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FIG. 2. Spiral structure in numerical simulation

JCM EXPLAINS THE ACCELERATION OF THE
UNIVERSE

An exact solution of the system (1) for the dust
era of the universe, was presented in Astrophysics and
Space Science journal in 2014[8], which gives, for posi-
tive species :

a(+)(u) = α2 ch2(u)

t(+)(u) =
α2

c

(
1 +

1

2
sh(2u) + u

)
(2)

In the following,we will show that the predicted values of
the bolometric magnitude versus redshift fits pretty well
the available data.
For sake of simplicity, we will now write a(+) ≡ a.
The deceleration parameter q is :

q ≡ −a ä
ȧ2

= − 1

2 sh2(u)
< 0 (3)

And the Hubble constant is :

H ≡ ȧ

a
(4)

We can derive (see annex A) the relation for the bolo-
metric magnitude with respect to the redshift z :

mbol = 5 log10

[
z +

z2(1− q0)

1 + q0z +
√

1 + 2q0z

]
+ cst (5)

where q0 < 0 and 1 + 2q0z > 0. Fitting q0 and cst to
available observational data [20], gives :

q0 = −0.087± 0.015 (6)

Results presented below, show the standardized distance
modulus, linked to experimental parameters through the
relation :

µ = m∗B − MB + αX1 − βC (7)

where m∗B is the observed peak magnitude in rest frame
B band, X1 is the time stretching of the light curve and
C the supernova color at maximum brightness.
Both MB , α and β are nuisance parameters in the dis-
tance estimate.
We took the values given in ref.[20] corresponding to the
best fit of the whole set of combined data (740 super-
novae) with ΛCDM model.

With our best fit, we have :χ2/d.o.f. = 657/738
(740 points and 2 parameters).
The corresponding curves are shown in fig. 3, 4, 5, 6,
in excellent agreement with the experimental data. The
comparison with both model best fits are shown in fig. 7.
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FIG. 3. Hubble diagram of the combined sample (log scale)

We can derive the age of the universe (see annex B)
with respect to q0 and H0 and some numerical values are
given in table I, for different (q0, H0) values. For our best
fit, we get :

T0 =
1.07

H0
= 15.0Gyr (8)

WHAT IS MISSING

Lets figure out that, when extended to the early age
of the universe, the JCM proposes an alternative to the
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FIG. 4. Hubble diagram of the combined sample (linear scale)
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FIG. 5. Residuals from the best fit versus redshift (log scale)
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FIG. 6. Standard deviation versus redshift

TABLE I. T0 values with respect to q0 and H0

T0 q0

(Gyr) 0.00 -0.045 -0.087 -0.102 -0.117 -0.132

H0
70 14.0 15.0 15.0 14.9 14.9 14.8

73 13.4 14.4 14.4 14.3 14.3 14.2

inflation theory, in order to justify the great homogene-
ity of the primeval universe. This was introduced first in
1988[21], extended in 1995[7], and implies a variable con-
stants system which preserves all equations of physics.
As a basis of the interpretation of the very large struc-
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FIG. 7. Hubble diagram of the combined sample and com-
praison with the 2 models (linear scale)

ture of the universe we supposed that the mass density
of the negative species (negative mass ’twin’ matter) is
much higher that the one of the positive species.
In JCM, we have to take into account two systems, each
owing their own sets of variable constants plus space and
time scale factors :

[c(+), G(+), h(+),m(+), e(+), a(+), t(+)]

[c(−), G(−), h(−),m(−), e(−), a(−), t(−)]

A future work will show how, the system of coupled
field equations(1) including a variable constants process,
starting from a fully symmetrical initial situation can ex-
plain density instabilities.
Moreover, when the densities get weaker, the sets :

[c(+), G(+), h(+),m(+), e(+)]

[c(−), G(−), h(−),m(−), e(−)]

behave as absolute constants, in each sector, with
a(+)c(+)2 = a(−)c(−)2 .
The ΛCDM model provides an interpretation of the fluc-
tuations of the CMB. If the JCM wants to pretend to
challenge the ΛCDM it must provide an alternative in-
terpretation of such observational data.
This is out of the scope of the present paper and will the
subject of future works.

CONCLUSION

Based on a new geometrical framework the JCM mod-
elis taking into account many observational data. It pre-
cisely defines the nature of the invisible components of
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the universe, as a copy of ordinary components, with neg-
ative energy and negative mass, if any. By developping
former Sakharovs theory, it explains the lack of primeval
antimatter observation. The negative sector is then com-
posed with negative mass protons, neutrons, electrons
and so on. Through such a negative energy, photons
make all negative sectors species invisible to us.
JCM model is explaining the strong gravitational lensing
effects around galaxies and clusters of galaxies, due to the
surrounding and confining negative mass environment. It
brings a model for VLS formation, spiral structure and
gives an explanation to the repellent phenomena recently
observed in a very large size mapping. It also explains
the flatness of the rotation curves of galaxies.
The extension of JCM to a variable constants regime,
applying to the early stage, explains the homogeneity of
the early universe.
It brings an exact solution in the dust era, which takes
takes into account the acceleration of the universe. This
paper is willing to demonstrate the good agreement of
this solution with a single free parameter, with the ex-
perimental data on supernovae. The deceleration param-
eter q0, allways negative, happened to be small and there
is no need in JCM to introduce a non zero cosmological
constant to fit the so far available data.
It is also pointed out that the model must now provide
its own interpretation of additional features like the CMB
fluctuations.
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Annex A : Bolometric magnitude

Starting from the cosmological equations correspond-
ing to positive species and neglectible pressure (dust uni-
verse) establish in ref.[8] :

a(+) 2 ä(+) +
8πG

3
E = 0 (9)

with E ≡ a(+) 3ρ(+)+a(−) 3ρ(−) = constant < 0. For the
sake of simplicity we will write a ≡ a(+) in the following.
A parametric solution of Eq. (9) can be written as :

a(u) = α2 ch2(u) t(u) =
α2

c

(
1 +

sh(2u)

2
+ u

)
(10)

with

α2 = −8πG

3 c2
E (11)

This solution imposes k = −1. Writing the usual defini-
tions:

q ≡ −aä
ȧ2

and H ≡ ȧ

a
(12)

we can write :

q = − 1

2 sh2(u)
= −4πG

3

|E|
a3H2

(13)

and also

(1− 2 q) =
c2

a2H2
(14)
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In terms of the time t used in the FRLW metric, the
light emitted by Ge at time te is observed on G0 at a
time t0 (te > t0) and the distance l travelled by photons
(ds2 = 0) is related to the time difference t and then to
the u parameter through the relation :

l =

t0∫
te

c dt

a(t)
=

u0∫
ue

(1 + ch(2u)

ch2(u)
du = 2u0 − 2ue (15)

We can also relate the distance l to the distance marker
r by (using Friedman's metric with k = −1) :

l =

t0∫
te

c dt

a(t)
=

r∫
0

dr′√
1 + r′2

= argsh(r) (16)

So we can write :

r = sh(2u0 − 2ue) = 2 sh(u0 − ue) ch(u0 − ue) (17)

We need now to link ue and u0 to observable quantities
q0, H0, and z. From Eq. (10) we get :

u = argch

(√
a

α2

)
(18)

Eq. (15) gives the usual redshift expression :

ae =
a0

1 + z
(19)

From Eq. (13) and (18) we get :

u0 = argch

√
2q0 − 1

2q0
= argsh

√
− 1

2q0
(20)

From Eq. (13), (18)) and (19)) we get :

ue = argch

√
2q0 − 1

2q0(1 + z)
= argsh

√
− 1 + 2q0z

2q0(1 + z)
(21)

Inserting Eq. (20) and (21) into Eq. (17), after a 'few'
technical manipulations, using at the end Eq.(14) and
considering the constraint that 1 + 2q0z > 0, we get :

r =
c

a0H0

q0z + (1− q0)
(
1−
√

1 + 2q0z
)

q20(1 + z)
(22)

Which is similar to Mattig’s work [22] with usual Fried-
mann solutions where q0 > 0, here we have always q0 < 0.

The total energy received per unit area and unit
time interval measured by bolometers is related to the
luminosity :

Ebol =
L

4πa20r
2(1 + z)2

(23)

Using Eq. (22), the bolometric magnitude can therefore
be written as :

mbol = 5Log10

[
q0z + (1− q0)

(
1−
√

1 + 2q0z
)

q20

]
+ cte

(24)

This relation rewrites as [23]:

mbol = 5Log10

[
z +

z2(1− q0)

1 + q0z +
√

1 + 2q0z

]
+ cst (25)

which is valid for q0 = 0.

Annex B : Age of the universe

Below we will establish the relation between the age of
the universe T0 with q0 and H0. This age is defined by :

T0 =
α2

c

(
sh(2u0)

2
+ u0

)
(26)

From Eq. (11), (13), (14) we get :

α2

c
= −2q

H
(1− 2q)

− 3
2 =

2q0
H0

(1− 2q0)
− 3

2 (27)

and so :

T0. = −2q0 (1− 2q0)
− 3

2

(
sh(2u0)

2
+ u0

)
1

H0
(28)

Inserting Eq. (20) in Eq. (28) we finally get :

T0.H0 = 2q0 (1− 2q0)
− 3

2

(
argsh

√
−1

2q0
−
√

1− 2q0
2q0

)
(29)

This relation is shown in fig. 8.
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FIG. 8. Age of the universe time Hubble’s constant versus q0


