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Abstract: In this first part, we present a documented historical background
about the Schwarzschild solution to the field equations of general relativity,
as originally considered by Karl Schwarzschild, as well as Johannes Droste,
Hermann Weyl and Albert Einstein, in its linearized form. We also detail how
David Hilbert assumed this question, with a pure imaginary time. Finally, we
discuss extensions of the solution through analytic continuation and their
geometry implications.

Introduction
The black hole model remains a belief within the scientific community.

[t is true that in the recent history of science, the existence of many objects
and phenomena has been conjectured long before they have been effectively
observed. Yet many of them had a lot to stir up skepticism. An example was
antimatter, imagined by Sir Arthur Schuster in 1898, theorized by Paul Dirac
in 1928, before the first observation of positrons in 1932. Later, the
phenomenon described in 1935 by Einstein, Podolsky and Rosen, named the
EPR paradox, was demonstrated decades after its authors presented it as a
denunciation of the infallibility of quantum mechanics.

Swiss-American astrophysicist Fritz Zwicky described how massive stars
could violently end as supernovae, in a memorable Caltech lecture course in
1931. According to him, such a star running out of fusion fuel would end in a
violent gravitational collapse at an incredible high speed, converting its
potential energy into kinetic energy. This outburst of a very large quantity of
mass would compress the internal iron core into a totally new object: a
neutron star.



This model is at first greeted with general skepticism, and very few scientists
agree with such a singular idea. But after tremendous efforts, Zwicky
managed to gradually demonstrate the phenomenon.

Nowadays, no one would venture to question the existence of antimatter, or
quantum entanglement involved in the EPR paradox, or supernovae. As for
astronomical phenomena, the situation is very simple. The cosmos is vast. If
the supernova phenomenon statistically occurs in our galaxy at a rate of only
one per century, the extension to all observable galaxies brings their number
to tens of thousands.

Related to supernova was the question of the existence of neutron stars. The
first ones were discovered in 1967 as pulsars (highly magnetized rotating
neutron stars acting as pulsed radiation sources). The relation with
supernovee was soon established, one of these pulsars being located in the
middle of the Crab Nebula, remnant of a supernova whose visible explosion
in 1054 is testified by Chinese records. Today, their number has reached
hundreds of samples, in every corner of the galaxy, including near distances.
No reasonable scientist would now doubt of their very existence.

But this is not the same at all about stellar black holes, whose existence is
practically inferred by just one observation: the Cygnus X-1 binary system,
whose distance from us is evaluated at 6,000 light-years. This rarity is very
abnormal. At such a large distance, its estimated mass (about eight solar
masses) could result from cumulative observational errors.

This very anomalous situation gives this hypothetical object the nature of a
belief, in conflict with the scientific method.

As for supermassive black holes, all that can be said for the moment is that
these are very important concentrations of matter (hundreds of thousands
to billions of solar masses) located in the center of galaxies. They have a very
large mass, but not a very high density; the one located in the center of Milky
Way can be represented by a sphere half the solar system in diameter, filled
with matter having the same density as water. In any event they are new
objects, which could be the remainder of quasar phenomena, but their
signature does not allow, in its current state, to name them black holes.

It is therefore perfectly licit today to question the black hole model, while
proposing an alternative scenario to the fate of a critical neutron star. Indeed,
in X-ray binaries for example, a stable neutron star (the accretor) can capture
material from a companion star (the donor) and thus becomes at some point
destabilized. To refuse such a study would be unscientific and would be
tantamount to the defense of a dogma.



Prelude to the birth of the black hole model

Before literally getting to the heart of the matter, it is necessary to situate the
context in which Schwarzschild first produced a nonlinear, exact solution of
Einstein's field equation in 1916. In public's imagination, Einstein got a
superhero origin story by the media. Actually, thanks to his remarkable
ability to assimilate both the mathematics of his time and the palette of
physical phenomena, he was able to produce an impressive succession of
results, including in 1905 the discovery of the law of the photoelectric effect.
But at that time a number of German and Dutch scientists followed this path
carefully, and were immediately able to understand and interpret any
progress made. Schwarzschild was one of them.

In 1915, we find first important texts resulting from the collaboration-
competition between Einstein and the great mathematician Hilbert. In
November 1915, Einstein presented a finalized version of his theory of
general relativity in a series of four papers at the Royal Prussian Academy of
Sciences in Berlin [1] [2] [3] [4]. At first, his field equation is not divergence-
free, but he has the intuition that for distances small enough and for
moderate velocities (which corresponds to the Newtonian approximation)
his equation should give the corresponding equations of fluid mechanics,
namely the Euler conservation equations. He modifies his field equation to
make it divergence-free in [4], whose original title is:

Die Feldgleichungen der Gravitation.

Von A. EiNsrTeIN.

In zwei vor kurzem erschienenen Mitteilungen' habe ich gezeigt, wie
man zu Feldgleichungen der Gravitation gelangen kann, die dem Postu-
lat allgemeiner Relativitit entsprechen, d. h. die in ihrer allgemeinen
Fassung beliebigen Substitutionen der Raumzeitvariabeln gegeniiber ko-
variant sind.
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Fig. 1 - Einstein's original paper, November 25, 1915
"The Field Equations of Gravitation."



And here is the corresponding field equation:

I€laes Dpezeicnnen.
Ist in dem betrachteten Raume » Materie« vorhanden, so tritt deren
Energietensor auf der rechten Seite von (2) bzw. (3) auf. Wir setzen

I
Gim == _x(l‘im_zgu'm 7‘)’ (23)

wobei

39T, =3L="T (s)

ef L
gesetzt ist; 1" ist der Skalar des Energietensors der » Materie «, die rechte
Seite von (2a) ein Tensor. Spezialisieren wir wieder das Koordinaten-
system in der gewohnten Weise, so erhalten wir an Stelle von (2a)
die #Aquivalenten Gleichungen

oL, P I
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Wie stets nehmen wir an, daB die Divergenz des Energietensors

Fig. 2 - The field equation finalized by Einstein, 25 November 1915.

In the left hand-side of his equation (6): the Ricci tensor.
The following is the English translation [4] from 1997:
WILVII UALIUUDD WU Lvall uiv VOLLIpuULcLID VLI o glavuauuum 1ITIU.

When there is “matter” in the space under consideration, its energy tensor occurs
on the right-hand sides of (2) and (3), respectively. We set

Gp'= _K(Tim 7 %gim T), (2a)
divergenceless form
where
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T is the scalar of the energy tensor of “matter,” and the right-hand side of (2a) is a
tensor. If we specialize the coordinate system again in the familiar manner, we get
in place of (2a) the equivalent equations

or; 1
Rim = ; ——ax":I + 2' I‘:p rl‘:ll = _K(Tim - Eg‘-m T) (6)
)
\/% S Einstein’s constant (a)
We assume, as usual, that the divergence of the energy tensor of matter vanishes
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Fig. 3 - Translation of Einstein's founding paper.
The field equation with zero-divergence after the modification of November 25, 1915.



Einstein is obviously interested in phenomena Newtonian mechanics cannot
explain. On November 18, 1915, he publishes a linearized solution of the field
equation without a second member, resulting of a null Ricci tensor. [3]

Erklirung der Perihelbewegung des Merkur aus
der allgemeinen Relativitiitstheorie.

Von A. EiNsTEIN.

In einer jiingst in diesen Berichten erschienenen Arbeit, habe ich Feld-
olainhunean  dar (Aravitation 911“"0951‘9“1’ welehe heziiglich beliebizer

Fig. 4 - Einstein explains the perihelion motion of Mercury on November 18, 1915.

In this solution, Einstein chooses to give the value -1 to the determinant of
his metric solution, a hypothesis Schwarzschild will take again.

-

832 Gesamisitzung vom 18, November 1915

§ 1. Das Gravitationsfeld.
Aus meinen letzten beiden Mitteilungen geht hervor, dal daa
Gravitationsfeld im Vakuum bei geeignet gewihltem Bezugssystem fol-
genden Gleichungen zu geniigen hat

Z qre +2 (1)
' a3

wobei die I';, durch die Gleichung definiert sind

9g.a 2 00
rs = .-_{;::} el %gwe[’j@v]'_ __2 ua( Gue . 89:;& : ai, ) ‘
Machen wir auBerdem die in der letzten Mlttellung begriindete Hypo-
these, daB der Skalar des Energietensors der »Materie« stets ver~
schwinde, so tritt hierzu die Determinantengleichung ; '

1 gu] =—1- (3) :
Es befinde sich im Anfangspunkt des Koordinatensystems ein
Massennnnkt (die Sonne). Das Gravitationsfeld, welches dieser Massen-

Fig. 5 -Field equation with no right hand-side, and determinant -1.



It is worth mentioning, and this will be of great importance later on, that
Einstein opts for a metric signature with a time variable (as well as a proper
time) having real values:
ULUE HUCI AUL WT LIZKT CIULZUWASIUM; VU ©S ULL LALGgh Aivgravaav, sy
Wir gehen nun in solcher Weise vor. Die g,, seien in :nu]ltezi
Niherunge« durch folgendes, der urspriinglichen Relatlvxthtstheone entr .-
sprechende Schema gegeben

—1 o) o o
0 —I o) o
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oder kiirzere

Foe =0,

gﬂ. — gl»g = o_ .

Gyy=1

Hierbei bedeuten p und o die Indizes 1, 2, 3; &,, ist 8‘1‘31@1‘:131-.@:
je nachdem p = ¢ oder p& ¢ ist. ]

Fig. 6 — Einstein's choice of a metric signature (+ - - -).

The solution of his field equation is a four-dimensional hypersurface. It is
clear that his choice of variable is within R* and the element of length ds is
real.

In the following excerpt, he gives an approximate expression of the metric
potential g,,, introducing a quantity o, a Greek letter that Schwarzschild

also choses to designate the constant of integration of his nonlinear solution
in January 1916.

Erste Approximation.

Es ist leicht zu verifizieren, daB in Grofen erster Ordnung . den
@Gleichungen (1) und (3) sowie den-eben genannten 4 Be(iingungen
geniigt wird durch den Ansatz

‘ o'r by : )
Gee = —2, +“(dx3w _L)"‘:'—a\e'-'“'"f.s— :
1 o o . (4b)

= ] — —
Jas = S e iy A S

Die g,,bzw. g,, sind dabei durch Bedmgung 3 festgelegt. vbedeutet die

GroBe + Vo +xi+4-x3, @ eine durch die Sonnenmasse bestimmte Kon-
stante. :

Fig. 7 - Einstein's approximation, linearized solution of his field equation.



Letters x,,x, ,x, denote real space coordinates from which he designates as

1277272
polar coordinate  x +x; + x;

Using polar coordinates, he finds the Newtonian area law:

L7IUNT ULUIU]IUHB’ULI zmgcn, Uadld dll LUr Sliy Oyue L‘!uuurung O ==&,
setzen kann. Dann sind die ersten drei Gleichungen genau die Nzw-
ronschen. Fithrt man in der Bahnebene Polargleichungen r,¢ ein, so
liefern der Energie- und der Flichensatz bekanntlich die Gleichungen

-(8)

Sitzungsberichte 1915,

Fig. 8 - Einstein: area law (Kepler's second law of planetary motion).

Going from the variable r to its inverse 1/r, he expresses the form of the
geodesic solution:

838 Gesamtsitzung vom 18. November 1915

Der vom Radiusvektor zwischen dem Perihel und dem Aphel
beschriebene Winkel wird demnach .durch das elliptische Integral

@2
(]

dx
e . 2 A a g ’
V i +B2x—-x ~+ a2’
LY
cmabiat o wnd o diaienicen Wnrzaln _der (Flaichune

Fig. 9 - Quasi Newtonian solution.

To stick with the chronology, we have to mention the communication
presented by the great mathematician Hilbert at the Gottingen Academy of
Sciences, in the session of November 20, 1915. [5]

He gradually got involved about a possible mathematization of physics
through a variational approach. The same month as Einstein's presentation
of his finalized version of general relativity, Hilbert presented a first paper
entitled "The Foundations of Physics", extremely ambitious. At that time,



physics boils down to two sets: gravitation and electromagnetism. Everyone
thinks that the one who would succeed uniting these two worlds (in what
will later be called a "unified field theory") will master all the physics of his
time. This is the meaning of Hilbert's paper.

Such a work will be pursued by Einstein, who will also fail in this venture. We
know today that in order to combine gravitation and electromagnetism
together, four dimensions are not enough. To begin with, a fifth dimension
would be mandatory: Kaluza's fifth dimension.

But very quickly, Hilbert did not feel satisfied with his article and decided to
withdraw it to make changes.! As will be seen later, he will present a second
communication in December 1916 [6] and it is this version, very similar to
the first one, that we will comment on.

At that time of war, Karl Schwarzschild, 43 years old and already the father
of three children, joined with the rank of lieutenant, by patriotism, to fight on
the Russian front. He is already an astronomer and a confirmed mathema-
tician. Taking note of Einstein's paper, he publishes in January and February
1916, not one article, but two, in which he presents his nonlinear exact
solution of the field equation. [7] [8] Here is the title of the first paper:

~ Uber das Gravitationsfeld eines Massenpunktes;
nach der KINSTEINSchen Theorie..

Von K. SCHWARZSCHILD.

(Vorgelegt am 13. Januar 1916 [s. oben S. 42].)

§ 1. Hr. Emwsteiy hat in seiner Arbeit iber die Perihelbewegung
des Merkur (s. Sitzungsberichte vom 18. November 1915) folgendes
Prahlam  oactallt.

Fig. 10 - First Schwarzschild's paper on January 13, 1916
"On the gravitational field of a mass point according to Einstein's theory."

1 Although Hilbert's first communication was presented during the session of November 20, 1915, Hilbert
will prevent its publication for months in order to make modifications. In particular, he will change the field
equation a posteriori to use the divergenceless version presented by Einstein on November 25. The final
version of his paper will be published in 1916, keeping the date of November 20, 1915. Hilbert did not
"invent the field equation” five days before Einstein as one can sometimes naively hear it.



He quickly situates his solution by setting coordinates:

Scnvuazscmm Uber das Grawtatxonsfeld eines Massenpunktes . 191

i ds = Fd¢’— G (dx® +dJ +dz*) — H(xdx+ydy+zdz)

W()bel F, G, H Funktionen von|r = - V2 +y* + 2* sind.
Die Forderung (4) vellanfrt Tir r=o0c0: F=G=1, H=o0.
Wenn man zu Polarkoordinaten gemiB x = rsin3cos¢, y =

7 sin Ssing, 2 =rcos% ubelgeht lautet dasselbe L1n1enelement \

ds* = Id t——G(dr + 7’ dS* 471" sin Sd(p)-—Hl dr?
= Fdt*— (G + Hr*)dr*— Gr* (dS* + sin* Sd¢’).

Indessen ist das Volumenelement in Polarkoordinaten gleich
*sin $drddd¢, die Funktionaldeterminante der alten noch den neuen
Koordinaten *sin & ist von 1 verschieden; es wiirden also die Feld-

(6) . —

Fig. 11 - Schwarzschild defines his coordinates.

"One calls t the time and X, y, z the rectangular coordinates". These
coordinates are real. If he had opted for coordinates that could take on
imaginary values, he would have mentioned it. So he chooses a
representation in R’. Then he goes to a polar coordinate system, writing
x=rsinfcos@, y=rsindsing, z=rcos® with

r=yx’+y 4z’

which implies >0, at least for the choice of a representation where

variables (x,y, z ) belong to R. At this point, it should be noted that ris not
aradial distance, but a simple space marker, a simple number. Schwarzschild
then introduces what he calls an "auxiliary quantity” (Hilfsgréfse):

wobei die Hilfs&ﬁﬁe

R = (3a,+p)" = (r°+ )"

eingefiihrt ist. :
Setzt man diese Werte der Funktionen f im Ausdruck (g) des
Linienelements ein und kehrt zugleich zu gewdéhnlichen Polarkoordi-
naten zuriick, so ergibt sich das Linienelement, welches die
strenge Losung des Einsteinschen Problems bildet:

dR?

I —af

v

R-R (d°~’+ sin® $d¢’), R = (r*+a%)"2. (14)

ds* = (1 — o/ R)dt*—

Dasselbe enthiilt die eine Konstante z. welche von der Grofie der im
Ala1lennli bheladliclhon Mosan obhbhiissrat

Fig. 12 - The solution expressed with auxiliary quantity R.
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In so doing, he calls his constant of integration « in order to tally with
Einstein's 1915 paper [3]. Using this set of variables {/,R.0,¢} he

calculates the geodesics. Like Einstein, he notes that these geodesics are part
of planes and he chooses, like him, the plane 6 = /2. It is again with this
auxiliary quantity R that he expresses the area law:

QAL LE VULL ¢ UlW Yull g Dilu, CLECUCLL DIULL MTL ULV allaulull SuULuru

drei intermediire Integrale. Beschrinkt man sich gleich auf die Be-

wegung in der Aquatorebene (Sr — 90° /S = 0), so lauten diese inter-
VSR o

medmren Inte(rmlc

(At 1 (aRY o fde\
(1 'L/R)(ds) I—oL/R(dS) R(E = const. = A&, (15)

: d
—— R’d—f=const.=o, -~ (16)

_odt ; ;
(I—ac,/lﬁ)d—s = const. = 1 (Festlegung der Zeiteinheit). (17)
~Daraus_folgt

) +R* (I—oL/R '—;[I—/Z(I—-a/R)] 1

dp
—p oder fir 1/R ==z P
dz\* 1—h h - e
(-—E) =2 /l +—;ix—x’+ax3. - {8y !
— \d¢) ¢ ¢ - =
¢’ 1—Ah -
Fuhrt man- die Bezelchnungen o B, —5 = 2 A ein, so ist dies

1dent1sch mit Hln EinstEmns Gleichung (11) a.a. 0, und glbt die beobach- .
-tete Anomalie des Merkurperihels.
TT]’\PT‘]‘IQ"Y\‘I’ oaht hiarmanh Hrm Hrverrcrve Annidhaminoe fin dia nokn- j

Fig. 13 - Schwarzschild calculates the geodesics ®(z): eq. (18)

The same applies to equation (18) for the expression of the solution in the
form of an integral based on the variable x = 1/r (and not on the variable r)
as in Einstein's paper. It is clear that he orientates the expression of his
solution to stick closely to the Einstein's result.
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But this detail is quite secondary to him, inasmuch as the conditions of
planetary astronomy makes the two quantities practically equal, which he
notes a little further on (Es ist also praktisch R mit r identisch):

ATUILLU duadl WG DCLCIVUMUUWUECIL, T —— 42y, T = £ /1 Clll, DU IdL WIEd

[ h h
1dent1sch mit Hrn. Envstemnvs Gleichung (11) a. a. O und gibt die beobach-
—tete Anomalie ‘des Merkurperihels. e
% , Uberha.upt geht hiernach Hrn. Exxstemss Annaherung fiir die Bahn-- _
=~ kurve in dJe strenge Losung iber, wenn man nur statt 7 die Groﬁe

l"__f Bt vaL3 13 4 -
K= (r3+oc3)'/3—r I+r -}

;dle Klam- =
~ mer selbst fiir Merkur " nur um GroBen der Ordnung 10~** von' 1. ver-

“schieden.. Es ist also Praktlsch R mit 7 identisch und Hrn. EixsTrINS

_ Anniherung fir die entferntesten Beddrfnisse der Praxis ausreichend..
- 7nm SehlnfR_call nach dis _ctrence Foarm dac dwititan Weanrenoabon

—geschmndagkel’r(Emhelt d1e Lmhtgeschwmdrgkem) 1st,iso ist

Fig. 14 - Schwarzschild's solution meets Einstein's.

Translation of the underlined passage:

"Therefore r is virtually identical to R"

After Schwarzschild's death, his work was first presented to the community
of mathematicians by Frank [9] then quickly taken up by Droste [10], Weyl
[11] and of course, Hilbert [6].

It is the media, mostly American, that will fashion Einstein's image as an
isolated genius, author of a theory that a tiny number of people would have
been able to understand. This does not in any way reduce Einstein's merits,
but he was in fact at the forefront of physics, in which a relatively large
number of researchers, mainly German-speaking, were already involved.
Among them, Schwarzschild.
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Scientific articles were then published in German, and at that time accessing
such work is done by reading "offprints"”, sample copies on paper, which are
transmitted by postal services. Subsequently, the same papers are made
available, grouped in books, but still in German. It was only in the 1970s,
more than half a century later, that this documentation was translated in
English, and later on made available as PDF files. The modern distribution of
these files through the Internet is something very recent. Only a few decades
ago, in order to distribute simple copies of articles, researchers had to type
their works on tracing papers, then use them to expose a UV-sensitive yellow
sheet. And finally, embedding the copies within ammonia vapors to reveal
the content. I personally experienced this technique in the 1960s. The
scanner, an essential part of photocopiers, will only be put on the market in
the late 1960s.

All this to tell the works of Einstein and Schwarzschild have spread to the
scientific community in the form of commentaries, not in their original form.

However, one should note that Droste [10] and Weyl [11] chose the element
of length as always positive, associated with a metric signature (+ - - -):

3. Zur Gravitationstheorie;
von Hermann Weyl,

Inhalt.
A. Zusidtze zur allgemeinen Theaorie.

§ 1. Herleitung eines Hamiltonschen Prinzips zur Losung solcher
Duahlosna Aia__hai aanaoman hontican  aohn lialanhafian Kanntnia  dar
w \l/i WO AT1ILVIIIT U WUTLT1Y ¥y wiviavia Ubl..l..ls \UCD\JLJ. Yy JJ.AULBAC.I U, . AAREN

miissen voraussetzen, daf} diese Richtung eine zeitartige ist,
d.h. daB fir sie ,

dsd= gikdmidxk >0

wird. Statt der Differentiale dz,; schreibe ich fortan, da alle
unsere Betrachtungen sich auf die eine Stelle P beziehen,
einfach z;.
Zwei Linienelemente z;, ;' heiBlen orthogonal, wenn
G T 2 =0

ist. Ich behaupte zunidchst, daf alle (von P ausgehenden)
Linienelemente, die zu dem zeitartigen e orthogonal sind,
ihrerseits raumartig sind, daB sie also ein unendlich kleines
dreidimensionales Gebiet R aufspannen, welchem dureh die
Form —ds? eine positiv-definite MaBbestimmung aufgeprigt
ist. Die Monade erlebt dieses Gebiet R als seine unmittel-

L\ﬂ“ﬂ \":’]"I‘Im];ﬁ}\f\ TTYV\NI\"\'I'I“I‘“ TT"Y\ R R aWaVat ' Val pf\l‘\ﬂ“l'\“\“ﬂ brahl

Fig. 15 - Excerpt of Weyl's 1917 paper.
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Still in Weyl's paper, we find such a signature and the mention of a real and
essentially positive polar coordinate r.

B. Theorie des statischen rotationssymmetrisehen Gravitationsfeldes.
§ 4. Massenpunkt ochne und mit elektrischer Ladung.

Fir das Folgende ist es notig, zu der Schwarzschild -
schen Bestimmung des Gravitationsfeldes eines 1uhenden
Masscnpunktes®) einige Bemerkungen zu machen. Ein drei-
dimensionales kugelsymmetrisches Linienelcment hat bei Be-
nutzung geeigneter Koordinatcn notwendig die Gestalt

do? = p(da®+daw,® 4 dag?) + 1 (2 dxy + 2, dxy + 74 dg)?,

wo g und ! nur von der Entfernung

o CEEAET

abhingen. Uber die Skala, in der diese Entfernung gemessen
wird, kann noch so verfiigt werden, daB g =1 ausfillt; das
moge geschehen. Fiir das vierdimensionale Linicnclement |
haben wir den Ansatz zu machen

ds® = fdr? - do?,
wo auch f nur eine Funktion von r ist. Setzen wir noch
1+1r2=nh

wnd _dia Whreol _ance dor Datcrmiinanta bhd oliials an  con o ild

Fig. 16 - In Weyl (1917): the polar coordinate and the signature.

Similar mention with Droste, in his paper communicated in English by
Hendrik Lorentz sixteen days after the death of Schwarzschild, but published
only the following year. [10]

Physics. — “The field of a single centre in EINSTEIN'S theory of
gravitation, and - the motion of a particle in that field.”. By
J. Droste. (Commumcated by Prof. H: A. Lorentz).

\

(Communicated in the meeting of May 27, 1916).

Tss _t+1x2a _nnmmaniaotione N T avnlainad o sxraxw faw +ha _anlanlatinn AF

CBY T 2 e e DR )
For a centre at rest and symmetrical in all directions it is easly
seen that

ds’ = w* di* — u® dr® — v* (d9* + sin® 3 dep”), s (2
w, u, v only depending on 7, and (&, ¢) representing polar coordi-
nates. Now, 1f ¢., and therefore also ¢*» are all zero, if i=/=j, G

heroalro 11n_antn_ o1y _nianae _aanh af tham wmalatina ta _twn andinae Wa

Fig. 17 - Droste specifies on May 27, 1916 the signature he chooses.
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It does not seem to come to anyone's mind to extend this solution for r <«
which would imply a modification of the signature of the metric.

It is then that Hilbert presents the second communication of his long article
"The Foundations of Physics":

Die Grundlagen der Physik.
(Zweite Mitteilung.)
Von
David Hilbert.

Vorgelegt in der Sitzung vom 23. Dezember 1916.

In meiner ersten Mitteilung ') habe ich ein System von Grund-
gleichungen der Physik aufgestellt. Ehe ich mich zur Theorie der
Integration dieser Gleichungen wende, erscheint es nitig, einige
allgemeinere Fragen sowohl logischer wie physikalischer Natur zu

erortern.
7‘1“3!\‘1&" {:{“IT‘Q“ m;v‘ an Q+A‘]A ADT‘ WA]*“OFQ"\A“O" a4 {C' —_—

Fig. 18 - Hilbert's second communication, December 23, 1916.

In this sequel to his first communication presented the year before, he takes
his work over and includes the Schwarzschild solution published in January.
Hilbert knows that he died. Einstein delivered a memorial lecture on Karl
Schwarzschild [12] on June 29, 1916 at the opening meeting of the Royal
Prussian Academy of Sciences, Berlin. But Hilbert does not seem to focus
much on this result, which appears to him as a detail in the vast scientific
saga he intends to carry out on both gravitation and electromagnetism. Let's
see his mention of Schwarzschild's solution.

In his paper, Hilbert mentions a central symmetry (zentrischsymmetrisch):

die Grundlagen der Physik. : 71

Gravitation einer in der Umgebung des Nullpunktes zentrisch-
symmetrisch verteilten Masse anzusehen'). Im gleichen Sinne ist
auch der Massenpunkt als der Grenzfall einer gewissen Verteilung
der Elektrizitit um einen Punkt herum aufzufassen, doch sehe
ich an dieser Stelle davon ab, die Bewegungsgleichungen desselben
aus meinen physikalischen Grundgleichungen abzuleiten. Ahnlich
verhidlt es sich mit der Frage nach den Differentialgleichungen
fiir die Lichthewegung.

Fig. 19 - Hilbert's hypothesis of a central symmetry.
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He then introduces polar coordinates and designates a fourth variable by the
letter I:

Z. UIe g, SINA VO Ger 4eltkoorainate Z, unapnangig.

3. Die Gravitation g,, ist zentrisch symmetrisch in Bezug
auf den Koordinatenanfangspunkt.

Nach Schwarzschild ist die allgemeinste diesen Annahmen
entsprechende Mafibestimmung in rdumlichen Polarkoordinaten, wenn

w, = recosd
w, = rsindcos @
w, = rsindsing
% w, = 1
gesetzt wird, durch den Ausdruck
(42) F(r)dr* 4+ G (r) (d9* + sin’ dg®) + H(r)dl’

dargestellt, wo F'(»), G (»), H(r) noch willkiirliche Funktionen von
r sind. Setzen wir

= VG0,
so sind wir in gleicher Weise berechtigt +*, &, ¢ als rdumliche

Polarkoordinaten zu deuten. Fiihren wir in (42) »* anstatt » ein und
lassen dann wieder das Zeichen * weg, so entsteht der Ausdruck

(43) M(r)dr® + r* @9 + 1" sin* & dg® + W(r)dll,

wa AN Wiy die zwei wecantlichon wrilllriirlichan  Fnnltianan

Fig. 20 - Hilbert opts for polar coordinates.

There are several things to note in this excerpt of fig. 20. We can read in the
underlined passage of hypothesis #3:

"The gravitation is centrally symmetric with respect to the
origin of coordinates."

We find again the theme of a solution with a central symmetry, and not a
spherical symmetry.

In equation (42) he presents the bilinear form of his metric, and then

introduces the hypothesis r*=, G(r) where this variable r* quickly
transforms into r. The translation is:

"If we introduce r* in (42) instead of r and then eliminate the
sign *, the result is the expression (43)."
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This hypothesis will then totally guide his solution. Incidentally, Hilbert
indicates the nature of his temporal coordinate I

LGULL WY UOUMULIVAL WAU G4 GAIVALS U ASUSWALE UL A AVAVLULE UM (VY] WiusL
den gemachten Annahmen 1., 2., 3., dar. Nehmen wir als Integrale
von (44) m = «, wo « eine Konstante ist und w = 1, was offenbar
keine wesentliche Einschrinkung bedeuntet, so ergibt sich aus (43)

oy fiir | = it die gesuchte MaBbestimmung in der von Schwarzschild
zuerst gefundenen Gestalt

r

P dr* +r* d9* +r*sin* & do* — ’—:—Di i g
f—

45) G (dr, a8, dg, dl) =

Die Singularitét dieser Mafbestimmung bei » = 0 fillt nur dann

*"n'-‘- wroann o — () _cconamman  soind 4 h Nia MoaRhaodimmuanao

Fig. 21 - Hilbert's pure imaginary time and his formulation of the solution.

For Hilbert, spacetime is a fiber bundle, built from a real space (x,y, z ) but
the fiber, i.e. the fourth coordinate /, is purely imaginary.

Regarding Schwarzschild's solution, this passage is absolutely crucial and
will guide a century of scientific work. Hilbert makes a confusion when he
writes:

"then for | =it (43) results in the desired metric in the form first
found by Schwarzschild."

If his solution is completed (45) it should be written:

2

ds* = - (1-Lyar + A gy r’sin’ 9 do’
r 1—9
r

whereas the real Schwarzschild solution is:

dR?

ds’ = (1—%)dﬂ - — R*d®* - R’sin* 9 dg’ R=(r*+a)"”

1=

R
The difference is obvious. Hilbert confused his coordinate r with the auxiliary
variable R introduced by Schwarzschild. He also chooses a reverse signature.

In the rest of the paper, Hilbert comes back to this choice of variable in a
footnote, considering it merely pointless. He sees it only as a wish to reject
the singularity back to the origin.
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. do
2 2 —
(48) 7" sin ﬁ—dp = B
r—oa di 5
49) o

wo A, B, C Integrationskonstante bedeuten.

[ 1) Die Stellen r = « nach dem Nullpunkt zu transformieren, wie es Schwarz-
schild tut, ist meiner Meinung nach nicht zu empfehlen; die Schwarzschildsche
{ Transformation ist iiberdies nicht die einfachste, die diesen Zweck erreicht.
2) Dieser letzte einschriinkende Zusatz findet sich“weder bei Einstein noch
bei Schwarzschild.

Fig. 22 - The footnote in Hilbert's paper mentioning Schwarzschild's work.

Translation:

"To transform the locations to the origin, as Schwarzschild
does, is not to be recommended in my opinion,
Schwarzschild’s transformation is moreover not the simplest
that achieves this goal."

Hilbert considers that what happens at this Schwarzschild sphere is a true
singularity, whereas it will be classically shown afterward that it is only a
coordinate singularity, that can be cancelled out with an appropriate change
of variable.

Geometry signification

The solution to Einstein's equation is a four-dimensional hypersurface.
Einstein, Schwarzschild, Frank, Droste, and Weyl relied on the idea that the
element of length s, hence the proper time, the only thing independent of the
choice of coordinates on this hypersurface, is a real quantity.

Let's go back to Schwarzschild's 1916 solution. Schwarzschild does not make
it explicit, simply because he does not see the point in it. He merely wants to
show the same result as Einstein's explanation of the precession of the
perihelion of Mercury. No one at this time thinks astronomical objects
requiring a nonlinear treatment of the problem could really exist. His
quantity a is nothing but what will later be called the Schwarzschild radius Rs.
He immediately notices that for the Sun, it is equivalent to one hundred
thousandth of its diameter. As it happens, in his second paper publish in
February 1916 [8] which we will come back to, he built a geometry within a
sphere filled with a fluid of constant density, a non-singular solution, so he
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does not find relevant to deal in his first "exterior solution" paper with a
region of space that is related to the "interior solution".

In 2011, Christian Corda [13] makes this solution explicit:

dsz:(r3+a3)lv’3_a —_— rd

(r +a’)” (P +a)) (@ +a’) o]

dr’—(r’ +a’)*?(d6* +sin’ 6 dop?)

Keep in mind that such a metric can be expressed in any arbitrary coordinate
system. These coordinates are then merely numbers, space markers. The only
size having an intrinsic property is the length s. Then, all boils down to the
choice for this length.

If we decide that this length s is real, then such an expression designates a
4D hypersurface. The choice of angles 8 and ¢ implies a solution with a
spherical symmetry (instead of a central one). Helical geodesics exist on this
hypersurface, that can be expressed giving a fixed value to 6, and fixing the
coordinate r. The variables t and ¢ linearly depend on the parameter s. Thus,
they are both related by a linear function. Spatial projection of such geodesic
can be calculated: they simply become circles.

It is therefore possible to travel along this hypersurface, drawing parallel
circles. If their perimeter can reach +oo it is however limited to less than 2mna.
If the value of the angle fis varied then this family of parallel circles
generates a family of parallel spheres. Let us note that we deliberately use
the word "parallel” and not "concentric" because the Schwarzschild solution
has a spherical symmetry and not, as written by Hilbert, a central one.

As we skim through this series of parallel spheres, by reducing their area, at
some point a minimal value is reached (if we decide that the hypersurface is
real). This situation is met:

e Either for the value R = a in the case of what we call "Hilbert's
representation” (7,R,6,¢) (introducing the auxiliary quantity R
according to Schwarzschild).

e Or for the value r = 0 in Schwarzschild's representation (¢,R,0.,¢).

This hypersurface is thus uncontractible. How to interpret it?

One can of course decide it is a manifold with boundary. A boundary,
incidentally, along which the determinant of the metric is zero in
Schwarzschild's representation. This will be discussed in the second part of
this article. But in the 1960s, other paths were considered.
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Extensions of the solution and their meaning

Decades after the emergence of the Schwarzschild solution, it is known only
through subsequent comments published afterward. I was very surprised at
a recent international conference on black holes 2 held in Frankfurt
(Schwarzschild's birthplace), specifically entitled "The Karl Schwarzschild
Meeting", that no attendee, including German natives, had never read the
founding papers I have just mentioned, as if the origin of the model were lost
in the mists of the past. In his masterly lecture in front of all the delegates,
Juan Maldacena said:3

— The Schwarzschild solution has confused us over a hundred years and it has
forced us to sharpen our views on space and time. It has led to a sharper
understanding of Einstein’s theory. Experimentally, it is explaining several
astrophysical observations. Its quantum aspects have been a source of
theoretical paradoxes that are forcing us to understand better the relation
between spacetime, geometry and quantum mechanics.

This text suggests that the immediate understanding of the Schwarzschild
solution remained limited for a while, but thanks to further studies, a century
of work made it possible to improve this reading by introducing an extended
view of spacetime.

Why do astrophysicists refer to the Schwarzschild solution?

As will be discussed in the second part of this article, Schwarzschild had
completed in February 1916 his first "exterior solution" [7] with a second
"interior solution" [8] related to the geometry within a sphere filled by a fluid
of constant density. At this point, the geometry describing a star immersed
in a vacuum was completely achieved.

But progress in observations would reveal a new problem. In our galaxy, half
of the stellar systems are multiple star systems. So there should exist a quite
large number of binaries where one of the two stars became a subcritical
neutron star, that could still be described with the two exterior and interior
Schwarzschild metrics. Its companion star is then called the donor, as it

2 3rd Karl Schwarzschild Meeting on Gravitational Physics and the Gauge/Gravity
Correspondence (KSM 2017), 24-28 July 2017, FIAS, Frankfurt am Main, Germany.

3 https://indico.fias.uni-frankfurt.de/event/4 /session/17 /contribution/39




20

continues to emit stellar wind that is gravitationally captured by its small
companion, named the accretor.

In his first paper, evaluating the critical radius (o« =R =2m) and relating it to

the mass responsible for this geometry, he had concluded that beyond a
certain value, this "Schwarzschild radius" could exceed the star radius.

This is the question asked by observers to theoreticians:

— Assuming that a supernova only left a subcritical neutron star after its
gravitational collapse, what happens when the additional mass supplied by
the stellar wind of a donor companion star triggers the geometric criticality
in the neutron star?

A question impossible to avoid. Theoreticians therefore imagined that the
exterior Schwarzschild solution, yet referring to a portion of an empty space,
could describe a new state of matter, popularized by the name "black hole".

The proposed analytic extensions

What is the current presentation of this Schwarzschild solution? Take for
example the book of Adler, Bazin and Schiffer. [14] Page 187, equations (6.4)
and (6.5) the authors reiterate Hilbert's hypothesis, writing:

ds’ = Ac*dt’ — Bdr®> — C(d6’ +sin’0d¢’) F=yC(r)r
A few lines later, the solution was again particularized, see equation (6.9):

Quelques lignes plus loin, la solution a de nouveau été particularisée, voir
I’équation (6.9):

ds’ =’V c’dt* — e"Vdr? —r*(d6* +sin’0de’)

Unless the functions v(r) and A(r) have the possibility to be imaginary, the
impression is this writing militates for a signature (+---). In this realistic

view, the metric refers to a hypersurface where the only relevant variable,
independent of the choice of coordinates, is the quantity s. This is the proper
time, lived by any test particle. For a distant observer however, this proper
time is identified to the variable t. Thus, we conclude that the coordinate time
tis the one experienced by the distant observer. The following figure is found
in every book about general relativity. It compares the free fall time
measured either by the clock tied to a test particle falling towards the
Schwarzschild sphere, or the one of a distant observer.
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t, Coordinate Time

2mp-———\—————= - ——

s/c, Proper Time Time Marker

. t or s/

Fig. 23 - Fall toward the origin of a Schwarzschild geometry
in terms of coordinate time t and proper time on the test particle s/c.

Thus, whatever the phenomenon witnessed by the observer, it is supposed
to unfold before his eyes during an infinite amount of time, which allows the
theoretician to add:

— I do not feel bound to describe the result of a process which, to my eyes,
takes place in an infinite time.

In passing, the New Zealand mathematician Roy Kerr [15] extended this type
of solution to a "rotating black hole" thanks to a metric with a less
constraining symmetry. The surface that has been called the "event horizon"
takes the topology of a torus. But the frozen time, this freeze-frame, is also
present in this model.

In 1960, Joseph Kruskal [16] and George Szekeres [17] constructed a first
analytic extension, which Maldacena described as "extending the solution to
cover the full spacetime".

We shall also cite Corda, who implements another analytic extension of the
solution. [13]

In 1989, Canadian physicist Leonard S. Abrams published a paper [18] on the
Schwarzschild solution entitled "Black Holes: The Legacy of Hilbert's Error”
pointing out the same problems as those mentioned above. Questions also
taken up by Italian physicist Salvatore Antoci. [19] [20] Those articles had
practically no echo within the scientific community, except for a text
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positioned in a blog 4 by a mathematician and computer scientist,
W. D. Clinger, presenting himself as a topology specialist. He resumes the
arguments of Abrams, writing:

— The paper is well-written, and its math is almost (but not quite) correct.

A little further on, his criticism gets stronger: "Where Abrams went badly
wrong." He then provides the correct way to proceed:

— In reality, the "quasiregular singularity” at the central point mass of the
original Schwarzschild spacetime can be removed by allowing the radial
coordinate r to go negative.

In other words, it is enough to consider the extension of the solution for the
values of =4/ x>+’ +z’ <0 i.e.in an imaginary portion of spacetime...

For that matter he quotes Corda, who does the same and constructs a
description of the gravitational collapse of the neutron star which ends at a
negative value r=-o=-R <0.

To the extent that these authors grant themselves the freedom to extend
spacetime to an imaginary portion, this can no longer be criticized. On the
other hand, these people call "crackpots" anyone who does not feel satisfied
with such a formula.

Conclusion

In 1916, Einstein then Schwarzschild developed solutions to the field
equation, the first through linearization and the second nonlinearly, which
refer to real values of the coordinates and to a real value of the length s,
measured on the four-dimensional hypersurface using the metric. This work
is then taken up by different authors, like Frank, Droste, Weyl, always with
the same perspective. This approach implies the constancy of an explicit
metric signature (+---).

On this panorama comes the interpretation given by the mathematician
David Hilbert, who starts from a different vision where time, and proper time,
are presented as pure imaginary quantities, as opposed to real space
coordinates, which goes hand in hand with a choice of metric signature
(-+++) and explains the hyperbolic property of this solution.

4 http://www.internationalskeptics.com/forums/showthread.php?t=231833
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When half a century later, astrophysicists are asked to provide a model able
to describe a destabilized neutron star, they opt for the solution found by
Hilbert, deciding to extend it, via analytic continuation, to an imaginary
portion of spacetime, where the element of length becomes purely imaginary
and where the signature of the metric is inverted. The goal is not to stop at
the surface of the Schwarzschild sphere, and to be able to carry their
investigations towards the "interior of the object".

[t all depends on what is considered to fall within the scope of physics or not.

In the second part of this paper, we will present a different scenario, in which
all quantities remain real and, as a corollary, the metric keeps a signature

(+———).
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