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Mass	inversion	in	a	critical	neutron	star:	
An	alternative	to	the	black	hole	model.		
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Abstract:	In	this	first	part,	we	present	a	documented	historical	background	
about	the	Schwarzschild	solution	to	the	field	equations	of	general	relativity,	
as	originally	considered	by	Karl	Schwarzschild,	as	well	as	Johannes	Droste,	
Hermann	Weyl	and	Albert	Einstein,	in	its	linearized	form.	We	also	detail	how	
David	Hilbert	assumed	this	question,	with	a	pure	imaginary	time.	Finally,	we	
discuss	extensions	of	 the	 solution	 through	analytic	 continuation	and	 their	
geometry	implications.		

_______________________________________________________________________________________	

Introduction	

The	black	hole	model	remains	a	belief	within	the	scientific	community.	

It	is	true	that	in	the	recent	history	of	science,	the	existence	of	many	objects	
and	phenomena	has	been	conjectured	long	before	they	have	been	effectively	
observed.	Yet	many	of	them	had	a	lot	to	stir	up	skepticism.	An	example	was	
antimatter,	imagined	by	Sir	Arthur	Schuster	in	1898,	theorized	by	Paul	Dirac	
in	 1928,	 before	 the	 first	 observation	 of	 positrons	 in	 1932.	 Later,	 the	
phenomenon	described	in	1935	by	Einstein,	Podolsky	and	Rosen,	named	the	
EPR	paradox,	was	demonstrated	decades	after	its	authors	presented	it	as	a	
denunciation	of	the	infallibility	of	quantum	mechanics.	

Swiss-American	 astrophysicist	 Fritz	 Zwicky	 described	 how	massive	 stars	
could	violently	end	as	supernovæ,	in	a	memorable	Caltech	lecture	course	in	
1931.	According	to	him,	such	a	star	running	out	of	fusion	fuel	would	end	in	a	
violent	 gravitational	 collapse	 at	 an	 incredible	 high	 speed,	 converting	 its	
potential	energy	into	kinetic	energy.	This	outburst	of	a	very	large	quantity	of	
mass	 would	 compress	 the	 internal	 iron	 core	 into	 a	 totally	 new	 object:	 a	
neutron	star.	
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This	model	is	at	first	greeted	with	general	skepticism,	and	very	few	scientists	
agree	 with	 such	 a	 singular	 idea.	 But	 after	 tremendous	 efforts,	 Zwicky	
managed	to	gradually	demonstrate	the	phenomenon.	

Nowadays,	no	one	would	venture	to	question	the	existence	of	antimatter,	or	
quantum	entanglement	involved	in	the	EPR	paradox,	or	supernovae.	As	for	
astronomical	phenomena,	the	situation	is	very	simple.	The	cosmos	is	vast.	If	
the	supernova	phenomenon	statistically	occurs	in	our	galaxy	at	a	rate	of	only	
one	per	century,	the	extension	to	all	observable	galaxies	brings	their	number	
to	tens	of	thousands.		

Related	to	supernovæ	was	the	question	of	the	existence	of	neutron	stars.	The	
first	ones	were	discovered	 in	1967	as	pulsars	(highly	magnetized	rotating	
neutron	 stars	 acting	 as	 pulsed	 radiation	 sources).	 The	 relation	 with	
supernovæ	was	soon	established,	one	of	these	pulsars	being	located	in	the	
middle	of	the	Crab	Nebula,	remnant	of	a	supernova	whose	visible	explosion	
in	 1054	 is	 testified	 by	 Chinese	 records.	 Today,	 their	 number	 has	 reached	
hundreds	of	samples,	in	every	corner	of	the	galaxy,	including	near	distances.	
No	reasonable	scientist	would	now	doubt	of	their	very	existence.	

But	this	 is	not	the	same	at	all	about	stellar	black	holes,	whose	existence	is	
practically	inferred	by	just	one	observation:	the	Cygnus	X-1	binary	system,	
whose	distance	from	us	is	evaluated	at	6,000	light-years.	This	rarity	is	very	
abnormal.	 At	 such	 a	 large	 distance,	 its	 estimated	mass	 (about	 eight	 solar	
masses)	could	result	from	cumulative	observational	errors.	

This	very	anomalous	situation	gives	this	hypothetical	object	the	nature	of	a	
belief,	in	conflict	with	the	scientific	method.	

As	for	supermassive	black	holes,	all	that	can	be	said	for	the	moment	is	that	
these	are	very	important	concentrations	of	matter	(hundreds	of	thousands	
to	billions	of	solar	masses)	located	in	the	center	of	galaxies.	They	have	a	very	
large	mass,	but	not	a	very	high	density;	the	one	located	in	the	center	of	Milky	
Way	can	be	represented	by	a	sphere	half	the	solar	system	in	diameter,	filled	
with	matter	having	 the	 same	density	as	water.	 In	any	event	 they	are	new	
objects,	 which	 could	 be	 the	 remainder	 of	 quasar	 phenomena,	 but	 their	
signature	does	not	allow,	in	its	current	state,	to	name	them	black	holes.	

It	 is	 therefore	perfectly	 licit	 today	to	question	the	black	hole	model,	while	
proposing	an	alternative	scenario	to	the	fate	of	a	critical	neutron	star.	Indeed,	
in	X-ray	binaries	for	example,	a	stable	neutron	star	(the	accretor)	can	capture	
material	from	a	companion	star	(the	donor)	and	thus	becomes	at	some	point	
destabilized.	 To	 refuse	 such	 a	 study	 would	 be	 unscientific	 and	 would	 be	
tantamount	to	the	defense	of	a	dogma.	
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Prelude	to	the	birth	of	the	black	hole	model	

Before	literally	getting	to	the	heart	of	the	matter,	it	is	necessary	to	situate	the	
context	in	which	Schwarzschild	first	produced	a	nonlinear,	exact	solution	of	
Einstein's	 field	 equation	 in	 1916.	 In	 public's	 imagination,	 Einstein	 got	 a	
superhero	 origin	 story	 by	 the	 media.	 Actually,	 thanks	 to	 his	 remarkable	
ability	 to	 assimilate	 both	 the	 mathematics	 of	 his	 time	 and	 the	 palette	 of	
physical	 phenomena,	 he	was	 able	 to	 produce	 an	 impressive	 succession	of	
results,	including	in	1905	the	discovery	of	the	law	of	the	photoelectric	effect.	
But	at	that	time	a	number	of	German	and	Dutch	scientists	followed	this	path	
carefully,	 and	 were	 immediately	 able	 to	 understand	 and	 interpret	 any	
progress	made.	Schwarzschild	was	one	of	them.	

In	 1915,	 we	 find	 first	 important	 texts	 resulting	 from	 the	 collaboration-
competition	 between	 Einstein	 and	 the	 great	 mathematician	 Hilbert.	 In	
November	 1915,	 Einstein	 presented	 a	 finalized	 version	 of	 his	 theory	 of	
general	relativity	in	a	series	of	four	papers	at	the	Royal	Prussian	Academy	of	
Sciences	in	Berlin	[1]	[2]	[3]	[4].	At	first,	his	field	equation	is	not	divergence-
free,	 but	 he	 has	 the	 intuition	 that	 for	 distances	 small	 enough	 and	 for	
moderate	velocities	(which	corresponds	to	the	Newtonian	approximation)	
his	 equation	 should	 give	 the	 corresponding	 equations	 of	 fluid	mechanics,	
namely	the	Euler	conservation	equations.	He	modifies	his	field	equation	to	
make	it	divergence-free	in	[4],	whose	original	title	is:	

	

	
Fig.	1	–	Einstein's	original	paper,	November	25,	1915	

"The	Field	Equations	of	Gravitation."	

	

	

	



	 4	

And	here	is	the	corresponding	field	equation:	

		

Fig.	2	–	The	field	equation	finalized	by	Einstein,	25	November	1915.	

In	the	left	hand-side	of	his	equation	(6):	the	Ricci	tensor.		
The	following	is	the	English	translation	[4]	from	1997:		

	
Fig.	3	–	Translation	of	Einstein's	founding	paper.		

The	field	equation	with	zero-divergence	after	the	modification	of	November	25,	1915.	
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Einstein	is	obviously	interested	in	phenomena	Newtonian	mechanics	cannot	
explain.	On	November	18,	1915,	he	publishes	a	linearized	solution	of	the	field	
equation	without	a	second	member,	resulting	of	a	null	Ricci	tensor.	[3]	

	
Fig.	4	–	Einstein	explains	the	perihelion	motion	of	Mercury	on	November	18,	1915.	

	

In	this	solution,	Einstein	chooses	to	give	the	value	-1	to	the	determinant	of	
his	metric	solution,	a	hypothesis	Schwarzschild	will	take	again.		

	
Fig.	5	–Field	equation	with	no	right	hand-side,	and	determinant	-1.	
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It	 is	worth	mentioning,	 and	 this	will	 be	of	 great	 importance	 later	on,	 that	
Einstein	opts	for	a	metric	signature	with	a	time	variable	(as	well	as	a	proper	
time)	having	real	values:	

	
Fig.	6	–	Einstein's	choice	of	a	metric	signature	(	+	–	–	–	).	

	

The	 solution	of	his	 field	equation	 is	 a	 four-dimensional	hypersurface.	 It	 is	
clear	that	his	choice	of	variable	is	within	  !4 	and	the	element	of	length	ds	is	
real.	

In	the	following	excerpt,	he	gives	an	approximate	expression	of	the	metric	
potential	  g44 ,	 introducing	 a	 quantity	α ,	 a	 Greek	 letter	 that	 Schwarzschild	
also	choses	to	designate	the	constant	of	integration	of	his	nonlinear	solution	
in	January	1916.	

	
Fig.	7	–	Einstein's	approximation,	linearized	solution	of	his	field	equation.	
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Letters	  x1 , x2 , x3 	denote	real	space	coordinates	from	which	he	designates	as	
polar	coordinate	  x1

2 + x2
2 + x3

2 	

Using	polar	coordinates,	he	finds	the	Newtonian	area	law:		

	
Fig.	8	–	Einstein:	area	law	(Kepler's	second	law	of	planetary	motion).	

	

Going	 from	 the	 variable	 r	 to	 its	 inverse	1/r,	 he	 expresses	 the	 form	of	 the	
geodesic	solution:		

	
Fig.	9	–	Quasi	Newtonian	solution.	

To	 stick	 with	 the	 chronology,	 we	 have	 to	 mention	 the	 communication	
presented	by	the	great	mathematician	Hilbert	at	the	Göttingen	Academy	of	
Sciences,	in	the	session	of	November	20,	1915.	[5]		

He	 gradually	 got	 involved	 about	 a	 possible	 mathematization	 of	 physics	
through	a	variational	approach.	The	same	month	as	Einstein's	presentation	
of	his	finalized	version	of	general	relativity,	Hilbert	presented	a	first	paper	
entitled	 "The	 Foundations	 of	 Physics",	 extremely	 ambitious.	 At	 that	 time,	
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physics	boils	down	to	two	sets:	gravitation	and	electromagnetism.	Everyone	
thinks	that	the	one	who	would	succeed	uniting	these	two	worlds	(in	what	
will	later	be	called	a	"unified	field	theory")	will	master	all	the	physics	of	his	
time.	This	is	the	meaning	of	Hilbert's	paper.	

Such	a	work	will	be	pursued	by	Einstein,	who	will	also	fail	in	this	venture.	We	
know	 today	 that	 in	 order	 to	 combine	 gravitation	 and	 electromagnetism	
together,	four	dimensions	are	not	enough.	To	begin	with,	a	fifth	dimension	
would	be	mandatory:	Kaluza's	fifth	dimension.		

But	very	quickly,	Hilbert	did	not	feel	satisfied	with	his	article	and	decided	to	
withdraw	it	to	make	changes.1	As	will	be	seen	later,	he	will	present	a	second	
communication	in	December	1916	[6]	and	it	is	this	version,	very	similar	to	
the	first	one,	that	we	will	comment	on.	

At	that	time	of	war,	Karl	Schwarzschild,	43	years	old	and	already	the	father	
of	three	children,	joined	with	the	rank	of	lieutenant,	by	patriotism,	to	fight	on	
the	Russian	front.	He	is	already	an	astronomer	and	a	confirmed	mathema-
tician.	Taking	note	of	Einstein's	paper,	he	publishes	in	January	and	February	
1916,	 not	 one	 article,	 but	 two,	 in	 which	 he	 presents	 his	 nonlinear	 exact	
solution	of	the	field	equation.	[7]	[8]	Here	is	the	title	of	the	first	paper:		

	
Fig.	10	–	First	Schwarzschild's	paper	on	January	13,	1916	

"On	the	gravitational	field	of	a	mass	point	according	to	Einstein's	theory."	

																																																								
1	Although	Hilbert's	first	communication	was	presented	during	the	session	of	November	20,	1915,	Hilbert	
will	prevent	its	publication	for	months	in	order	to	make	modifications.	In	particular,	he	will	change	the	field	
equation	a	posteriori	to	use	the	divergenceless	version	presented	by	Einstein	on	November	25.	The	final	
version	of	his	paper	will	be	published	 in	1916,	keeping	 the	date	of	November	20,	1915.	Hilbert	did	not	
"invent	the	field	equation"	five	days	before	Einstein	as	one	can	sometimes	naively	hear	it.	
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He	quickly	situates	his	solution	by	setting	coordinates:		

	
Fig.	11	–	Schwarzschild	defines	his	coordinates.	

"One	 calls	 t	 the	 time	 and	 x,	 y,	 z	 the	 rectangular	 coordinates".	 These	
coordinates	 are	 real.	 If	 he	 had	 opted	 for	 coordinates	 that	 could	 take	 on	
imaginary	 values,	 he	 would	 have	 mentioned	 it.	 So	 he	 chooses	 a	
representation	 in	  !3 .	 Then	 he	 goes	 to	 a	 polar	 coordinate	 system,	writing	
  x= r sinθ cosϕ ,	  y= r sinθ sinϕ ,	  z= r cosθ 		with		

																																																													  r = x 2 + y2 + z 2 		

which	 implies	   r ≥ 0 ,	 at	 least	 for	 the	 choice	 of	 a	 representation	 where	
variables	(	x	,	y	,	z	)	belong	to	 ! .	At	this	point,	it	should	be	noted	that	r	is	not	
a	radial	distance,	but	a	simple	space	marker,	a	simple	number.	Schwarzschild	
then	introduces	what	he	calls	an	"auxiliary	quantity"	(Hilfsgröße):		

	
Fig.	12	–	The	solution	expressed	with	auxiliary	quantity	R.	
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In	 so	 doing,	 he	 calls	 his	 constant	 of	 integration	 α 	in	 order	 to	 tally	 with	
Einstein's	 1915	 paper	 [3].	 Using	 this	 set	 of	 variables	   t , R ,θ ,ϕ{ } 	he	
calculates	the	geodesics.	Like	Einstein,	he	notes	that	these	geodesics	are	part	
of	planes	and	he	chooses,	 like	him,	 the	plane	θ	=	π/2.	 It	 is	again	with	 this	
auxiliary	quantity	R	that	he	expresses	the	area	law:	

	

	
Fig.	13	–	Schwarzschild	calculates	the	geodesics	Φ(R):	eq.	(18)	

	

The	same	applies	to	equation	(18)	for	the	expression	of	the	solution	in	the	
form	of	an	integral	based	on	the	variable	x	=	1/r	(and	not	on	the	variable	r)	
as	 in	 Einstein's	 paper.	 It	 is	 clear	 that	 he	 orientates	 the	 expression	 of	 his	
solution	to	stick	closely	to	the	Einstein's	result.	
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But	 this	 detail	 is	 quite	 secondary	 to	 him,	 inasmuch	 as	 the	 conditions	 of	
planetary	astronomy	makes	the	 two	quantities	practically	equal,	which	he	
notes	a	little	further	on	(Es	ist	also	praktisch	R	mit	r	identisch):		

	

	
Fig.	14	–	Schwarzschild's	solution	meets	Einstein's.	

	

Translation	of	the	underlined	passage:		

"Therefore r is virtually identical to R" 

	

After	Schwarzschild's	death,	his	work	was	first	presented	to	the	community	
of	mathematicians	by	Frank	[9]	then	quickly	taken	up	by	Droste	[10],	Weyl	
[11]	and	of	course,	Hilbert	[6].		

It	 is	 the	media,	mostly	 American,	 that	will	 fashion	 Einstein's	 image	 as	 an	
isolated	genius,	author	of	a	theory	that	a	tiny	number	of	people	would	have	
been	able	to	understand.	This	does	not	in	any	way	reduce	Einstein's	merits,	
but	 he	was	 in	 fact	 at	 the	 forefront	 of	 physics,	 in	 which	 a	 relatively	 large	
number	 of	 researchers,	 mainly	 German-speaking,	 were	 already	 involved.	
Among	them,	Schwarzschild.		
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Scientific	articles	were	then	published	in	German,	and	at	that	time	accessing	
such	work	is	done	by	reading	"offprints",	sample	copies	on	paper,	which	are	
transmitted	 by	 postal	 services.	 Subsequently,	 the	 same	 papers	 are	 made	
available,	 grouped	 in	books,	but	 still	 in	German.	 It	was	only	 in	 the	1970s,	
more	 than	half	 a	 century	 later,	 that	 this	 documentation	was	 translated	 in	
English,	and	later	on	made	available	as	PDF	files.	The	modern	distribution	of	
these	files	through	the	Internet	is	something	very	recent.	Only	a	few	decades	
ago,	in	order	to	distribute	simple	copies	of	articles,	researchers	had	to	type	
their	works	on	tracing	papers,	then	use	them	to	expose	a	UV-sensitive	yellow	
sheet.	And	finally,	embedding	the	copies	within	ammonia	vapors	to	reveal	
the	 content.	 I	 personally	 experienced	 this	 technique	 in	 the	 1960s.	 The	
scanner,	an	essential	part	of	photocopiers,	will	only	be	put	on	the	market	in	
the	late	1960s.		

All	 this	to	tell	 the	works	of	Einstein	and	Schwarzschild	have	spread	to	the	
scientific	community	in	the	form	of	commentaries,	not	in	their	original	form.	

However,	one	should	note	that	Droste	[10]	and	Weyl	[11]	chose	the	element	
of	length	as	always	positive,	associated	with	a	metric	signature	(+	-	-	-):		

	

	
Fig.	15	–	Excerpt	of	Weyl's	1917	paper.	
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Still	in	Weyl's	paper,	we	find	such	a	signature	and	the	mention	of	a	real	and	
essentially	positive	polar	coordinate	r.		

	

Fig.	16	–	In	Weyl	(1917):	the	polar	coordinate	and	the	signature.	
	

Similar	 mention	 with	 Droste,	 in	 his	 paper	 communicated	 in	 English	 by	
Hendrik	Lorentz	sixteen	days	after	the	death	of	Schwarzschild,	but	published	
only	the	following	year.	[10]	

Fig.	17	–	Droste	specifies	on	May	27,	1916	the	signature	he	chooses.	



	 14	

It	does	not	seem	to	come	to	anyone's	mind	to	extend	this	solution	for	 r <α 	
which	would	imply	a	modification	of	the	signature	of	the	metric.	

It	is	then	that	Hilbert	presents	the	second	communication	of	his	long	article	
"The	Foundations	of	Physics":		

Fig.	18	–	Hilbert's	second	communication,	December	23,	1916.	
	

In	this	sequel	to	his	first	communication	presented	the	year	before,	he	takes	
his	work	over	and	includes	the	Schwarzschild	solution	published	in	January.	
Hilbert	knows	 that	he	died.	Einstein	delivered	a	memorial	 lecture	on	Karl	
Schwarzschild	 [12]	on	 June	29,	 1916	at	 the	opening	meeting	of	 the	Royal	
Prussian	Academy	of	 Sciences,	 Berlin.	 But	Hilbert	 does	 not	 seem	 to	 focus	
much	on	this	result,	which	appears	to	him	as	a	detail	 in	 the	vast	scientific	
saga	he	intends	to	carry	out	on	both	gravitation	and	electromagnetism.	Let's	
see	his	mention	of	Schwarzschild's	solution.		

In	his	paper,	Hilbert	mentions	a	central	symmetry	(zentrischsymmetrisch):	

Fig.	19	–	Hilbert's	hypothesis	of	a	central	symmetry.	
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He	then	introduces	polar	coordinates	and	designates	a	fourth	variable	by	the	
letter	l:	

	

	
Fig.	20	–	Hilbert	opts	for	polar	coordinates.	

	

There	are	several	things	to	note	in	this	excerpt	of	fig.	20.	We	can	read	in	the	
underlined	passage	of	hypothesis	#3:		

"The gravitation is centrally symmetric with respect to the 
origin of coordinates." 

We	find	again	 the	 theme	of	a	solution	with	a	central	 symmetry,	and	not	a	
spherical	symmetry.	

In	 equation	 (42)	 he	 presents	 the	 bilinear	 form	 of	 his	 metric,	 and	 then	
introduces	 the	 hypothesis	   r *= G(r) 	where	 this	 variable	 r*	 quickly	
transforms	into	r.	The	translation	is:	

"If we introduce r* in (42) instead of r and then eliminate the 
sign *, the result is the expression (43)." 
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This	 hypothesis	 will	 then	 totally	 guide	 his	 solution.	 Incidentally,	 Hilbert	
indicates	the	nature	of	his	temporal	coordinate	l:		

	

	
Fig.	21	–	Hilbert's	pure	imaginary	time	and	his	formulation	of	the	solution.	

	

For	Hilbert,	spacetime	is	a	fiber	bundle,	built	from	a	real	space	(	x	,	y	,	z	)	but	
the	fiber,	i.e.	the	fourth	coordinate	l,	is	purely	imaginary.		

Regarding	 Schwarzschild's	 solution,	 this	 passage	 is	 absolutely	 crucial	 and	
will	guide	a	century	of	scientific	work.	Hilbert	makes	a	confusion	when	he	
writes:		

"then for l = i t (43) results in the desired metric in the form first 
found by Schwarzschild." 

If	his	solution	is	completed	(45)	it	should	be	written:		

  

ds2 = − (1−α
r

) dt2 + dr 2

1−α
r

+ r 2dϑ 2 + r 2sin2ϑ dϕ 2 	

whereas	the	real	Schwarzschild	solution	is:		

  

ds2 = (1−α
R

) dt2 − dR2

1−α
R

− R 2dϑ 2 − R 2sin2ϑ dϕ 2 R 3= ( r 3+α 3 )1/3 	

The	difference	is	obvious.	Hilbert	confused	his	coordinate	r	with	the	auxiliary	
variable	R	introduced	by	Schwarzschild.	He	also	chooses	a	reverse	signature.		

In	 the	rest	of	 the	paper,	Hilbert	 comes	back	 to	 this	 choice	of	variable	 in	a	
footnote,	considering	it	merely	pointless.	He	sees	it	only	as	a	wish	to	reject	
the	singularity	back	to	the	origin.	
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Fig.	22	–	The	footnote	in	Hilbert's	paper	mentioning	Schwarzschild's	work.	

Translation:		
	

"To transform the locations to the origin, as Schwarzschild 
does, is not to be recommended in my opinion; 
Schwarzschild’s transformation is moreover not the simplest 
that achieves this goal." 

	

Hilbert	considers	that	what	happens	at	this	Schwarzschild	sphere	is	a	true	
singularity,	whereas	 it	will	be	classically	 shown	afterward	 that	 it	 is	only	a	
coordinate	singularity,	that	can	be	cancelled	out	with	an	appropriate	change	
of	variable.		

	

Geometry	signification	 	

The	 solution	 to	 Einstein's	 equation	 is	 a	 four-dimensional	 hypersurface.	
Einstein,	Schwarzschild,	Frank,	Droste,	and	Weyl	relied	on	the	idea	that	the	
element	of	length	s,	hence	the	proper	time,	the	only	thing	independent	of	the	
choice	of	coordinates	on	this	hypersurface,	is	a	real	quantity.		

Let's	go	back	to	Schwarzschild's	1916	solution.	Schwarzschild	does	not	make	
it	explicit,	simply	because	he	does	not	see	the	point	in	it.	He	merely	wants	to	
show	 the	 same	 result	 as	 Einstein's	 explanation	 of	 the	 precession	 of	 the	
perihelion	 of	 Mercury.	 No	 one	 at	 this	 time	 thinks	 astronomical	 objects	
requiring	 a	 nonlinear	 treatment	 of	 the	 problem	 could	 really	 exist.	 His	
quantity	α	is	nothing	but	what	will	later	be	called	the	Schwarzschild	radius	Rs.	
He	 immediately	 notices	 that	 for	 the	 Sun,	 it	 is	 equivalent	 to	 one	 hundred	
thousandth	 of	 its	 diameter.	 As	 it	 happens,	 in	 his	 second	 paper	 publish	 in	
February	1916	[8]	which	we	will	come	back	to,	he	built	a	geometry	within	a	
sphere	filled	with	a	fluid	of	constant	density,	a	non-singular	solution,	so	he	
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does	not	 find	 relevant	 to	deal	 in	his	 first	 "exterior	 solution"	paper	with	 a	
region	of	space	that	is	related	to	the	"interior	solution".	

In	2011,	Christian	Corda	[13]	makes	this	solution	explicit:	

	
Keep	in	mind	that	such	a	metric	can	be	expressed	in	any	arbitrary	coordinate	
system.	These	coordinates	are	then	merely	numbers,	space	markers.	The	only	
size	having	an	intrinsic	property	is	the	length	s.	Then,	all	boils	down	to	the	
choice	for	this	length.	

If	we	decide	that	this	length	s	is	real,	then	such	an	expression	designates	a	
4D	hypersurface.	 The	 choice	 of	 angles	 θ	 and	φ	 implies	 a	 solution	 with	 a	
spherical	symmetry	(instead	of	a	central	one).	Helical	geodesics	exist	on	this	
hypersurface,	that	can	be	expressed	giving	a	fixed	value	to	θ,	and	fixing	the	
coordinate	r.	The	variables	t	and	φ	linearly	depend	on	the	parameter	s.	Thus,	
they	are	both	related	by	a	linear	function.	Spatial	projection	of	such	geodesic	
can	be	calculated:	they	simply	become	circles.	

It	 is	 therefore	possible	 to	 travel	 along	 this	 hypersurface,	 drawing	parallel	
circles.	If	their	perimeter	can	reach	+∞	it	is	however	limited	to	less	than	2πα.	
If	 the	 value	 of	 the	 angle	q is	 varied	 then	 this	 family	 of	 parallel	 circles	
generates	a	family	of	parallel	spheres.	Let	us	note	that	we	deliberately	use	
the	word	"parallel"	and	not	"concentric"	because	the	Schwarzschild	solution	
has	a	spherical	symmetry	and	not,	as	written	by	Hilbert,	a	central	one.	

As	we	skim	through	this	series	of	parallel	spheres,	by	reducing	their	area,	at	
some	point	a	minimal	value	is	reached	(if	we	decide	that	the	hypersurface	is	
real).	This	situation	is	met:	

• Either	 for	 the	 value	 R	 =	 α	 in	 the	 case	 of	 what	 we	 call	 "Hilbert's	
representation"	   ( t , R ,θ ,ϕ ) 	(introducing	 the	 auxiliary	 quantity	 R	
according	to	Schwarzschild).	

• Or	for	the	value	r	=	0	in	Schwarzschild's	representation	  ( t , R ,θ ,ϕ ) .	

This	hypersurface	is	thus	uncontractible.	How	to	interpret	it?		

One	 can	 of	 course	 decide	 it	 is	 a	 manifold	 with	 boundary.	 A	 boundary,	
incidentally,	 along	 which	 the	 determinant	 of	 the	 metric	 is	 zero	 in	
Schwarzschild's	representation.	This	will	be	discussed	in	the	second	part	of	
this	article.	But	in	the	1960s,	other	paths	were	considered.		
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Extensions	of	the	solution	and	their	meaning	

Decades	after	the	emergence	of	the	Schwarzschild	solution,	it	is	known	only	
through	subsequent	comments	published	afterward.	I	was	very	surprised	at	
a	 recent	 international	 conference	 on	 black	 holes 2 	held	 in	 Frankfurt	
(Schwarzschild's	 birthplace),	 specifically	 entitled	 "The	Karl	 Schwarzschild	
Meeting",	 that	 no	 attendee,	 including	German	natives,	 had	never	 read	 the	
founding	papers	I	have	just	mentioned,	as	if	the	origin	of	the	model	were	lost	
in	the	mists	of	the	past.	In	his	masterly	lecture	in	front	of	all	the	delegates,	
Juan	Maldacena	said:3	

—		The	Schwarzschild	solution	has	confused	us	over	a	hundred	years	and	it	has	

forced	us	to	sharpen	our	views	on	space	and	time.	It	has	led	to	a	sharper	

understanding	of	Einstein’s	theory.	Experimentally,	it	is	explaining	several	

astrophysical	 observations.	 Its	 quantum	 aspects	 have	 been	 a	 source	 of	

theoretical	paradoxes	that	are	forcing	us	to	understand	better	the	relation	

between	spacetime,	geometry	and	quantum	mechanics.	

	

This	 text	suggests	 that	 the	 immediate	understanding	of	 the	Schwarzschild	
solution	remained	limited	for	a	while,	but	thanks	to	further	studies,	a	century	
of	work	made	it	possible	to	improve	this	reading	by	introducing	an	extended	
view	of	spacetime.		

	

Why	do	astrophysicists	refer	to	the	Schwarzschild	solution?	

As	will	 be	 discussed	 in	 the	 second	 part	 of	 this	 article,	 Schwarzschild	 had	
completed	 in	February	1916	his	 first	"exterior	solution"	[7]	with	a	second	
"interior	solution"	[8]	related	to	the	geometry	within	a	sphere	filled	by	a	fluid	
of	constant	density.	At	this	point,	the	geometry	describing	a	star	immersed	
in	a	vacuum	was	completely	achieved.		

But	progress	in	observations	would	reveal	a	new	problem.	In	our	galaxy,	half	
of	the	stellar	systems	are	multiple	star	systems.	So	there	should	exist	a	quite	
large	number	of	binaries	where	one	of	 the	 two	stars	became	a	 subcritical	
neutron	star,	that	could	still	be	described	with	the	two	exterior	and	interior	
Schwarzschild	 metrics.	 Its	 companion	 star	 is	 then	 called	 the	 donor,	 as	 it	

																																																								
2	3rd	Karl	Schwarzschild	Meeting	on	Gravitational	Physics	and	the	Gauge/Gravity	
Correspondence	(KSM	2017),	24–28	July	2017,	FIAS,	Frankfurt	am	Main,	Germany.	

3	https://indico.fias.uni-frankfurt.de/event/4/session/17/contribution/39	
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continues	 to	emit	 stellar	wind	 that	 is	gravitationally	captured	by	 its	 small	
companion,	named	the	accretor.		

In	his	first	paper,	evaluating	the	critical	radius	  (α = Rs = 2m) 	and	relating	it	to	
the	mass	 responsible	 for	 this	 geometry,	 he	 had	 concluded	 that	 beyond	 a	
certain	value,	this	"Schwarzschild	radius"	could	exceed	the	star	radius.		

This	is	the	question	asked	by	observers	to	theoreticians:		

— Assuming	 that	 a	 supernova	 only	 left	 a	 subcritical	 neutron	 star	 after	 its	
gravitational	collapse,	what	happens	when	the	additional	mass	supplied	by	

the	stellar	wind	of	a	donor	companion	star	triggers	the	geometric	criticality	

in	the	neutron	star?	

A	question	 impossible	 to	avoid.	Theoreticians	 therefore	 imagined	 that	 the	
exterior	Schwarzschild	solution,	yet	referring	to	a	portion	of	an	empty	space,	
could	describe	a	new	state	of	matter,	popularized	by	the	name	"black	hole".		

	

The	proposed	analytic	extensions	

What	 is	 the	 current	 presentation	of	 this	 Schwarzschild	 solution?	Take	 for	
example	the	book	of	Adler,	Bazin	and	Schiffer.	[14]	Page	187,	equations	(6.4)	
and	(6.5)	the	authors	reiterate	Hilbert's	hypothesis,	writing:	

  ds2 = Ac 2dt 2 − B dr 2 − C ( dθ 2 + sin 2θ dϕ 2 ) r̂ = C(r) r 	

A	few	lines	later,	the	solution	was	again	particularized,	see	equation	(6.9):	

Quelques	 lignes	plus	 loin,	 la	solution	a	de	nouveau	été	particularisée,	voir	
l’équation	(6.9):	

  ds2 = eν (r ) c 2dt 2 − eλ (r )dr 2 − r 2 ( dθ 2 + sin 2θ dϕ 2 ) 	

Unless	 the	 functions	  ν(r) 	and	  λ(r) 	have	 the	possibility	 to	be	 imaginary,	 the	
impression	is	this	writing	militates	for	a	signature	 ( + − − − ) .	In	this	realistic	
view,	the	metric	refers	to	a	hypersurface	where	the	only	relevant	variable,	
independent	of	the	choice	of	coordinates,	is	the	quantity	s.	This	is	the	proper	
time,	lived	by	any	test	particle.	For	a	distant	observer	however,	this	proper	
time	is	identified	to	the	variable	t.	Thus,	we	conclude	that	the	coordinate	time	
t	is	the	one	experienced	by	the	distant	observer.	The	following	figure	is	found	
in	 every	 book	 about	 general	 relativity.	 It	 compares	 the	 free	 fall	 time	
measured	 either	 by	 the	 clock	 tied	 to	 a	 test	 particle	 falling	 towards	 the	
Schwarzschild	sphere,	or	the	one	of	a	distant	observer.		
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Fig.	23	–	Fall	toward	the	origin	of	a	Schwarzschild	geometry	

in	terms	of	coordinate	time	t	and	proper	time	on	the	test	particle	s/c.	

	

Thus,	whatever	the	phenomenon	witnessed	by	the	observer,	it	is	supposed	
to	unfold	before	his	eyes	during	an	infinite	amount	of	time,	which	allows	the	
theoretician	to	add:	

— I	do	not	 feel	bound	to	describe	 the	result	of	a	process	which,	 to	my	eyes,	
takes	place	in	an	infinite	time.		

	

In	passing,	the	New	Zealand	mathematician	Roy	Kerr	[15]	extended	this	type	
of	 solution	 to	 a	 "rotating	 black	 hole"	 thanks	 to	 a	 metric	 with	 a	 less	
constraining	symmetry.	The	surface	that	has	been	called	the	"event	horizon"	
takes	the	topology	of	a	torus.	But	the	frozen	time,	this	freeze-frame,	is	also	
present	in	this	model.		

In	1960,	 Joseph	Kruskal	 [16]	and	George	Szekeres	 [17]	constructed	a	 first	
analytic	extension,	which	Maldacena	described	as	"extending	the	solution	to	
cover	the	full	spacetime".	

We	shall	also	cite	Corda,	who	implements	another	analytic	extension	of	the	
solution.	[13]	

In	1989,	Canadian	physicist	Leonard	S.	Abrams	published	a	paper	[18]	on	the	
Schwarzschild	solution	entitled	"Black	Holes:	The	Legacy	of	Hilbert's	Error"	
pointing	out	the	same	problems	as	those	mentioned	above.	Questions	also	
taken	up	by	Italian	physicist	Salvatore	Antoci.	[19]	[20]	Those	articles	had	
practically	 no	 echo	 within	 the	 scientific	 community,	 except	 for	 a	 text	



	 22	

positioned	 in	 a	 blog 4 	by	 a	 mathematician	 and	 computer	 scientist,	
W.	D.	Clinger,	 presenting	 himself	 as	 a	 topology	 specialist.	 He	 resumes	 the	
arguments	of	Abrams,	writing:		

— The	paper	is	well-written,	and	its	math	is	almost	(but	not	quite)	correct.		

A	 little	 further	 on,	 his	 criticism	 gets	 stronger:	 "Where	 Abrams	went	 badly	
wrong."	He	then	provides	the	correct	way	to	proceed:		

— In	reality,	 the	"quasiregular	singularity"	at	 the	central	point	mass	of	 the	
original	Schwarzschild	spacetime	can	be	removed	by	allowing	the	radial	

coordinate	r	to	go	negative.	

In	other	words,	it	is	enough	to	consider	the	extension	of	the	solution	for	the	
values	of	  r = x2 + y2 + z2 < 0 		i.e.	in	an	imaginary	portion	of	spacetime…	

For	 that	 matter	 he	 quotes	 Corda,	 who	 does	 the	 same	 and	 constructs	 a	
description	of	the	gravitational	collapse	of	the	neutron	star	which	ends	at	a	
negative	value	  r = − α = − Rs < 0 .	

To	 the	 extent	 that	 these	 authors	 grant	 themselves	 the	 freedom	 to	 extend	
spacetime	to	an	imaginary	portion,	this	can	no	longer	be	criticized.	On	the	
other	hand,	these	people	call	"crackpots"	anyone	who	does	not	feel	satisfied	
with	such	a	formula.		

	

Conclusion		

In	 1916,	 Einstein	 then	 Schwarzschild	 developed	 solutions	 to	 the	 field	
equation,	the	first	through	linearization	and	the	second	nonlinearly,	which	
refer	 to	 real	 values	 of	 the	 coordinates	 and	 to	 a	 real	 value	 of	 the	 length	 s,	
measured	on	the	four-dimensional	hypersurface	using	the	metric.	This	work	
is	then	taken	up	by	different	authors,	like	Frank,	Droste,	Weyl,	always	with	
the	 same	 perspective.	 This	 approach	 implies	 the	 constancy	 of	 an	 explicit	
metric	signature	 ( + − − − ) .		

On	 this	 panorama	 comes	 the	 interpretation	 given	 by	 the	 mathematician	
David	Hilbert,	who	starts	from	a	different	vision	where	time,	and	proper	time,	
are	 presented	 as	 pure	 imaginary	 quantities,	 as	 opposed	 to	 real	 space	
coordinates,	 which	 goes	 hand	 in	 hand	 with	 a	 choice	 of	 metric	 signature	
 ( − + + + ) 	and	explains	the	hyperbolic	property	of	this	solution.	

																																																								
4	http://www.internationalskeptics.com/forums/showthread.php?t=231833	
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When	half	a	century	later,	astrophysicists	are	asked	to	provide	a	model	able	
to	describe	a	destabilized	neutron	star,	 they	opt	 for	 the	solution	 found	by	
Hilbert,	 deciding	 to	 extend	 it,	 via	 analytic	 continuation,	 to	 an	 imaginary	
portion	of	spacetime,	where	the	element	of	length	becomes	purely	imaginary	
and	where	the	signature	of	the	metric	is	inverted.	The	goal	is	not	to	stop	at	
the	 surface	 of	 the	 Schwarzschild	 sphere,	 and	 to	 be	 able	 to	 carry	 their	
investigations	towards	the	"interior	of	the	object".	

It	all	depends	on	what	is	considered	to	fall	within	the	scope	of	physics	or	not.	

In	the	second	part	of	this	paper,	we	will	present	a	different	scenario,	in	which	
all	quantities	remain	real	and,	as	a	corollary,	 the	metric	keeps	a	signature	
 ( + − − − ) .	
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