function t(y) ≃ t1 θ(y∗ − y) + t2 θ(y − y∗). Inserting this sharp-transition behaviour

into the smooth solution (g(x(t)) (40) then leads to the announced (smoothed) step-like

behaviour of g(y), with the bonus that we now have in hand the (rather complicated)

precise manner in which g(y) sharply (but smoothly) evolves in the transition region. It

is interesting to make the link between the nonlinear transition of g(x, y) between the two

positive-tension branes (which is a smoothed version of g(x, y) ≃ g1(x) θ(y∗−y)+g2(x) θ(y−
y∗)) and the result of linearized fluctuations which, as recalled above, is expressed as

gµν(x, y) = ηµν + hµν(x, y) with hµν(x, y) = Σn exp
(
3

2
σ
)
h(n)
µν (x) Ψn(y) .

One indeed finds, when looking at the explicit results for the various mode functions

Ψn(y) that the first two modes (n = 0, 1; corresponding to the massless mode, and the

lightest mode) behave as Ψ0(y) ≡ exp
(
−3

2
σ
)
and Ψ1(y) ≃ ε(y − y∗) exp

(
−3

2
σ
)
where

ε(x) ≡ sign(x). Keeping only the first two modes is then equivalent to considering metric

fluctuations of the form gµν(x, y) ≃ ηµν+h(0)
µν (x)+ε(y−y∗) h

(1)
µν (x), which is fully consistent

with our result for the fully nonlinear metric g(x, y) interpolating between a g1(x) and a

g2(x) through a transition layer. When going beyond the step-function approximation, one

can also check that the nontrivial transition behaviour (40) does also correspond (when lin-

earized in gµν−ηµν) to a zoom on the (large kℓ) limit of the first mode e
3

2
σ Ψ1(y) (considered

as a smoothed version of ε(y−y∗)). Note also that the characteristic width of the transition
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layer is ∆y ∼ k−1, where k is the usual bulk curvature parameter defined such that the

background solution has (∂y σ)
2 = k2 (outside the branes), so that σ(y) = k |y − y1| near

brane 1 (and a2(y) = e−2σ = e−2k|y−y1|). There is a clean separation between the transition

layer (around y∗ which is the location of the middle negative-tension brane) and the “lo-

calization layers” (around y1 and y2, i.e. the locations of the two positive-tension branes),

when kℓ ≫ 1, where ℓ denotes the smallest interbrane distance: ℓ = min(L1, L2 − L1); see

Fig. 2b. Because of the exponential dependence of the warp factors (and therefore of a2(y)

and a4(y) in the +−+ model), even a moderately large value of kℓ suffices to ensure that

the above (nonlinear) transition-layer approximation is valid up to exponentially smaller

corrections.

The exact, nonlinear transition-layer solution (40) interpolates between a certain metric

g1(x) ≡ g(x, y1) on the first brane, and another one g2(x) ≡ g(x, y2) on the second brane.

Instead of viewing the exact solution (40) as the solution of a Cauchy problem (e.g. for given

g1 and ġ1), we should reexpress it as the solution of a “Lagrange-Feynman” problem, i.e. as

the unique extremizing solution of the action (31), (32), for given “initial” and “final” values

of g(y): i.e. for given g1(x) ≡ g(x, y1) and g2(x) ≡ g(x, y2). We can also think of (32) as

defining a certain Riemannian metric in the space of metrics gµν . We are then considering

the “geodesic” connecting some given initial point g1 to some given final point g2. Let

gg1,g2(y) denote this unique (parametrized) geodesic. The analysis above then leads us to

estimate that a good approximation (when kℓ ≫ 1) to the effective action describing the

dynamics of g1(x) and g2(x) is obtained by inserting the “geodesic” gg1,g2(x, y) (computed

for each point x) in the original full action (29), so that

S [g1, g2] =
∫

d4xL[g1, g2] , (41)

where (suppressing the x-dependence to focus on the y-dependence)

L[g1, g2] = 2
∫ y2

y1
dy a2(y)R[gg1,g2(y)]− 2I[g1, g2] , (42)

where R[g] ≡ √−g R(g), and where I[g1, g2] is the value of the “geodesic” action (32)

evaluated for the extremizing solution gg1,g2(y) and integrated between y1 and y2. The

factors 2 in (42) come from the fact that we are assuming periodicity over y varying between

y1 and 2y2−y1. Calculating I[g1, g2] from the exact solution (40) is somewhat complicated.
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Let us only give the final result (which is simpler than the necessary intermediate steps):

I[g1, g2] = (g1 g2)
1

4 Vb(g1, g2) , (43)

where

Vb(g1, g2) =
8

T

D − 1

D
(cosh β − coshα) (44)

with

T =
∫ y2

y1
dt =

∫ y2

y1
a−1
4 (y) dy , (45)

β =
1

4

√
D

D − 1

√

σ2 −
σ2
1

D
=

1

4

√
D

D − 1

√
σ̂2 , (46)

α =
1

4
σ1 . (47)

As above, σ1 ≡ Σa µa, σ2 ≡ Σa µ
2
a where µa denote the logarithms of the eigenvalues of the

matrix g−1
1 g2, i.e. σ1 = tr ln g−1

1 g2 and σ2 = tr (ln g−1
1 g2)

2. The combination σ̂2 is Σa µ̂
2
a

where µ̂a ≡ µa − σ1/D denote the logarithms of the eigenvalues of the unimodular metric

γ−1
1 γ2, i.e. σ̂2 = tr (ln γ−1

1 γ2)
2. For added generality, we have left the dependence upon the

brane (spacetime) dimension, though we have in mind here only D = 4. The weak-coupling

parameter appearing in front of the interaction term I is the inverse of the total “t-time”

T =
∫
dt needed to interpolate between g1 and g2. We recall that, in the +−+ model, we

have a4 = a4. An explicit computation then yields

T =
e4kℓ

2k
. (48)

This exponentially large value (due to the exponentially small value of a4 near the inter-

mediate brane) corresponds to the expected exponentially small coupling between the two

metrics on the positive-tension branes.

To get an explicit bigravity action, one still needs to evaluate the first contribution in

the Lagrangian (42). Neglecting exponentially small fractional contribution it is clear (in

view of the localized behaviour of a2(y) and of the near y-constancy of gg1,g2(y) outside of

the transition-layer) that this contribution is well approximated by replacing gg1,g2(y) by

its (relevant) boundary value g1 or g2. Finally, the full brane-derived bigravity effective
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Lagrangian density (in units where the coefficient of R in the higher-dimensional theory is

set to one) is

L(g1, g2) = A1 R(g1) + A2R(g2)− 2I(g1, g2) ,

where R(g) ≡ √−g R(g), where (see Fig. 2b; we assume that y varies over a full period

[−L2,+L2])

A1 =
∫ L1

−L1

dy a2(y) , A2 =
∫ 2L2−L1

L1

dy a2(y) , (49)

and where the “potential” term I(g1, g2) is given by Eqs. (43), (44) above.

It is easily checked that the potential (44) has the Pauli-Fierz limiting behaviour (13) in

the limit µa → 0. One can then compute the corresponding Pauli-Fierz mass. One finds (in

the symmetric case L2 = 2L1 = 2 ℓ, for simplicity) m2
PF = 4 T−1A−1

1 . The explicit value,

in the + − + model, of A1 is A1 ≃ 1/k, so that we get mPF = 2
√
2 e−2kℓ k, in agreement

with the direct analysis of linearized fluctuations [1]. In the Appendix we further compare

the nonlinear bigravity action to the linearized bigravity results already derived in the

literature. In particular we check that they are fully consistent, even in the asymetric case

L2 6= 2L1.

A full justification of the effective action (42) can, in principle, be obtained by explicitly

considering the effect of corrections to our approximation g(x, y) ≃ gg1,g2(x, y). For instance,

we can write g(y) ≡ gg1,g2(y)+ ξ(y) where the correction ξ(y) vanishes, by definition, when

y = y1 and y = y2. We can then expand ξ(y) = Σn ξn sin 2π n τ(y) where τ ≡ t/T varies

(by definition) in the interval (0, 1). [The condensed notation ξn denotes some ξnµν(x)].

An analysis of the full action (expanded quadratically in the ξ’s), containing not only the

“light fields” g1(x), g2(x), but the tower of “heavy fields” ξn(x), shows that the mass of

the heavy fields scale like mξ ∼ e−kℓ k, which is exponentially heavier (by a factor e+kℓ)

than the Pauli-Fierz mass scale. This confirms that the nonlinear bigravity action (42) is a

good effective description when one considers configurations g1(x), g2(x) where the relevant

gradients are small compared to mξ.

3.2 Kaluza-Klein Models

As said in the Introduction, and sketched in Fig. 1, one expects generic Kaluza-Klein models

to give rise to “regular spectra” containing no gap allowing one to separate a finite number

21



of light gravitons from an infinite tower of heavy ones. We wish, however, to emphasize the

existence of a class of KK models where such a gap can exist.

By KK model, we mean a higher-dimensional background geometry which decomposes

as a direct (unwarped) product, ds2tot = ds2D + dσ2 where ds2D = g(0)µν (x) dx
µ dxν (with, e.g.,

g(0)µν (x) = ηµν) and dσ2 = γab(y) dy
a dyb. When decomposing the fluctuations of the higher-

dimensional metric gMN(x, y) = (gµν , gµa, gab) into representations of the symmetry group

of g(0)µν (say g(0)µν = ηµν) one generally expects the squared mass spectrum of tensor (spin

2) fluctuations δ gµν to be given by the spectrum of the scalar Laplacian on the (compact)

internal manifold, say Γ, with metric dσ2 = γab(y) dy
a dyb. Let λn ≥ 0, with n = 0, 1, 2, . . .

denote the latter spectrum, i.e. γ−1/2 ∂a(γ
1/2 γab ∂b)φn(y) = −λn φn(y). There is always

a zero-mode, φ0(y) = const., corresponding to λ0 = 0, i.e. to a massless graviton. The

question of the existence of a hierarchy allowing one to consider, for instance, an effective

theory containing only the massless graviton and a superlight one, is then equivalent to

requiring that the first eigenvalue λ1 (or group of eigenvalues) be parametrically smaller than

higher eigenvalues. It is interesting to note that there are general mathematical theorems

which guarantee that such a hierarchy cannot occur if the compact metric γ is Ricci-flat (or

Ricci-positive). Indeed, if we consider, for simplicity, the Ricci-flat case, there are theorems

(see [26], [27]) saying that there exist universal positive constants an(d), bn(d) (which depend

only on the dimension d of the compact manifold Γ) such that an(d) δ
−2 < λn < bn(d) δ

−2

for all n ≥ 1, where δ denotes the (metric) “diameter” of Γ. However, we wish to emphasize

that, if one does not constraint the sign of the Ricci tensor, nothing prevents the occurrence

of a spectral hierarchy. We conjecture that the generic situation where such a spectral

hierarchy (between a finite group of abnormally small eigenvalues and the rest) occurs is

a “near pinching” situation, i.e. the case where the manifold Γ is on the verge of getting

split into two (or more) separate manifolds (of the same dimension d as Γ), as is illustrated

in Fig.3a.

We have confirmed by some toy-model calculations that the near-pinching case (if the

connecting “tube” between, say, two manifolds is not too long) does indeed lead to a

spectral hierarchy. Let us also mention that a general theorem of Cheeger (see [28]) can

be viewed as a (moral) confirmation of our conjecture. Indeed, this theorem says that a

lower bound of the first eigenvalue is λ1 ≥ h2/4 where Cheeger’s constant h is defined as

the lower bound of the ratio |S|/inf(|Γ1|, |Γ2|) when S runs over all closed submanifolds
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1
Γ2Γ
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Figure 3: Manifold Γ (Fig. 3a) is on the verge of splitting into two classically disconnected
manifolds Γ1 and Γ2 (Fig. 3b). These two manifolds may be connected at the quantum
level.

of Γ (of dimension d− 1) which partition Γ into two open manifolds Γ1,Γ2, with common

boundary ∂Γ1 = ∂Γ2 = S. We use the notation |Γ| to denote the (riemannian) volume of

Γ. Note that h has the dimension of an inverse length, and that “pinching” does indeed

correspond to the case where h → 0.

Physically, we can view the very light mode arising in a nearly pinched configuration

Γ1 ∪ {tube} ∪ Γ2 as coming from the effect of a weak coupling between two “resonators”

(or quantum mechanical systems) having regular spectra λ(1)
n , λ(2)

n . Before coupling, the

ground state is degenerate, λ
(1)
0 = λ

(2)
0 = 0. Weak coupling is generally expected to split

this degeneracy into a doublet. As λ0 = 0 is always an exact eigenvalue of the combined

system (corresponding to φ0(y) = 1), this mechanism always leads to a small λ1 (going to

zero with the coupling). Note that the eigenmode corresponding to λ1 is approximately

equal to φ1(y) ≃ ε(y) where ε(y) is +1 over Γ1, and −1 over Γ2.

We are aware of the fact that weakly coupled string theory suggests compactification

on Ricci-flat manifolds (which exclude a spectral hierarchy). However, we think that string

theory might still, in certain circumstances, allow for a spectral hierarchy: either because of

α′-corrections to Einstein equations (which lead one away from the Ricci-flat case), or (more

speculatively) because of conceivable quantum tunnelling effect between two (separate, but

“near”) Ricci-flat manifolds Γ1, Γ2. Pictorially, such a tunnelling situation is the limit of

Fig. 3b where the link between Γ1 and Γ2 is classically broken. The exponentially small

coupling associated to such a tunnelling situation would naturally induce an exponentially

small λ1, and thereby a bigravity coupling scale µ exponentially smaller than the string

scale.
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3.3 Bigravity and Connes’ non-commutative geometry

Within his general non-commutative geometry programme [29], Connes introduced the

model of a two-sheeted space X , made from the product of a continuous space Y by

a discrete “two-point space” {a, b} (or Z2) : X = Y × Z2. Though the algebra A of

“functions on X” (defined as the algebra of pairs of functions viewed as diagonal matrices

diag(fa(y), fb(y)) with y ∈ Y ) is commutative, the bimodule of 1-forms on such a space

is not commutative [29]. Generalizations of this model (also based on the product of a

continuum by a discrete space) were used in [30] to give a geometrical explanation of the

structure of the Standard Model. In particular, it was found that the VEV of the Higgs

field is related to the (non-commutative) “distance” between the two sheets. The metric

aspect of such a two-sheeted space was developed along different lines by several authors

[31], [32], [33], [34]. For instance, Ref. [31] introduced (non-commutative) analogues of the

Riemannian metric, curvature tensor and scalar curvature, which enabled them to introduce

a generalized Einstein-Hilbert action. This generalized Einstein-Hilbert action was found

to contain (besides the standard integral of the scalar curvature of Y ) a minimally coupled

massless scalar field σ related to the “distance” between the two sheets by d ∝ e−σ(y).

An alternative approach to studying gravitational effects within general non-commutative

spaces has been proposed in [34]. We shall follow this approach which is based on a general

“spectral action principle”. In its simplest form, this principle is proposing to take as bare

bosonic (Euclidean) action for any non-commutative model X the trace of the heat kernel

associated with the square of the (non-commutative) Dirac operator DX of X :

I = Tr exp (−tD2
X) . (50)

Here t ≡ m−2
0 introduces a cut-off, roughly equivalent to keeping only frequencies smaller

than m0. The cut-off-dependent Euclidean action (50) is viewed (à la Wilson) as the bare

action at the mass scale ∼ m0.

It seems that all previous works interested in the metric aspect of a two-sheeted space

X = Y ×Z2 have restricted themselves (either for simplicity, or because of some constraints

[33]) to the case where the metric is the same on the two sheets. By contrast, we focus

here on the case where the two metrics are different, say gLµν and gRµν , and the aim of this

subsection is to compute the “potential” V(gL, gR) implied by the spectral action (50).

Following Connes (see p. 569 of the English edition of his book [29]) we define a Dirac

24



operator on a bi-Riemannian space X = Y × Z2 as

DX =




D/ L γ5m

γ5m D/ R


 . (51)

This operator acts on bi-spinors
(
ψL

ψR

)
living on Y × Z2. Our conventions are that the

(Euclidean) gamma matrices are hermitian, as well as γ5 (which satisfies γ2
5 = 1 and which

anticommutes with the gamma matrices and therefore with the separate Dirac operators

D/ L and D/ R). The explicit form of the (hermitian) Dirac operators on each sheet is

D/ L,R = i γµL,R (∂µ + Ωµ(L,R)) , {γµI , γνI } = 2 gµνI , I = L,R . (52)

The explicit form of the spin connections Ωµ will not be important for our calculations.

On the other hand, the explicit form of the gamma matrices will be crucial. They read

γµL = γaEµ
aL, γ

µ
R = γaEµ

aR where {γa, γb} = 2 δab is a standard set of (space-independent)

gamma matrices and where Eµ
aL(x), E

µ
aR(x) (where x ∈ Y ) are vierbeins corresponding

to the two positive definite metrics gLµν , g
R
µν given on the abstract manifold Y : gµνL (x) =

δabEµ
aLE

ν
bL, etc. Note that the structure (51) assumes that we are given not only an

identification map between corresponding points of the two sheets (here gauge-fixed by the

identification of the two underlying abstract manifolds and the use of only one coordinate

system xµ to describe the metrics on the two sheets), but also a one-to-one map between

the spin structures, and in particular between any choice of vierbein. In other words to

any Eµ
aL must correspond a unique Eµ

aR so that an arbitrary, local SO(4) rotation of Eµ
aL

corresponds to the same rotation of Eµ
aR. It is most natural to use as map Eµ

aL → Eµ
aR the

canonical map defined in [35]. This map can be defined by requiring that it reduces to simple

rescalings Eµ
aR = e−µa/2Eµ

aL when considering bi-orthogonal frames (as in Eq. (9) above).

For simplicity, the quantity m in Eq. (51) (which “connects” the two sheets) will be taken

to be a constant real scalar. More generally, it could also be a matrix when considering

multiplets of fermions and could be space-dependent. We shall see that m is connected

with the coupling scale µ in Eq. (6). It might be interesting to consider generalized models

where m (and therefore µ) is linked to a fluctuating scalar m(x) ∝ e−σ(x) as in [31].
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The square of the Dirac operator (51) is easily obtained as

D2
X =




D/ 2
L +m2 mγ5(D/ R −D/ L)

mγ5(D/ L −D/ R) D/ 2
R +m2


 (53)

The heat kernel expansion of (50) is a series in increasing powers of t = m−2
0 which

starts at order t−2 = m4
0. At this leading order the action I leads to two bare cosmological

constant terms m4
0/(4π

2)
∫
d4x(

√
gL+

√
gR). At the next to leading order, O(t−1) = O(m2

0),

one gets two separate Einstein actions m2
0/(48π

2)
∫
d4x(−√

gLRL−
√
gRRR) (with negative

signs, as is appropriate for an Euclidean action IE which is essentially IE = −IMinkowski with

a positive signature metric) as well as a “potential” term +
∫
d4xV(gL, gR) proportional to

m2
0m

2. In view of its m2
0 m

2 scaling, the potential V contains no derivatives of gL or gR. It

can therefore be evaluated by considering the case of constant metrics gLµν , g
R
µν . We can then

neglect the spin connections in (52) and go to the momentum representation (i ∂µ → kµ)

to set

D2
X =




k/ 2
L +m2 mγ5(k/ R − k/ L)

mγ5(k/ L − k/ R) k/ 2
R +m2


 . (54)

Here k/ L ≡ γµL kµ, k/ R ≡ γµR kµ. Using the explicit vierbein expressions of γµL and γµR we can

rewrite these as k/ L ≡ γa kLa , k/ R ≡ γa kRa , where

kLa ≡ kµE
µ
aL , kRa ≡ kµE

µ
aR . (55)

In terms of these two different vectors (that live in a local Euclidean space common to the

tangent spaces of the two sheets), one easily finds that the eigenvalues of D2
X are

λ± =
k
2
L + k

2
R

2
+m2 ±

√
(k2

L − k
2
R)

2

4
+m2(kL − kR)2 . (56)

Here, all squares are evaluated with the flat Euclidean metric δab appropriate to the local

Euclidean space where both kLa and kRa live. In the limit m2 → 0 (appropriate to the heat

kernel expansion) the eigenvalues (56) read (we henceforth suppress the boldfacing of the

Euclidean vectors kL and kR)

λ+ = k2
L +m2 +m2 (kL − kR)

2

k2
L − k2

R

+O(m4) ,
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λ− = k2
R +m2 −m2 (kL − kR)

2

k2
L − k2

R

+O(m4) . (57)

The heat kernel action reads

I = Tr exp (−tD2
X) = 4

∫
d4x

∫ d4k

(2π)4
[e−tλ+ + e−tλ− ], (58)

where the 4 comes from the trace in spinor space and where d4k is the fourfold integral over

the covariant components kµ. Expanding (58) in powers of m2 leads to the mixing term

+4m2
0m

2
∫
d4x (V1 + V2) where

V1 = −t2
∫

d4k

(2π)4
e−tk

2
L − e−tk

2
R

k2
L − k2

R

(kL − kR)
2 , (59)

V2 = −t2
∫

d4k

(2π)4
(e−tk

2
L + e−tk

2
R) . (60)

After our factorization of m2
0 = t−1 in front of V1 and V2, the expressions (59), (60) are

easily seen to be t-independent. We can then evaluate them by setting, say, t = 1 in them.

Noting that k2
L = δab kLa k

L
b = gµνL kµ kν, etc., V2 is easily evaluated:

V2 = −c4((det g
µν
L )−

1

2 + (det gµνR )−
1

2 ) = −c4(
√
gL +

√
gR) (61)

where c4 ≡ (16π2)−1 and where gL ≡ det gLµν = (det gµνL )−1. The potential V1 is much more

tricky. However, it can be nicely expressed by introducing a Schwinger-type parameter α

(varying between 0 and 1) and by using the identity (e−a−e−b)/(a−b) ≡ − ∫ 10 dα exp[−((1−
α)a + αb)]. This naturally leads to the introduction of a one-parameter family of metrics

g(α) interpolating between gL and gR (reached, respectively, when α = 0 and α = 1). More

precisely we define

gµν(α) ≡ (1− α) gµνL + α gµνR . (62)

[Note that the “line” connecting gL to gR is “straight” when expressed in terms of con-

travariant metrics (which naturally appear in the squared Dirac operator D2 = −gµν ∂µν =

+ gµν kµ kν), but will become “curved” when expressed in terms of the covariant compo-

nents gµν(α).] In terms of the definition (62) (and the associated gµσ(α) g
σν(α) = δνµ,

g(α) ≡ det gµν(α) ≡ (det gµν(α))−1) we find that V1 can be written as

V1 = +
1

2
c4∆Eµ

a ∆Eν
a

∫ 1

0
dα
√
g(α) gµν(α) , (63)
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where ∆Eµ
a ≡ Eµ

aR − Eµ
aL. Finally, the O(m2) piece of the Euclidean action (i.e. the “po-

tential”, remembering that LEucl. = −LMink.) predicted by the non-commutative approach

to two-sheeted spaces reads +
∫
d4xV with

V =
m2

0m
2

4π2

[
1

2
∆Eµ

a ∆Eν
a

∫ 1

0
dα
√
g(α) gµν(α)−

√
gL −√

gR

]
. (64)

The explicit evaluation of the α-integral in (64) can be reduced to (incomplete) elliptic

integrals. In fact, it can be reduced to the evaluation of the single integral

I(gL, gR) ≡
∫ 1

0
dα
√
g(α) =

∫ 1

0

dα√
det((1− α) gµνL + α gµνR )

(65)

by using the identity

(
∂

∂ gµνL
+

∂

∂ gµR

)
I(gL, gR) = −1

2

∫ 1

0
dα
√
g(α) gµν(α) . (66)

When considering a bi-orthogonal frame, say with Eµ
aL = diag(e−µ

L
a /2), Eµ

aR = diag(e−µ
R
a /2)

(so that gLµν = diag(e+µ
L
a ), gRµν = diag(e+µ

R
a ) and g−1

L gR = diag(eµa) with µa = µRa −µLa ) the

integral (65) is a rather simple elliptic integral of the first kind which, in principle, can be

explicitly expressed in terms of the eigenvalues λL,Ra ≡ eµ
L,R
a . Of more direct interest for us

is the discussion of the “weak-excitation” limit of V, i.e. the limit µa = µRa − µLa → 0, i.e.

(g−1
L gR)

µ
ν = δµν + hµν with hµν → 0. In this limit we find that V behaves as (with σ1 = Σµa,

σ2 = Σµ2
a as above)

V ≃ m2
0 m

2

4π2
(gL gR)

1

4

(
−2 +

σ2

8
− σ2

1

16

)

=
m2

0 m
2

4π2
(gL gR)

1

4

(
−2 +

1

8
hνµ h

µ
ν −

1

16
(hνµ)

2
)
. (67)

Besides a negative m2-dependent, contribution to the cosmological constant (which has

anyway bare contributions O(m4
0)), we see that we do not get a Pauli-Fierz-type mass term

for weak excitations away from gLµν = gRµν . We get instead (remembering that the (bare)

Planck mass is M2
L = M2

R = m2
0/(48π

2)) a mass term proportional to m2
[
hνµ h

µ
ν − 1

2
(hνµ)

2
]
.
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Such a mass term contains a scalar ghost, but has the virtue (contrary to the Pauli-Fierz one

∼ m2 [hνµ h
µ
ν−(hµµ)

2]) of exhibiting excellent continuity properties of the limit m2 → 0 for all

processes linked to the generation of gravitational fields by sources (see, e.g., Appendix C

of [37] where it is easily seen that α = 1/2 leads to an Einstein-like propagator hµν T
µν ∝

T µν(✷−m2)−1
(
Tµν − 1

2
ηµν T

)
).

4 Phenomenology of Multigravity

4.1 Bigravity, and bicosmology, versus massive gravity

There is quite a sizable (and somewhat confusing) literature about the “problems” raised

by having either “massive gravity” (i.e. a kind of finite-range version of Einstein’s theory),

or a “massive graviton” in addition to Einstein’s massless one. We leave to a future publi-

cation a detailed discussion of such issues, but wish to emphasize the fact that the change

of paradigm, brought by focusing on a fully nonlinear bigravity theory, drastically modifies,

in our opinion, the way one should view the traditional “problems” of massive gravity (in

both senses recalled in the sentence above). One of the basic points is that many of the

“problematic” issues (such as, unboundedness of the energy, singularity of the infinite-range

limit) simply loose their meaning in a general bigravity setting. Indeed, these problematic

issues make sense only for states (in some theories) which are, at least asymptotically,

close to some trivial, Poincaré invariant background. We think that, even when consider-

ing formally “small” excitations above a trivial background state gLµν(x) = gRµν(x) = ηµν ,

the exact bigravity configurations will generically develop into full-blown “bi-cosmological”

configurations with fields that grow so much (in time and/or in space) so as to be outside

the usually considered domain of bi-asymptotically flat configurations containing localized

excitations. Note that most of the results concerning the “discontinuity” of the m2 → 0

limit [38], [39], [37] implicitly (or explicitly) assumed such a framework of asymptotically

decaying perturbations of a (minimum energy) Poincaré invariant background. We think

that, if one relaxes this asymptotic restriction, there exists a sector of bigravity theories

which exhibits “physical continuity” for small m2, at the cost of cosmological behaviour

on large scales. Note that such a claim, while being consistent with the works [40, 41, 42]

which found continuity of massive graviton interactions in maximally symmetric ((A)dS)

cosmological backgrounds, is somewhat different from the claim of [43],[44]. Indeed, the
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latter claim seems to insist on a framework (and a language, like that of propagators, cou-

pling and scattering states) which preassumes the restriction to localized excitations of a

Poincaré-invariant vacuum, i.e. that the metrics under consideration are asymptotically

flat. Leaving to a future publication a detailed discussion of the “discontinuity” issue, we

shall content ourselves here to sketch the general dynamical structure à la Arnowitt-Deser-

Misner (ADM) [36] of bigravity theories.

4.2 ADM analysis of bigravity theories

We consider a general bigravity action (6). Let us decompose the two spacetime metrics

4gLµν ,
4gRµν into the two lapses NL, NR (NL ≡ (− 4g00L )−

1

2 ), the two shift vectors N i
L, N

i
R

(4gLij N
j
L ≡ 4gL0i) and the two spatial metrics gLij , g

R
ij (g

L
ij ≡ 4gLij). We have

ds2L = −N2
L dt

2 + gLij(dx
i +N i

L dt)(dx
j +N j

L dt) ,

ds2R = −N2
R dt2 + gRij(dx

i +N i
R dt)(dxj +N j

R dt) . (68)

After integration by parts, each separate “Left” or “Right” pieces of the action (6) reads

(say for the Left piece)

IL =
∫
dt
∫
d3x (πijL ġLij +ΠL Φ̇L −NLHL −N i

LH
L
i ) (69)

where πijL is the Left gravitational momentum density, ΠL is a (generic) matter momentum

density and where the left super-Hamiltonian, and super-momentum densities have the

structure

HL =
1

M2
L

1√
gL

(
πijL πLij −

1

2
π2
L

)
−M2

L

√
gLRL +Hmatter

L , (70)

HL
i = −2 DL

j π
j
Li +HLmatter

i . (71)

Let us now consider the interaction term −(4gL
4gR)

1

4 V (4g−1
L

4gR). Using the fact that the

local scalar V must be (in particular) invariant under transformations of the type dt′ = λ dt,

dx′i = Λij(dx
j + vj dt) one finds that it can only depend on the lapses and shifts through

the combinations NR/NL and (N i
R−N i

L)/
√
NLNR. Let us then replace the 8 variables NL,

N i
L, NR, N

i
R by the combinations

N ≡
√
NRNL , n ≡

√
NR

NL
, N

i ≡ 1

2
(N i

R +N i
L) , ni ≡ N i

R −N i
L

2
√
NRNL

. (72)
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With these definitions it is found that the total action reads

I =
∫
dt
∫
d3x (πijL ġLij + πijR ġRij +ΠL Φ̇L +ΠR Φ̇R −H) (73)

where the total Hamiltonian density reads (here and below gLij, g
R
ij are the spatial metrics

and gL ≡ det gLij, gR ≡ det gRij)

H(N,N
i
, n, ni, gL, πL, gR, πR,ΦL,ΠL,ΦR,ΠR) = N H +N

i
H i (74)

where

H(n, ni, g, π,Φ,Π) = n−1 HL + nHR − niHL
i + niHR

i + (gL gR)
1

4 V (n, ni, gL, gR) , (75)

H i(g, π,Φ,Π) = HL
i +HR

i . (76)

The crucial point for the present discussion is the separation of the 8 lapse and shift

variables into two sets: (i) the four “average” lapse and shifts N , N
i
, which are true

Lagrange multipliers appearing only linearly in the action, and (ii) the four “relative” lapse

and shifts n, ni which enter algebraically in the action (no kinetic terms) but in a non linear

manner. The four average lapse and shifts give rise to four constraints, which are linked to

the symmetry of the action under common diffeomorphisms:

H = 0 , H i = 0 . (77)

N , N
i
are gauge variables which can be gauged away (e.g. to N = 1, N i = 0). The four

(first-class) constraints (77) can be used, together with the field equations (which involve N

andN
i
) to eliminate four degrees of freedom (i.e. eight functions of positions and momenta).

By contrast, the four relative lapse and shifts n, ni are not (undeterminable) gauge variables

but are dynamical variables which are instantaneously determinable in terms of the other

variables (g, π,Φ,Π) by their (algebraic) equations of motion:

∂ H

∂ n
= 0 ,

∂ H

∂ ni
= 0 . (78)

This result generalizes the findings of [37] which studied the case of “massive gravity”, i.e.

(21). We must assume here that the potential V has a “good” dependence on n and ni

which allow for an (essential) unique solution of Eqs. (78) for a generic (or at least an
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open) domain of free dynamical data g, π,Φ,Π. We think that the only (covariant) sit-

uation where n and ni combine with N , N
i
to generate more (gauge-related) Lagrange

multipliers is the case where V is linear in NL and NR, which must then correspond

(by covariance) to V = cLNL
√
gL + cRNR

√
gR = cL(− det 4gLµν)

1/2 + cR(− det 4gRµν)
1/2.

For instance, we can think that V (n, ni) contains terms quadratic in ni (as already fol-

lows from a Pauli-Fierz mass term), and behaves, for both large (respectively, small)

n as + a n2 (respectively + b n−2). Note also that if we define the new scalar poten-

tial V new by factoring (− det 4gLµν)
1/2 + (− det 4gRµν)

1/2 instead of (4gL 4gR)1/4 from V,
i.e. V = ((− det 4gLµν)

1/2 + (− det 4gRµν)
1/2)V new, the last term in Eq. (75) will become

(n−1√gL + n
√
gR)V

new(n, ni, gL, gR). It is then enough to require that V new(n) grows in

any manner (even logarithmically) towards +∞, as n → +∞ or n → 0. Such conditions

ensure the existence of (possibly non unique) solutions of the equations of motion of n and

ni, Eq. (78).

We can then use (78) to eliminate n and ni (by replacing them by their expression in

terms of the other dynamical data). It is then easily seen that the reduced Hamiltonian

Hred(g, π,Φ,Π) obtained by inserting these expressions into (75) defines (together with

(76)) a dynamical system for the variables gLij , π
ij
L , g

R
ij , π

ij
R , ΦL, ΠL, ΦR, ΠR (submitted

to the four first-class constraints (77) coming from the Lagrange multipliers N , N
i
). For

instance, if we consider the matter-free system, we end up with the 6+6 degrees of freedom

linked to gLij and gRij , from which must be subtracted 4 degrees of freedom killed by the

first-class constraints (77). This leaves us with 8 degrees of freedom. As in the analysis of

(nonlinear) massive gravity in [37], which concluded to the presence of 6 degrees of freedom

(instead of the expected 5 of a Pauli-Fierz linear graviton), we have here 2 + 6 = 8 (where

the 2 can be formally thought of as corresponding to an Einstein (massless) graviton, and

the 6 to a “massive graviton”).

Two of the potential defects of the supplementary tensor degree of freedom (1 = 6− 5)

are, according to [37]: (i) the unboundedness of the total “energy”, and (ii) experimental

difficulties (e.g. with light scattering by the Sun), even if a suitable mass term can be

found for which the m2 → 0 limit exists. Our point of view concerning (i) is to argue

that the notion of energy is not defined when considering (as we argue must be done) non-

asymptotically flat metrics, with cosmological-type behaviour at infinity. Alternatively, we
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can dismiss the problem of spatial boundary conditions by considering spatially compact

manifolds (e.g. with toroidal topology). For such a situation, the dynamics associated to

(73)–(78) should entail a well-defined (classical) evolution system for gL, πL, gR, πR, . . . The

ill-defined issue of “unbounded energy” is then transformed in a well-posed dynamical ques-

tion: do Hamilton’s equations of motion quickly lead to a catastrophic evolution towards

some singular state?, or do they admit many solutions which evolve rather quietly on times

scales comparable to the age of the universe? (which is the only stability property which

is really required by experimental data). This question will be discussed in detail in [12].

Let us only mention here the result that there does exist, for suitable potentials V, many

solutions which can quietly evolve on Hubble time scales or more.

4.3 Phenomenology and a new form of dark energy

Using the dynamical, and cosmological like, viewpoint expressed in the previous subsection,

let us now briefly discuss why we think that bigravity is not only compatible with existing

gravitational data, but might also furnish a natural explanation of the recently observed

cosmic acceleration. Let us first argue that there exist large classes of bigravity data

gL, πL, gR, πR, . . . which can adequately represent the universe as we see it at the present

moment. For definiteness, we assume that we “live on the right brane” (when viewed in

brane language), i.e. that the matter around as is made of ΦR-type matter only. Let us start

by considering an instantaneous “Einstein” model of our universe, i.e. an exact solution

gR, πR,ΦR,ΠR of the constraints HR = 0 = HR
i . Let us complete this configuration by

a random “Einstein” model of the (shadow) left universe, i.e. a solution gL, πL,ΦL,ΠL of

HL = 0 = HL
i . Taken together, these two configurations “nearly” satisfy the bigravity

constraints (77) and (78). More precisely, (77) is satisfied modulo a term proportional

to V , while (78) is satisfied modulo terms proportional to ∂V/∂n and ∂V/∂ni. Let us

assume that all dimensionless variables (n, ni and g−1
L gR) are of order unity, and that

V ∝ µ4 is at most comparable to the average cosmological energy density V ∼ 10−29 g cm−3

(i.e. µ ∼ 10−3 eV) (in right units, say). Instead of viewing Eqs. (78) as equations for

determining n and ni, we can pick rather arbitrary (initial) values of n and ni (or order

unity) and slightly deform the Einstein data gR, πR, . . . , gL, πL, . . . to compensate for the

small violation of the usual Einstein constraints brought by the terms proportional to V ,

∂V/∂n and ∂V/∂ni. It is intuitively clear that there are many ways of doing so, i.e. of

constructing exact bigravity initial data gR, πR, . . . , gL, πL, . . . which exactly satisfy (77)
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and (78) for arbitrarily given n and ni. Locally, say around our Galaxy, the new, deformed

data gR, πR, . . . can be constructed so as to be experimentally indistinguishable from a pure

Einstein model (after all, we are simply modifying the stress-energy tensor in the Galaxy

by less than 10−29 g cm−3, which is many orders of magnitude smaller than the average

density in the Galaxy). If the dependence of V on n and ni is adequate the equations (78)

will continue to admit a solution (n, ni) during the future evolution of the other dynamical

variables. In fact, as (under a general assumption made in Section 2 above) we know

one exact (but physically trivial) solution of the full bigravity evolution equations, namely

gLµν(t, x) = gRµν(t, x), i.e. gL = gR, πL = πR, ΦL = ΦR, . . . with n = 1, ni = 0, we

expect (by mathematical continuity) that there will be classes of bigravity solutions where,

during a long time, gL ≃ gR, πL ≃ πR, . . . with n ≃ 1, ni ≃ 0. The crucial question is

whether one can solve Eqs. (78) for a long time (without catastrophe) for more general

data where g−1
L gR = O(1) and n = O(1) = ni. This question will be addressed in [12] for

cosmological-type solutions and in [13] for solar-system-type solutions. Note that this is

here that the potential “discontinuity” problems linked to the m2 → 0 (or µ → 0) limit

show up because the potential V (n, ni) is proportional to µ4, so that, when solving for n

and ni Eqs. (78), µ4 will tend to appear in a denominator and might cause the solution n, ni

to take parametrically large values, proportional to some negative power of µ (depending

on the behaviour of, say, V (n) as n → +∞ or n → 0).

Assuming, for the time being, the continuous existence of regular bigravity solutions,

evolved from some data gL, πL, gR, πR, n, n
i, . . . we can finish by mentioning some of the

pleasing phenomenological aspects of bigravity. First, bigravity exactly satisfies the equiva-

lence principle, because each type of matter (say ΦR whithin “our universe”) is universally

coupled to the corresponding metric, say gRµν . Second, (as just discussed) there are classes

of bigravity solutions which differ from standard Einstein ones only by the presence “on

the right-hand side” of Einstein’s equations of numerically very small additional terms (say

tRµν ∼ tLµν ∼ 10−29 g cm3 in the covariant form (14)), which locally modify gRµν and ΦR (and

gLµν , Φ
L) only in a numerically very small way (though they might globally forbid the stable

existence of asymptotically flat models). These solutions will be fully compatible with all

local (or quasi-local) experimental tests of relativistic gravity: such as solar-system tests

and binary-pulsar tests. Third, if µ indeed happens to be of the order of 10−3 eV, and

if g−1
L gR is of order unity, bigravity will only lead to experimentally significant deviations
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from Einstein’s gravity on cosmological scales. Moreover, if, seen from our universe gRµν ,

we view gLµν as an “external field”, or, more precisely, if we (approximately) view the “dif-

ference” between the two metrics g−1
L gR as a given (time varying) tensor “condensate” of

order unity, the potential term V =
√
gR(g

−1
R gL)

1

4 V (g−1
L gR) can be approximately viewed

as a time-varying “vacuum energy” term (of order µ4), i.e. as a kind of “dark energy”. It

is tempting to assume that this new form of dark energy (which might be called “tensor

quintessence”) can explain the observed cosmic acceleration. It might also be used in pri-

mordial cosmological scenarios, possibly when using the idea mentioned above that µ could

be an evolving field. See [12] for a study of this new form of dark energy, and its phe-

nomenological differences with quintessence models based on evolving scalar (rather than

tensor) condensates.

5 Conclusions

In this paper we suggested a new paradigm concerning “massive gravity” and “large scale

modification of gravity”. Considering the fully nonlinear bigravity action suggests to change

viewpoint: instead of the theory with massless and massive graviton(s) we had in linearized

approximation, we are dealing with several interacting metrics. We introduced the concept

of universality class which we formulated using bigravity (two interacting metrics) as an

example. Different approaches (brane, KK, non-commutative geometry) naturally lead to

different universality classes for the fully nonlinear bigravity action. Another important

new suggestion is that almost all solutions must now be of the non-asymptotically flat

(cosmological) type.

This new formulation can change the standard problematic of the m2 → 0 discontinuity.

We showed the existence of classes of solutions that are compatible with “our universe”.

However, we do not claim to have proven that general solutions of bigravity are phenomeno-

logically acceptable. The two main problems of massive gravity (ghost, potential blow up

of some field variables when m2 → 0) must still be examined in detail. The important

problem is to find the matching to the local sources of the field so that the full metric is

free of singularities. We do not worry about matching at infinity because we abandon the

requirement of asymptotic flatness. It is possible that in some models of bigravity such

local matching does not exist because of the explicit or implicit presence of ghost modes in

the theory. Such models would be physically unacceptable. We note in this respect that
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the 6-dimensional model discussed in [21] which does not contain negative tension branes,

contains instead either branes with equations of state violating the weak energy condition

T brane
µν ℓµ ℓν ≥ 0 ( with light-like ℓµ) or has a conifold singularity in the bulk. The physical

consistency of this model must be further investigated. We have also quoted mathematical

theorems linking the existence of a hierarchical spectrum (necessary for the derivation of

an effective bigravity Lagrangian) to the necessary negativity of the Ricci curvature of the

compactified manifold. This sign condition might hide the presence of ghost-like fields in

the theory. These questions are pressing and deserve detailed investigation.

Assuming a positive resolution of these issues or simply taking the phenomenological

viewpoint that nonlinear bigravity Lagrangians open an interesting new arena for non

standard gravitational effects, we shall explore in future publications [12], [13] the nonlinear

physics of bigravity actions, with a particular view on its cosmological aspects, as it may

provide a natural candidate for some new type of “dark energy”.
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Appendix

In this Appendix we check the consistency of the linearized limit of the nonlinear action

(6) with a direct linearized analysis of the coupling strengths of massless and light graviton

modes in brane models. Omitting the tensor structure (and considering only the relative co-

efficients between the various terms) the Lagrangian describing the coupling of the massless

graviton mode h0, and of the lightest one h1, reads

LLin = h0∂2h0 + h1
(
∂2 +m2

1

)
h1 +

1

Mp

(
h0 + αLh

1
)
TL +

1

Mp

(
h0 − αRh

1
)
TR (79)

where the coefficients αL,R describe the relative strengths of the massive graviton coupling

to the matter on left and right branes. It seems that there are four parameters here:

Mp, m1, αL, and αR. But actually αL = α−1
R which is extremely important as we shall

see next. This relation follows from the expression for αR which was obtained in [1] (see
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Figure 4: Here L1 is the position of the bounce. The left configuration is just the mirror
image of the right one and the positions of the bounces are related by L̄1 = L2−L1. Under
this transformation left and right branes are exchange their roles and, at the same time,
αR = exp(2L1 − L2) → ᾱR = exp(2L2 − L1) = α−1

R .

Eq.(20) and Eq.(22) there)

αR = exp (2L1 − L2) . (80)

Being derived originally for the + − + model this expression holds for other models with

bigravity, for example the ++ model. In Figure 3 it is shown that one can interchange left

and right branes by changing the position of the bounce from L1 to L̄1 = L2 − L1. One

gets the new coupling strength

ᾱR = exp
(
2L̄1 − L2

)
= exp (L2 − 2L1) =

1

αR
. (81)

At the same time it is easy to see that a new right brane is just an old left one, so that we

have the result

αL = ᾱR =
1

αR
. (82)

This relation is crucial to the consistency of the nonlinear bigravity approach because only

in this case can one relate h0 and h1 to hL ∼ (h0 + αLh1) and hR ∼ (h0 − αRh1) by

orthogonal rotation. If it were not the case one would get mixing between hL and hR even

in the limit m1 = 0 and we could not have two non-interacting worlds. Introducing

hL = cos θh0 + sin θh1, , hR = sin θh0 − cos θh1 , tan θ = αR (83)

we can rewrite (79) as

LLin = hL∂
2hL + hR∂

2hR +
m2

1

M2
L +M2

R

(MLhR −MRhL)
2 +

1

ML

hLTL +
1

MR

hRTR (84)
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where ML = Mp/
√
1 + α2, MR = αMp/

√
1 + α2

Let us note that in the limit L2 → ∞ both αL and Mp are divergent and αR → 0. In

this limit ML is finite and MR → ∞. The massless graviton hR becomes essentially a free

sterile particle and decouples from the spectrum, while the massive graviton hR interacts

with matter on the left brane only. Long range gravity completely decouples from the right

brane.

Here we discussed the linearized bigravity lagrangian for flat branes, but one can get

the same picture for (A)dS branes. The limiting case L2 → ∞ with corresponds to a single

AdS4 brane was considered in [20] (see also [14, 45, 46, 47]).
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