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Laboratoire de mécanique multiphysique multiéchelle,
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Abstract

In this paper, we revisit the Kaluza-Klein theory from the perspective of the classification

of elementary particles based on the coadjoint orbit method. The keystone conjecture is to

consider the electric charge as an extra momentum on an equal footing with the mass and the

linear momentum. We study the momentum map of the corresponding symmetry group Ĝ1

which conserves the hyperbolic metric. We show that the electric charge is not an invariant,

i.e. it depends on the reference frame, which is in contradiction with the experimental

observations. In other words, it is not the symmetry group of the Universe today as we

know it. To avert this paradox, we scale the fifth coordinate and consider the limit when the

cylinder radiusl vanishes. For the correspondinggroup Ĝ0 also of dimension 15, the charge

is an invariant then independent of the frame of reference and the observer. On this ground,

we propose a cosmological scenario in which the elementary particles of the early Universe

are classified from the momenta of the group Ĝ1, next the three former dimensions inflate

quickly while the fifth one shrinks, leading to the 4D era in which as today the particles are

characterized by the momenta of the group Ĝ0. By this mechanism, the elementary particles

can acquire electric charge as a by-product of the 4 + 1 symmetry breaking of the Universe.

This work opens the way to the geometric quantization of charged elementary particles. We

construct the corresponding Ĝ0-connections by pullback on the space-time. Imposing that

the linear 5-momentum is parallel-transported, we recover the conservation of the charge and

the equation of motion with Lorentz force. We revisit the variational relativity and obtain

the field equations for both the gravitation and electromagnetic interactions with coupling

terms which are negligible at the Newtonian approximation, allowing to recover Maxwell

equations.

Keywords: Kaluza-Klein relativity, symplectic mechanics, cosmology, coadjoint orbit

method, elementary particles, electric charge.
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1 Introduction

Kaluza-Klein is an extension of general relativity to unify the gravitation and electromagnetism,

considering a Riemannian manifold of dimension 5 by completing the 4 coordinates (-1 , · · · , -4)
of the space-time with an extra spacelike dimension coordinate -̂5 . The pioneering paper, Kaluza

[1915], started out by interpreting the 1 + 5 metric as follows1

[�̂`a] =
[
�8 9 2U�8
2U� 9 2 q

]

where �8 9 is the space-time metric, �8 is the electromagnetic potential, q is a new field, often

called dilaton, and U is a coupling constant. Besides, Theodor Kaluza introduce the so-called

cylinder condition , i.e. the components of the metric and other tensors do not depend on the

fifth coordinate. Even so, the expression of the contravariant metric �̂UV in terms of the �̂UV

being complex, he uses the linearized weak field approximation. The components of the Ricci

tensor read

['̂`a] =
[
m:Γ

:
8 9
− m 9Γ:8: −U m:�:8

−U m:�: 9 −� q

]

where �8 9 = m8� 9 − m 9�8 is the electromagnetic field and � = �8 9∇8∇ 9 . With the energy-

momentum tensor of the dust matter )̂`a = d<*̂`*̂a as source, Einstein field equations extended

to 5D

'̂8 9 −
1

2
(�̂:; '̂:;) �̂8 9 = −^ )̂8 9

allow to recover with '8 9 the field equations of the gravitation exactly, Maxwell’s equations also

with '̂85 but at the cost of an hypothesis that turned out, as remarked Einstein, to be untenable

(grossly superluminal velocity of electrons in the fifth dimension). In contrast, Lorentz force

appears naturally in the equation of motion of a particle but, because of the above hypothesis,

the last term of this equation and also the equation with '̂55 are problematic.

After Kaluza’s promising paper but suffering several shortcomings, another breakthrough is

the work of Oskar Klein [1926a,b] who adopts also the cylinder condition but with restrictions

on the coordinate changes to - 8 = �8 (- ′1, · · · , - ′4), -̂5 = -̂ ′5 + ℎ(- ′1, · · · , - ′4) and then the

following form the metric

[�̂`a] =
[
�8 9 + q2�8� 9 q2�8
q2� 9 q2

]

which leads to a more tractable expression of the contravariant metric. In absence of source

terms from the matter, the field equations are

'8 9 −
1

2
(�:;':;) �8 9 =

1

2
^ q2 [� 8:� 9

:
− 1

4
(�:;�:;) �8 9] −

1

q
[∇8m 9q − (�q)�8 9]

∇:�:8 + 3

q
(m:q)�:8 = 0

1Our convention in this paper is that convention that Greek indices run from 1 to 5 and Latin ones run from 1 to 4
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�q =
1

2
^3 (�:;�:;)

One of the interests of the formulation is that the electromagnetic stress-energy tensor occurs

naturally at the right hand member of the first equation. Another interest is that the second

equation provides Maxwell equation when the dilaton q is set to one, but if so the last equation

is satisfied only if the right hand member is null, i.e. under the too restrictive constraint that the

norms of the electric and magnetic fields are equal. In contrast, if the dilaton varies, the field

equations have no classical interpretation. If we continue anyway to set q to one, the equation of

geodesics reads

∇*8 = *5 �
8
9*

9

Owing to the cylinder condition, *5 is constant along the geodesic, hence the idea to put

*4 = @/<0 where @ is the electric charge and <0 the rest mass, that leads to the equation of

motion

<0∇*8 = @ � 89* 9

where the right hand member is just Lorentz force.

However, the discoveries of the starting quantum mechanics suggested to Klein that the fifth

dimension is curled up and microscopic. Using de Broglie wavelength _5 = ℎ/?5 where ℎ is

Planck constant and ?5 is the linear momentum in the fifth dimension, Klein found that the size

; of the space along the fifth dimension was about 10−30 cm, very small with respect to the

nuclear dimension (of the order of 10−13 cm) and thereby gave an explanation for the cylinder

condition in this small value. For a comparison between Kaluza and Klein approaches, Sewards

[2008] can be consulted. Classical theory was completed in the 1940s and the full field equations

including the scalar field were obtained almost simultaneously (Thiry [1948a,b], Jordan [1948],

Scherrer [1949]).

Albert Einstein’s position with respect to Kaluza-Klein theory has changed during his scien-

tific career. In Einstein [1920], when giving his inaugural lecture in Leyden, Einstein for the first

time publicly commented positively on this unification program. However, in a letter to H. Weyl

[1922], he regrets that it cannot produce non-singular rotation symmetric particle solutions.

Later on, his work with W. Mayer [1931] is a a first attempt to propose an unified field theory.

Commenting their work, É. Cartan [1934] interprets the torsion of the 5D space as the electro-

magnetic field. The last Einstein’s works on the topics are in collaboration with P. Bergmann

[1938] and later on with P. Bergmann and V. Bargmann [1941]. For more details, the reader is

referred to van Dongen [2000].

Despite of the astonishing breakthrough of the Kaluza-Klein theory (emergence of Lorentz

force, Maxwell equations and electromagnetic energy stress tensor from the general relativity),

often qualified of ”Kaluza miracles”, it suffers of several serious shortfalls not yet rectified.

Nonetheless this theory has given rise to many developments that it is not possible to cite all. We

are focused on the topics relevant to the issues dealt with in the present paper.

In the modern language of differential geometry, Oskar Klein’s construction is formalized

as a principal * (1)-bundle. The electromagnetic potential of covariant components �8 can be

interpreted as a connection 1-form valued in the Lie algebra of the group. From the viewpoint of

the physics of elementary particles, a relevant generalization of the Kaluza-Klein theory consists

3



in substituting an arbitrary non-abelian group� for* (1). The connection 1-form has coordinates

�0
9

and the curvature form in a coordinate frame is

�08 9 =
1

2
(m8�09 − m 9�08 ) + �012�

1
8 �

2
9

where�0
12

are the structure constants of the group�. It must contain at least a* (1) subgroup for

the conservation of the electric charge and a (* (2) subgroup for the conservation of the isospin

(Kerner [1981]).

Initially introduced by Bargmann [1954] to solve cohomologic difficulties to construct group

actions on quantum wave functions in the Galilean setting, the Lie group that is named after

him acts on a 5D space of which the fifth coordinate has the physical meaning of a specific

action (in the sense of Hamilton least action principle), then it has not to be confused with

Kaluza-Klein space. Bargmannian geometric structures have been studies by several authors

(Duval et al. [1985, 1991], de Saxcé and Vallée [2010, 2016], Cardall [2024]). Despite of the

differences with Kaluza-Klein theory, some aspects of the Bargmannian approach were a source

of inspiration for this work.

Another issue which has grasped researcher attention is the Kaluza-Klein cosmology. A gen-

eralized Friedmann-Lemaı̂tre-Robertson-Walker metric in 5D were introduced by Chodos and Detweiler

[1980]. The idea is that while the fifth dimension has been shrinking, the other three spatial di-

mensions have been expanding, that could explain the large ratio of the electromagnetic to gravita-

tional forces as a consequence of the age of the Universe, in agreement with Dirac’s large-number

hypothesis. Sahdev [1984] obtained improved solutions of the field equations with perfect fluids

added on the right-hand side and found that this scenario can offer a resolution to the horizon

problem. However, instead of stabilizing at some small but finite value, as any reasonable physics

would require, the internal radius in the fifth dimension tended to zero. Other models attempt-

ing to stabilize asymptotically the internal radius were proposed by Matzner and Mezzacappa

[1985], Copeland and Toms [1985], Okada [1986], Giorgini and Kerner [1988]. These inter-

esting works did not necessarily receive the welcome they deserved, perhaps because they were

based on the theory of Kaluza-Klein whose weaknesses were known.

Finally, not developed from Kaluza-Klein theory but playing a key role in this work, we have

to point out Jean-Marie Souriau’s seminal work in which he proposed for the classical description

of an elementary particle to study a family of homogeneous spaces for a symmetry group, the

coadjoint orbits, and to classify them (Souriau [1970, 1997b]). On this ground, he introduced

the geometric prequantization in Souriau [1966]. As Kaluza-Klein theory is based on an * (1)-
principal bundle of which the base manifold is the space-time, the key idea of the prequantization

is to work with a * (1)-principal bundle of which the base space is a symplectic manifold, a

coadjoint orbit of the structure group. A tentative to combine this method with the 5D approach

to treat the mass and the electric charge on an equal footing is proposed by Śniatycki [1980] but,

in contrast to Kaluza-Klein theory, the fifth dimension is timelike without physical justification.

The reader not familiar with this topic can consult, in addition to Souriau’s references previously

cited, Kostant [1970] who is with Souriau one of the pioneers of this method, Kijowski [1977]

and Woodhouse [1991].
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The paper is structured as follows.

Sections 2 and 3 cover the background material needed to tackle the core of the paper as

well as to define the terminology and notations. The reader familiar with one or several of these

topics can skim through them. Section 2 is devoted to Euclidean spaces, pointing out adjoint

maps, Hodge star operator and a generalization of the vector product to arbitrary dimension. In

Section 3, we recall useful main results of symplectic mechanics, namely the coadjoint orbit

method and the momentum map. The Section 4 is a brief reminder of the application of this

method to Poincaré group allowing to classify the elementary particles in relativity.

After these preliminaries, the main body of the paper is a trilogy: classification of the particles

in Kaluza-Klein theory, pullback connection on the space-time, extended variational relativity.

In Section 5, we apply the coadjoint orbit method to the symmetry group of Kaluza-Klein 5D

space, denoted Ĝ1, which conserves the hyperbolic metric. We show that the linear momentum

along the fifth dimension, interpreted as the electric charge, is not preserved by the group, then

depends on the reference frame, contradicting the observations. The aim of Section 6 is to avert

this paradox by using the fact that the fifth dimension is microscopic. The result of the zoom in

is to reveal a new symmetry group denoted Ĝ0 for which the charge is invariant. Section 7 begin

with the presentation of a cosmological scenario in which the particles in the early 5D Universe

are classified according to the group Ĝ1 and, after a transition phase in which the three former

spatial dimensions inflate quickly while the fifth one shrinks, the particles in the 4D era are

classified thanks to Ĝ0. By this mechanism, the elementary particles can acquire electric charge

as a by-product of the 4 + 1 symmetry breaking of the Universe. Next, we apply the coadjoint

orbit method to the group Ĝl for the transition between Ĝ1 and Ĝ0. In 5D, we generalize the

spin polarisation in the form of a plane.

The second part of the trilogy is developed in Section 8. Our aim is to construct the Ĝ0-

connections on the frame principal bundle. As the zoom out leads to a singularity in the fifth

dimension, we build on the space-time a pullback connection. We claim that the motion of a

charged particle and the evolution of its charge are such that its linear 5-momentum is parallel-

transported. The torsion free condition allows to show that the charge is conserved along the

trajectory and we recover the Lorentz force.

The trilogy ends with Section 9 where we revisit Palatini variational relativity by adding

to the ten potentials of the metric the four electromagnetic potentials. The generalized action

depends on the matter and the connection representing both the gravitation and electromagnetic

interactions. We discuss the field equations with coupling terms between the two interactions.

At the Newtonian approximation, the coupling is weak and we recover Maxwell equations.

2 Euclidean spaces

The two former subsection are simple reminder to define the terminology and notations used in

the paper.
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2.1 Metric

An Euclidean space T of dimension = is a vector space equipped with a (covariant) metric G,

i.e. a nondegenerate 2-covariant tensor G

∀U ∈ T , G(U ,V ) = 0 ⇔ V = 0 .

The value of the metric tensor for U and V is called their scalar product and denoted U ·V . Let

(e8) be a basis of T . The symmetric regular matrix � gathering the components �8 9 = e8 · e 9
is called Gram’s matrix. Thus, it holds:

G(U ,V ) = U · V = *)�+ ,

where * and + are the columns gathering respectively the components of U and V . If � is

diagonal with element +1 or −1 on the diagonal, the basis is called orthonormal. The number ?

of positive number on the diagonal is called the positive index of inertia. If = ≥ 2 and ? = 1,

the space is said hyperbolic. To every vector U is associated one and only one linear form

V ↦→ G(U ,V ) denoted U ∗. The covariant components of U ∗ depends on the contravariant

components of U through the operation of lowering the index: *8 = �8 9*
9 . The elements �8 9

of the inverse �−1 of Gram’s matrix are the components of a 2-contravariant tensor G−1 called

contravariant metric, hence the reverse operation of raising the index: *8 = �8 9* 9 .

2.2 Adjoint of a linear map

Let A be a linear map from an Euclidean space T0 into another one T . Its adjoint (with respect

to the scalar products) is the linear map A∗ from T into T0 such that:

∀U ∈ T , ∀V ∈ T0, U · (AV ) = (A∗U ) · V .

If A is represented by the matrix � in bases of T0 and T , A∗ is represented by:

�∗ = �−1
0 �)� . (1)

We verify that:

(A +A′)∗ = A∗ +A′∗, (AB)∗ = B∗A∗, (A∗)∗ = A .

In particular, if T0 = R, the linear map U : R→ T : _ ↦→ _U can be identified to the vector U

and U ∗ is the unique linear form associated to U with respect to the metric since (1) degenerates

into

*∗ = *)� (2)

which is the matrix form of index lowering. Then the scalar product of two vectors reads:

U · V = *∗+ . Another particular case of interest is when T0 = T then (1) reads:

�∗ = �−1�)� (3)

We verify that )A (A∗) = )A (A). The linear map is self-adjoint (resp. anti-self-adjoint or

skew-adjoint) if:

A = A∗ (resp. A = −A∗) .
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2.3 Vector product

We consider an oriented Euclidean space T of dimension =, i.e. there exists a volume form

E>; ∈ ∧= T ∗ such that E>; (e1, . . . , e=) = 1 for every orthonormal basis (e8). We denote

E>; (e1, . . . , e@) the (= − @)-form such that

(E>; (e1, . . . , e@)) (e@+1, . . . , e=) = E>; (e1, . . . , e@, e@+1, . . . , e=)

We call vector product of (= − 1) vectors V1, . . . ,V=−1 the vector J (V1, . . . ,V=−1) such that

J (V1, . . . ,V=−1)∗U = E>; (V1, . . . ,V=−1,U )

In Souriau [1965, §26.B], it is proved that

Theorem 2.1 (Souriau) Properties of the vector product:

♦ J (V1, . . . ,V=−1) ≠ 0 if and only if V1, . . . ,V=−1 are linearly independent

♥ J (V1, . . . ,V=−1) is orthogonal to every argument V8 of J

♠ The linear map J (V1, . . . ,V=−2) : T → T : V ↦→ J (V1, . . . ,V=−2,V ) is one-to-one

and skew-adjoint

Denoting E>;81 ...8= the covariant components of the volume form of an oriented Euclidean

space of dimension = and + 8A the 8-th component of the vector VA , the 9-th component of the

vector product is given by

(J (V1, . . . ,V=−1)) 9 =
∑

81...8=−1

E>;81 ...8=−1

9 +
81
1
. . . +

8=−1

=−1

where we rise the last index of the volume form with the metric. The element of the matrix

J (V1, . . . ,V=−2) at the intersection of the 9-th row and the :-th column is

(J (V1, . . . ,V=−2)) 9: =
∑

81...8=−1

E>;81 ...8=−2:
9 +

81
1
. . . +

8=−2

=−2

Now, we would like to obtain a recursive formula to calculate the vector product when we

add an extra dimension. If +,+8 ∈ T = R= , we put

+̂ =

[
+

E

]
, +̂8 =

[
+8
E8

]
∈ T̂ = R=+1

Then, it can be proved that

Ĵ (+̂1, . . . , +̂=) =
[
=∑

:=1

(−1)=−:+1 E: J (+1, . . . ,+:−1, +:+1, . . . , +=)∗, E>; (+1, . . . , +=)
]∗

(4)

In the particular case of the classical positive Euclidean space of dimension 3 (= = @ = 3),

we use the notation 9 instead of J and we recover the cross product 9 (D, E) = D × E and the
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linear map D ↦→ 9 (D) is one-to-one from R3 into the space of 3 × 3 skew-symmetric matrices.

In the sequel, the notation J will be reserved to the dimension 4 and Ĵ to the dimension 5. In

R
4 equipped with the metric of Gram’s matrix � = 3806(1,−1,−1,−1), the vector product of 3

vectors

Π: =

[
<:
?:

]
, <: ∈ R, ?: ∈ R3 (1 ≤ : ≤ 3)

itemizes as

J (Π1,Π2,Π3) =
[
E>; (?1, ?2, ?3)
<1 9 (?2, ?3) − <2 9 (?1, ?3) + <3 9 (?1, ?2)

]
(5)

from which we deduce

J (Π1,Π2) =
[

0 9 (?1, ?2))
9 (?1, ?2) <1 9 (?2) − <2 9 (?1)

]
(6)

In R5 equipped with the metric of Gram’s matrix �̂ = 3806(1,−1,−1,−1,−l2), let us consider

3 vectors

Π̂: =

[
Π:

@:

]
, Π: ∈ R4, @: ∈ R (1 ≤ : ≤ 3)

Then

Ĵ (Π̂1, Π̂2, Π̂3) =
[
@1J (Π2,Π3) − @2J (Π1,Π3) + @3J (Π1,Π2) − 9 (Π1,Π2,Π3)
−l−2 9 (Π1,Π2,Π3)∗ 0

]
(7)

2.4 Hodge operator

Let us consider the oriented Euclidean space T = R= of positive index of inertia ?. Owing (2),

the skew-adjoint map " can be identified to the 2-form �" through

*∗"+ = *) �"+ = �" (*,+) with �" = � "

Then " = J (+1, . . . , +=−2) can be identified to the 2-form �" = −E>; (+1, . . . , +=−2). The

vector space
∧@ T of @-forms is an Euclidean space for the scalar product

�@ (�, �) =
1

@!

∑

81 . . . 8@
91 . . . 9@

�81 91 . . . �8@ 9@ �81...8@� 91... 9@

The adjoint2 of a @-form � is the (= − @)-form ∗� such that

(∗�) (+1, . . . , +=−@) = (−1)@ (=−@)�@ (�, E>; (+1, . . . , +=−@))

The linear map ∗ :
∧@ T → ∧=−@ T : � ↦→ ∗� is called Hodge operator. The following result

can be proved:

2To do not confuse with the adjoint of a linear map.
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Theorem 2.2 Properties of the Hodge operator:

♦ " = J (+1, . . . , +=−2) is identified to the 2-form

�" = ∗(+∗
1 ∧ . . . ∧+∗

=−2) = −E>; (+1, . . . , +=−2)

♥ If � is a @-form, ∗(∗�) = (−1)@ (=−1)+=−? �

♠ ∗E>; (+1, . . . ,+=−2) = (−1)=−? +∗
1
∧ . . . ∧+∗

=−2

♮ ∗(+∗ ∧*∗) = −E>; (*,+)

In the special case of interest : = = 4, @ = 2, if �" is a 2-form, ∗�" is also a 2-form identified

to an skew-adjoint map denoted ∗" . If +∗
1
∧ +∗

2
= �′

"
, then " ′ = �−1(+∗

1
⊗ +∗

2
− +∗

2
⊗ +∗

1
) =

+1+
∗
2
−+2+

∗
1
. On the other hand, ♦ reads �J(+1 ,+2 ) = ∗�′

"
= �∗"′ then:

∗(+1+
∗
2 −+2+

∗
1 ) = J (+1, +2) (8)

that implies, owing to ♥
∗J (+1, +2) = (−1)=−? (+1+

∗
2 −+2+

∗
1 ) (9)

3 Coadjoint orbit method to classify the elementary particles

This Section is a simple reminder of concepts of symplectic mechanics. For more details on

this topics, the reader can consult for instance Souriau [1970], Abraham and Marsden [1978],

Guillemin and Sternberg [1984], Libermann and Marle [1987], Souriau [1997b]. In the sequel,

all the considered Lie groups are matrix groups. Any Lie group � left linearly acts on its Lie

algebra g by the adjoint representation

�3 (0) : g → g : / ′ ↦→ / = 0/ ′0−1 (10)

� left linearly acts on the dual g∗ of g by the coadjoint representation �3∗ such that

∀/ ∈ g,∀` ∈ g∗, (�3∗(0)`) (/) = `
(
�3

(
0−1

)
/
)

(11)

Let (M, s) be a symplectic manifold, a symplectic action of a Lie group �

� ×M → M : (0, G) ↦→ G′ = 0 · G

of a Lie group � on M
!∗0s = s

and a momentum mapping k : M → g∗

∀/ ∈ g, ∀3G ∈ )GM, s (/ · G, 3G) = −3 (k (G) /)

If the manifoldM is connected, two momentum mappings differ by a constant. All the symplectic

manifolds considered in the sequel are assumed to be connected. We consider now g∗ as equipped

9



with the associated structure of affine space. The momentum mappings belong to the affine space

of the mappings from M into g∗, called the momentum mapping space. Any element � of the

affine group GA (g∗) of g∗ is of the form � (`) = %` + `0 where % ∈ GL (g∗) and `0 ∈ g∗. The

action of � on M induces a smooth right action on the momentum mapping space

∀G ∈ M,∀0 ∈ �, (k · 0) (G) = k (0 · G)

Theorem 3.1 (Souriau) Let (M, s) be a connected symplectic manifold and a symplectic action

(0, G) ↦→ G′ = 0 · G of a Lie group �. Then, the induced action (0, k) ↦→ k′ = k · 0 has the form

k · 0 = �3∗ (0) k + 2>2B (0) (12)

where 2>2B (0) does not depends on G. The mapping 2>2B : � → g∗ is called a symplectic

cocycle.

The demonstration can be found for instance in Souriau [1970, 1997b, Theorem (11.34)] and

[Abraham and Marsden , 1978, Section 4.2]. In the sequel, we consider only symmetry groups

for which the consideration of symplectic cocycles is not relevant, then the group acts linearly.

The symplectic structure of the coadjoint orbits is revealed by the following result.

Theorem 3.2 (Kirillov-Kostant-Souriau) Let � be a Lie group and an orbit of the coadjoint

representation >A1 (`) ⊂ g∗. Then:

♦ The inclusion map >A1 (`) → g∗ is a regular embedding. A vector 3` ∈ )`g∗ is tangent

to the orbit if there exists /3 ∈ g such that:

3 ` = ` ◦ 03 (/3) = −03∗ (/3)`

♥ The orbit >A1 (`) is a symplectic manifold of which the symplectic form is defined by:

s  ( (3`, X`) = ` [/3, /X]

The dimension of the orbit is even.

♠ � is a symplectic group and any ` ∈ g∗ is its own momentum.

The reader can find a demonstration in Souriau [1970, 1997b, Theorem (11.34)].

In physical terms, every observer is working in a reference frame. The symmetries 0 ∈ �
are changes of reference frames or, equivalently, of observers. According to the mechanistic

description of elementary particles proposed by Souriau, an isolated dynamical system is said

to be elementary when the symmetry group acts transitively on the space of its motions, i.e.

it is the set of all possible motions of the system. The momentum map of its action is then a

symplectic diffeomorphism of this space onto a coadjoint orbit of the group. For him, the so

defined elementary systems are mathematical models for elementary particles of physicists.

10



4 Elementary particles in Poincaré relativity

In special relativity, the Universe U is represented by a 4D space3. An event X ∈ U occuring

in a reference frame at time C and position G ∈ R3 is represented by its coordinates

- =

[
C

G

]

U is equipped with the Minkowski 1 + 3 metric represented in an orthonormal basis by Gram’s

matrix

� =

[
1 0

0 −1R3

]
(13)

then in this basis the speed of the light 2 is equal to 1. The Lorentz transformations are the linear

transformations % of R4 which conserve the 1 + 3 metric, then such

%∗% = 1R4

In terms of the boost (or velocity of transport) E ∈ R3 and a rotation ' ∈ SO(3), using the factor

W = 1/
√

1− ‖ E ‖2, the structure of a Lorentz transformation is

% =

[
W W E)'

W E
[
1R4 + W2

W+1
E E)

]
'

]

In the sequel, we consider only the special Lorentz transformations i.e. that belong to the

connected component of the identity SO+ (1, 3), a Lie group of dimension 10. The Poincaré

group G is the set of affine transformations of R4

- ′ ↦→ - = � + % - ′ (14)

of which the linear part % is a Lorentz transformation and that we denote 0 = (�, %). The

translation is decomposed into a clock change g and a space translation :

� =

[
g

:

]

G is a Lie group of dimension 10. The elements of its Lie algebra g are characterized by

/ ∈ g ⇔ / = X0 = (X�, X%) such that X% is skew-adjoint

then

X� =

[
Xg

X:

]
, X% =

[
0 XE)

XE 9 (X\)

]
(15)

3In general relativity, the Universe is a manifold and we have to consider the tangent space regarding to the

elementary particles.
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where X' = 9 (X\) is an infinitesimal rotation around the identity of R3. The corresponding

momenta ` are linear forms on g

`(/) = −Π∗X� − 1

2
)A (" X%) (16)

characterized by

` ∈ g∗ ⇔ ` = (Π, ") such that " is skew-adjoint

For physical purpose, we introduce the 1 + 3 block decomposition

Π =

[
<

?

]
, " =

[
0 A)

A 9 (;)

]
(17)

where < ∈ R is the mass (equal to the energy because 2 = 1), ?, A, ; ∈ R3 are respectively the

linear momentum, the passage and the angular momentum. Then (16) itemizes into

`(/) = ; · X\ − A · XE + ? · X: − < Xg

The coadjoint representation reads

` = �3 (0) `′ ⇔ Π = %Π′, " = % " ′%∗ + � (%Π′)∗ − (%Π′) �∗ (18)

In Souriau [1970, 1997b, Chapter 3, §14], Souriau uses the type (timelike or lightlike) of the

4-momentum vector (or energy-momentum vector) Π for a classification of elementary systems.

By these means, he obtains a large part of the physicists’ classification of elementary particles.

Below, briefly summarized, his results are presented.

Let us suppose that Π is timelike and define the spin momentum

"0 = " + Π -∗ − - Π∗ (19)

from which we deduce of (18) its transformation law

"0 = % " ′
0%

∗ (20)

and two properties

(a) "0 is skew-adjoint

(b) The set of - ∈ R4 such that "0 Π = 0 is a straight line D parallel to Π

Owing to (20), "0 does not depends on - when - runs over D. Taking into account that a non

null vector orthogonal to a timelike vector is spacelike (see Souriau [1965, §28]), �, � ∈ R4 such

that

Π = <0 �, �∗� = 1, �∗� = −1, �∗� = 0 (21)

On this ground, we put

"0 = B J (�, �) (22)
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verifying the properties (a) and (b) because of Theorem 2.1 ♥ and ♠. The momentum ` = (Π, ")
is characterized by D and � or, equivalently, by -, �, �. Owing to (8), we have

∗" = ∗"0 + ∗(- Π∗ − Π -∗) = ∗"0 + J (-,Π)

Let us introduce the polarization

, = (∗")Π (23)

Then, taking into account Theorem 2.1 ♥, (22) and (9)

, = (∗"0) Π + J (-,Π) Π = B <0 (∗J (-,Π)) � = B <0 (� �∗ − � �∗) �

or, taking into account (21)

, = B <0 �

The straight line of direction � is called the polarization line.

A particle with spin is characterized by two non vanishing 4-vectors, its energy-momentum

Π (timelike) and its polarization , (spacelike). The two numbers (Casimirs)

�2 = Π∗Π > 0, �4 = ,∗, < 0

are invariant of the orbit, then do not depend on the reference frame or the observer. The calculus

of the dimension of the isotropy group of the momentum ` shows that they are only 2 independent

invariants, then every invariant is a combinations of the Casimirs. The numbers

<0 =
√
Π∗Π, B =

√
−,∗,
√
Π∗Π

are interpreted as the rest mass and the spin of the particle. In particular, let

Π′ =

[
<0

0

]

be the 4-momentum in the comoving frame (or proper reference frame). Applying to it a boost

E, i.e. a Lorentz transformation (4) where the rotation is the identity, we obtain by (18) the mass

and the linear momentum in the reference frame of any observer

< = <0W, ? = <0W E

This relation can be expressed also as

Π = <0* such that *∗* = 1 (24)

It is worth to remark that the straight line D is the trajectory of the particle Souriau [1970,

1997b, Chapter 3, §14]. If it is parameterized by the arc length B (for the metric �), * is the

4-velocity

* =
3-

3B
=

[
W

W E

]
(25)
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They are two other kind of orbits characterizing a particle without spin and a massless

particle. For more details the reader is referred to Souriau [1970, 1997b, (14.24) and (14.29)].

We know that elementary particles are characterized by their mass, spin and electric charge.

This last property is missing from this formalism and is usually reintroduced in the particle

description as an external element to the geometric approach (see Souriau [1970, 1997b, Chapter

3, §15]). Our aim now is to develop a paradigm compatible with the experimental observations

and in which the charge naturally appears as a momentum by constructing a bridge between the

coadjoint orbit method and the Kaluza-Klein theory.

5 Elementary particles in Kaluza-Klein relativity

In this theory, the Universe Û is represented by a 5D hyperbolic Euclidean space where the fifth

dimension is curled up and microscopic. An event X̂ ∈ Û occuring in a reference frame at time

C, position G and fifth coordinate H is represented by the 5-column

-̂ =

[
-

H

]
=



C

G

H



Û is equipped with a 1 + 4 metric represented in an orthonormal basis by Gram’s matrix

�̂ =

[
� 0

0 −1

]
(26)

where � is given by (13). The set Ĝ1 of affine transformations 0̂ = (�̂, %̂) of R5 of which the

linear part conserves the metric

%̂∗%̂ = 1R4

is a Lie group of dimension 15. The structure of the transformations of Ĝ1 is given by

�̂ =

[
�

b

]
, %̂ =

[
% V %∗−11

1∗ V

]

where

1 ∈ R4, V =
√

1 + 1∗1

% = %!�, %! is a Lorentz transformation, � = 1R4 + 1

V + 1
1 1∗ (27)

Its restriction to R4 is Poincaré’s group. The elements of its Lie algebra ĝ1 are characterized by

/̂ ∈ ĝ1 ⇔ /̂ = X0̂ = (X�̂, X%̂) such that X%̂ is skew-adjoint

then

X�̂ =

[
X�

Xb

]
, X%̂ =

[
X% X1

X1∗ 0

]
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where X% is skew-adjoint with respect to the metric (13).

Following Souriau, the momenta of the elementary particles can be obtained by considering

the group action on the coadjoint orbits. The momenta ˆ̀ of Ĝ1 are of the form

ˆ̀ ( /̂) = −Π̂∗X�̂ − 1

2
)A ("̂ X%̂) (28)

characterized by

ˆ̀ ∈ ĝ∗1 ⇔ ˆ̀ = (Π̂, "̂) such that "̂ is skew-adjoint

For convenience, we decompose the momenta as follows

Π̂ =

[
Π

@

]
, "̂ =

[
" &

&∗ 0

]
(29)

where the scalar @ and& ∈ R4 are extra momenta with respect to those of Poincaré’s group. The

natural conjecture is to identify @ to the electric charge with suitable physical units. This idea

is mentioned in Petit and D’Agostini [2014] but the extension of Poincaré’s group proposed by

the authors is only a subgroup of Ĝ1 of dimension 11. In the present work, the aim is to perform

an in-depth investigation by examining the consequences of this conjecture to verify if they fit

the observations.

Then (28) itemizes into

ˆ̀ ( /̂) = −Π∗X� − 1

2
)A (" X%) − @ Xb −&∗X1 (30)

The coadjoint representation reads

ˆ̀ = �3 (0̂)∗ ˆ̀′ ⇔ Π̂ = %̂ Π̂′, "̂ = %̂ "̂ ′%̂∗ + �̂ (%̂ Π̂′)∗ − (%̂ Π̂′) �̂∗ (31)

The action of Ĝ1 on the energy-momentum-charge vector Π̂ itemizes into

Π = %Π′ + @′ V %∗−11, @ = 1∗Π + V @′

It results that the electric charge is dependent on the reference frame then on the observer, totally

at odds with the experimental observations. Likewise for Poincaré’s group, we assume that Π̂ is

timelike. The only invariant is

Π̂∗Π̂ = Π∗Π − @2 > 0

The value of the charge depends on the observer and may even be zero in certain reference

frames. The charge is not characteristic only of the particle. Author’s opinion is that Ĝ1 is not

the symmetry group of the Universe today as we know it but nonetheless must not be a priori

rejected. We have only to find the Physics that could admit it as symmetry group. However

before to discuss this point, our goal now is to find a more appropriate symmetry group for the

Physics today. It is what we shall be going to see in the next Section. Latter, we shall come back

to the analysis of the structure of the momenta ˆ̀ of Ĝ1 and the exhaustive determination of the

invariants of the motion.
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6 Elementary particles in an Universe with a microscopic fifth di-

mension

6.1 Zoom in

To avert the previous paradox concerning the electric charge, it is worth to remark that the fifth

dimension is curled up and the estimate of the cylinder radius (about 10−30 cm) is overwhelmingly

small with respect to usual lengths in nuclear physics. The idea is to take advantage of this fact

by a zoom in along the fifth coordinate and to consider the limit when the cylinder radius l

vanishes. Then we consider the transformation law of a vector V̂

+̂ ′ = %̂−1
l +̂ (32)

with the scaling

%̂l =

[
1R4 0

0 l

]
(33)

in such way that if the length was of the order of the cylinder radius in the fifth coordinate,

it is after scaling of the order of the unity in the new coordinate (with a prime). Owing to the

transformation law of 2-covariant tensors,

�̂′ = %̂)l�̂ %̂l

the metric and its inverse are represented after the scaling by

�̂′ =

[
� 0

0 −l2

]
, �̂′−1 =

[
�−1 0

0 −l−2

]
(34)

Next we omit the primes and consider the limits of these two matrices when l → 0

�̂0 =

[
� 0

0 0

]
, −l−2

[
0 0

0 1

]
= −l−2

[
0

1

]
⊗

[
0

1

]
(35)

The first matrix represents a covariant semi-metric of signature (+ − − − 0) while the second

one represents a contravariant semi-metric of signature (0 0 0 0−). After scaling, the Euclidean

structure of Û is canceled but it remains two debris, a symmetric 2-covariant tensor that we

denote Ĝ0 represented by �̂0 and a symmetric 2-contravariant tensor or, equivalently, a vector


0 represented by the column

Ω̂0 =

[
0

1

]
(36)

The set Ĝ0 of affine transformations 0̂ = (�̂, %̂) of R5 of which the linear part conserves the

components of Ĝ0 and 
0 is such that

�̂ =

[
�

b

]
, %̂ =

[
% 0

1∗ 1

]
(37)

where b is a scalar, �, 1 ∈ R4 and % is a Lorentz transformation. As Ĝ1, it is a Lie group of

dimension 15. Then the affine transformation -̂ ′ ↦→ -̂ = �̂ + %̂ -̂ ′ itemizes into

- = � + % - ′, H = b + H′ + 1∗- ′ (38)
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6.2 Gauge transformation

To understand the meaning of 1, we change of point of view and work in the framework of the gen-

eral relativity in which V̂ is a tangent vector to a the 5D manifold Û. As in de Saxcé and Vallée

[2016], we hope to determine whether the G-structure in Kobayashi sense (Kobayashi [1972])

is integrable by solving thanks to Frobenius method the PDE system

m-̂

m-̂ ′
= %̂, %̂ ∈ �

For Ĝ1, the manifold Û is Riemannian and the the Ĝ1-structure is not integrable if Û is curved.

If it is flat, the transition maps are of the form -̂ ′ ↦→ -̂ = �̂ + %̂ -̂ ′. For Ĝ0, the compatibility

conditions of the system provides the equation

1 = grad- ℎ

where - ′ ↦→ ℎ(- ′) is a real function, that by integration leads to the gauge transformation

H = H′ + ℎ(- ′)

The Ĝ0-structure is integrable only if the manifold is flat. Otherwise, it is convenient as in

Souriau [1964, Chapter VII, (41.21)] to consider the transition maps of standard charts

-̂ = �̂ ( -̂ ′) =
[
� (- ′)
H′ + ℎ(- ′)

]

In terms of 4-potential � of the electromagnetism, the vector 1 turns out to be a gauge transfor-

mation

�′ ↦→ � = �′ + 1

6.3 Coadjoint orbit

The elements of the Lie algebra ĝ0 of Ĝ0 are characterized by

/̂ ∈ ĝ0 ⇔




/̂ = X0̂ = (X�̂, X%̂) such that

X�̂ =

[
X�

Xb

]
, X%̂ =

[
X% 0

X1∗ 0

]
,

X% is skew-adjoint with

respect to the metric (13)

(39)

The momenta ˆ̀ of Ĝ0 are of the form

ˆ̀ ( /̂) = −Π∗X� − 1

2
)A (" X%) − @ Xb −&∗X1
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The coadjoint representation ˆ̀ = �3 (0̂)∗ ˆ̀′ is defined by the following transformation laws

Π = % (Π′ − @′ 1) (40)

" = % " ′%∗ + � (% (Π′ − @ 1))∗ − (% (Π′ − @ 1)) �̂∗ + (% 1) (%&′)∗ − (%&′) (% 1)∗ (41)

@ = @′ (42)

& = %&′ + @′� (43)

In contrast to what happened with Ĝ1, the electric charge is independent on the reference

frame then on the observer. This include in particular the invariance with respect to the gauge

transformation. Besides, owing to (38), the transformation law (43) is satisfied if we claim that

& = @ - (44)

that provides the physical interpretation of the momentum & as the product of the charge

and the space-time position. We suggest to call it the 4-position-charge momentum. Let us

remark also that, taking into account the transformation law of Π, the one of " is simplified as

follow

" = % " ′%∗ + � Π∗ − Π �̂∗ + (% 1) (%&′)∗ − (%&′) (% 1)∗ (45)

To calculate the number of independent invariants of the momentum of a group �, we

determine the isotropy group of ˆ̀ from which we deduce the dimension of the coadjoint orbit

dim (orb( ˆ̀)) = dim� − dim(iso( ˆ̀))

The number of independent invariant of the orbit is

=� = dim g − dim(orb( ˆ̀)) = dim(iso( ˆ̀))

Taking into account (40), (45 and (43), to determine the isotropy group of ˆ̀, we need to solve

with respect to the unknowns �, %, 1, b the system of equations

Π = % (Π − @ 1) (46)

" = % "%∗ + � (% (Π − @ 1))∗ − (% (Π − @ 1)) �̂∗ + (% 1) (%&)∗ − (%&) (% 1)∗ (47)

& = %&′ + @′� (48)

the condition (42) being useless because the charge is an obvious invariant.

For a charged particle (@ ≠ 0), let us show that the number of independent invariants is

3. Indeed, (46) and (48) give

1 =
1

@
(Π − %∗Π), � =

1

@
(& − %&) (49)

Introducing these expressions of 1 and � into (47) leads to

"0 = % "0%
∗ (50)
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where, taking into account (44)

"0 = " + 1

@
(Π&∗ −& Π∗) = " + Π -∗ − - Π∗ (51)

can be interpreted as the spin momentum, by comparison to (19). As in Poincaré relativity,

the straight line D of equation "0 Π = 0 is the trajectory of the particle, parallel to Π given by,

owing to (24) and (25)

Π = <0* with * =
3-

3B
such that *∗* = 1 (52)

First we consider a charged particle with spin (@ ≠ 0,Π timelike, "0 ≠ 0). Equation (50)

being non linear with respect to % then difficult to solve, we use an infinitesimal method by

working with its differential version in terms of Lie algebra. Differentiating it with respect to %

at the identity and taking into account that X% is skew-adjoint, it holds

X% "0 − "0X% = 0

Putting

X% =

[
0 XE)

XE 9 (X\)

]
, "0 =

[
0 A)

0

A0 9 (;0)

]

we obtain the system of equation

;0 × X E + A0 × X \ = 0, A0 × X E − ;0 × X \ = 0

In the general case (;0 × A0 ≠ 0), the solution is

X \ = _ A0 + ` ;0, X E = ` A0 − _ ;0

where _ and ` are two independent scalars of arbitrary values. Then the dimension of the

isotropy group of "0 is 2 because the couple (X \, X E) then X % is defined by these 2 independent

parameters. It is easy to verify that the dimension 2 is also valid for the particular case. The

value of 1 and � are fixed by (49). The value of b that does not occurs in the equations is free.

Then the dimension of the isotropy group of ˆ̀ and then the number of independent invariants is

3.

For a charged particle with spin, a set of 3 independent invariants of ˆ̀ is the electric

charge, the rest mass and the spin of the particle

@, <0 =
√
Π∗Π, B =

√
−,∗,
√
Π∗Π

where the polarization , is defined by (23).

For a charged particle without spin (@ ≠ 0,Π timelike, "0 = 0), equation (50) is satisfied

for every %. The number independent invariants is 7. The invariants are @ and the 6 independent

components of "0 which are null.
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For a particle without charge (@ = 0, & = 0), the coadjoint representation of Ĝ0 is reduced

to (18) and we recover the classification of elementary particles in Poincaré’s relativity.

To author’s knowledge, the Physics of the symmetry group Ĝ0 has not been considered in

the literature. By the way, there exists a group introduced by Lévy-Leblond [1965] and called

by him Carroll’s group4, of which the elements have the same mathematical structure as the

ones of Ĝ0. However the physical meaning of Carroll’s group is very different from the one of

Ĝ0: Carroll’s group linearly acts on a space of dimension 4 (not 5) and the dimension analogous

to the fifth of Ĝ0 is timelike (not spacelike). Carroll’s group was constructed as a degeneracy

of Poincaré’s group (similar but distinct from Galileo’s group). Despite of these discrepancies

concerning the physical aspects, Carroll’s group may be considered as a forunner of the group

Ĝ0. For more details on Carroll’s group, the reader is referred to Duval et al. [1985, 1991,

2014], Bergshoeff et al. [2014, 2023], Lévy-Leblond [2023].

7 A cosmological scenario for the evolution of elementary particle

structure

One of the important problems in Kaluza-Klein theories is how to explain the large separation

of the scale of our 3D space and that of the extra dimension. This issue was addressed in Okada

[1986] with a Robertson-Walker metric in our four dimensions and a 3-dimensional sphere (3

in the extra dimensions. For our concern, 3 = 1. Under certain assumptions, this approach

predicts stable cosmological models for the extra dimension and, using Kasner solutions for

approximations when C → 0, a possible evolution of the scale factors 0 for our 3D space and l

for the fifth dimension given by

0(C) � 00 C
1/2, l(C) � l0 C

−1/6

Although the assumptions are affected by many uncertainties, it seems reasonable to expect a

cosmological scenario in which:

• the elementary particles of the early 5D Universe are classified from the momenta of the

group Ĝ1,

• next the three former space dimensions inflate quickly while the fifth one shrinks,

• leading to the 4D era in which as today the particles are characterized by the momenta of

the group Ĝ0.

By this mechanism, the elementary particles can acquire electric charge as a by-product of

the 4 + 1 symmetry breaking of the Universe.

To describe it, we consider the metric Ĝl at scale l. We omit the prime for the scaled

coordinates. Owing to (34), the metric is represented by Gram’s matrix

�̂l =

[
� 0

0 −l2

]

4Lewis Carroll, the author of Alice’s Adventures in Wonderland, although mathematician, had nothing to do with

the creation of this group.
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The set Ĝl of affine transformations 0̂ = (�̂, %̂) of R5 of which the linear part conserves the

metric �̂l is a Lie group of dimension 15. The structure of the transformations of Ĝl is given

by

�̂ =

[
�

b

]
, %̂ =

[
% l2V %∗−11

1∗ V

]

where

1 ∈ R4, V =
√

1 + l21∗1

% = %!�, %! is a Lorentz transformation, � = 1R4 + l2

V + 1
1 1∗ (53)

When l = 0, we recover the group Ĝ0. We would like to classify the elementary particles with

charge at scale l > 0. In particular, we shall obtain the classification for the early Universe

(l = 1) of which the study was only sketched out in Section 5. The other limit case of the

Universe today (l = 0) that is singular was already studied in Section 6.

The elements 0̂ = (X�̂, X%̂) of the Lie algebra ĝl of Ĝl are such that

X�̂ =

[
X�

Xb

]
, X%̂ =

[
X% l2X1

X1∗ 0

]
(54)

where X% is skew-adjoint with respect to the metric (13). The momenta ˆ̀ of Ĝl are of the form

(28). We decompose the momenta as follows

Π̂ =

[
Π

@

]
, "̂ =

[
" &

l−2&∗ 0

]
(55)

transforming (28) into (30). The coadjoint representation is defined by (31) or, in details

Π = %Π′ + l2@′ V %∗−11 (56)

" = % " ′%∗ + V
[
(%∗−11) (%&′)∗ − (%&′) (%∗−11)∗

]

+� (%Π′ + l2@′ V %∗−11)∗ − (%Π′ + l2@′ V %∗−11) �∗ (57)

@ = 1∗Π + V @′ (58)

& = V %&′ − l2
[
% " ′1 + V (1∗&′) %∗−11

]

+l2
[
b (%Π′ + l2@′ V %∗−11) − (1∗Π′ + V @′) �

]
(59)

By analogy with (19), we define the spin momentum

"̂0 = "̂ + Π̂ -̂∗ − -̂ Π̂∗

from which we deduce of (31) its transformation law

"̂0 = %̂ "̂ ′
0%̂

∗ (60)

and two properties

(i) "̂0 is skew-adjoint

(ii) The set of -̂ ∈ R5 such that "̂0 Π̂ = 0 is a straight line D̂ parallel to Π̂
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7.1 Polarization plane and map

At this stage, it is worth to remark an important difference between Poincaré relativity, in which

�"0
and its adjoint ∗�"0

are both 2-forms, and Kaluza-Klein one for which �"̂0
is a 3-form

while ∗�"̂0
is a 2-form, that has important consequences from the geometrical and physical

viewpoints. Owing to (60), "̂0 does not depends on -̂ when -̂ varies over D̂. Let �̂ , �̂1, �̂2 ∈ R5

such that

Π̂ = <0 �̂ , �̂∗ �̂ = 1, �̂∗1 �̂1 = �̂∗2 �̂2 = −1, �̂∗1 �̂ = �̂
∗
2 �̂ = �̂

∗
1 �̂2 = 0 (61)

Over D̂, we put

"̂0 = B J ( �̂ , �̂1, �̂2) (62)

verifying the properties (i) and (ii) because of Theorem 2.1 ♥ and ♠. The momentum ˆ̀ = (Π̂, "̂)
is characterized by D and �̂1, �̂2 or, equivalently, by -̂, �̂ , �̂1, �̂2. In Poincaré relativity, there is a

polarization straight line of direction � while in Kaluza-Klein relativity, there is a polarization

plane spanned by the couple (�̂1, �̂2) that is one of its orthonormal basis. Owing to Theorem 2.2

♮, we have

∗�"̂ = ∗�"̂0
+ ∗( -̂∗ ∧ Π̂∗) = ∗�"̂0

+ E>; (Π̂, -̂)

Then

∗�"̂ (Π̂, �̂:) = ∗�"̂0
(Π̂, �̂:) + E>; (Π̂, -̂ , Π̂, �̂:) = B ∗ �Ω̂(Π̂, �̂:) (: = 1, 2)

that leads to investigate the properties of the 2-form ∗�Ω̂. Applying Theorem 2.1 ♥ and ♠, its

adjoint is the 3-form

∗�Ω̂ = − ∗ E>; ( �̂ , �̂1, �̂2) = −�̂∗ ∧ �̂∗1 ∧ �̂∗2
from which we deduce

�̂1 = −(∗�Ω̂( �̂ , �̂2))∗, �̂2 = (∗�Ω̂( �̂ , �̂1))∗ (63)

In terms of the momentum ˆ̀ = (Π̂, "̂), introducing the polarization map

pol ˆ̀ : R5 → R5 : *̂ ↦→ +̂ = pol ˆ̀ (*̂) = (∗�"̂ (Π̂, *̂))∗

the relations (63) are recast as

B <0 �̂1 = −pol ˆ̀ (�̂2), B <0 �̂2 = pol ˆ̀ (�̂1)

Now, we have to address the issues of the existence and (non) uniqueness of the orthonormal

basis (�̂1, �̂2) to define the polarization map:

• Existence. Let us  ̂1,  ̂2 two vectors of R5 that form with �̂ , �̂1, �̂2 an orthonormal basis

of R5 in which we decompose any vector

*̂ = _�̂ + `1�̂1 + `2�̂2 + a1 ̂1 + a2 ̂2
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Then

pol ˆ̀ (*̂) = B <0 (`1�̂2 − `2�̂1)

that shows the image of the polarization map pol ˆ̀ is the polarization plane P. This gives

a method to determine a basis of P. We span R5 and apply the polarization map to find

two linearly independent vectors. They form a basis of P. Then we find an orthonormal

basis by using the Gram–Schmidt process.

• Non uniqueness. Let (�̂1, �̂2) and (�̂′
1
, �̂′

2
) be two orthonormal bases such that

J ( �̂ , �̂1, �̂2) = J ( �̂ , �̂′1, �̂′2)

Owing to Theorem 2.1 ♥,

J ( �̂ , �̂1, �̂2) �̂′: = J ( �̂ , �̂′1, �̂′2) �̂′: = 0 (: = 1, 2)

then �̂′
1

and �̂′
2

are linear combinations of �̂1 and �̂2. This ensures the uniqueness of the

polarization plane. In contrast, the orthonormal basis (�̂1, �̂2) is defined only modulo an

orthogonal transformation of P

7.2 Invariants of the motion

For a charged particle (@ ≠ 0), let us verify on a simple case that the number of independent

invariants is 2. Taking into account (31), we determine the isotropy group of the momentum by

solving the system of equations

Π̂ = % Π̂, "̂ = %̂ "̂ %̂∗ + �̂ (%̂ Π̂)∗ − (%̂ Π̂) �̂∗

with respect to 0̂ = (�̂, %̂). Like in Section 6.3, we differentiate these equations with respect to

0̂ at the identity and we take into account that "̂ is skew-adjoint, that leads to solve the linear

system

X%̂ Π̂ = 0, X%̂ "̂ − "̂ X%̂ + X�̂ Π̂∗ − Π̂ X�̂∗ = 0 (64)

with respect to X0̂ = (X�̂, X%̂). Let us pick up

�̂ =

[
�

^

]
=



`

0

^


, �̂: =

[
�:
0

]
=



0

?:
0


, (: = 1, 2)

that satisfy conditions (61). Owing to (54) and (55), the first equation of (64) itemizes into

X%Π + l2@ X1 = 0, X1∗Π = 0 (65)

of which the solution is, owing to (15) and (17)

X1 =

[
X10

X1̄

]
=

[
0

− `

l2^
XE

]
(66)
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Besides, owing to (5) and (6), we have

J (�, �1, �2) =
[

0

` k

]
, J (�1, �2) =

[
0 k)

k 0

]

with k = ?1 × ?2, from which we deduce, taking into account (62) and (7)

"̂0 = BĴ ( �̂ , �̂1, �̂2) = B
[
^ J (�1, �2) −J (�, �1, �2)
−l2J (�, �1, �2)∗ 0

]

"̂0 = B



0 ^ k) 0

^ k 0 −` k
0 `l−2k) 0


the second equation of (64) itemizes into

B (^ 9 (X\) + ` X101R3) k + <0 ` X: = 0,

(^ XE + ` X1̄) × k = 0,

−B(` 9 (X\) + ^ l2X101R3)k − <0l
2^ X: = 0

−B(` XE + ^ l2X1̄) · k + <0l
2(` Xb − ^ Xg0) = 0 (67)

Taking into account (66), the solution of this system of equation is of the form

Xg = U, X: = 0, Xb =
^

`
U

XE = V k, X\ = ` k, X10 = 0, X1̄ = −V `

l2^
k

where U, V are two scalars of arbitrary values. Then the dimension of the isotropy group of

the momentum then the number of its independent invariant is 2. We can take as independent

invariants the rest mass and the spin

<0 =

√
Π̂∗Π̂, B =

√
−(pol ˆ̀ (�̂1))∗pol ˆ̀ (�̂1)
√
Π̂∗Π̂

√
−(�̂1)∗�̂1

It is worth to remark that the electric charge is the linear momentum along the fifth dimension

but is not an invariant of the motion in the early Universe.

8 Constructing the connection associated to the group Ĝ0

At every symmetry group � is attached a family of covariant derivatives of which the connection

matrices are defined on the �-principal bundle of the �-frames and valued in its Lie algebra g

(see for instance Kobayashi and Nomizu [1963]). We call them �-connections. For the group

Ĝ1, we recover the Levi-Civita free torsion connection used in Kaluza-Klein theory. A key-point

of interest is to determine the Ĝ0-connections, the difficulty being that the manifold Û is not

Riemannian, and to use it to deduce the equation of motion of a particle in gravitation and

electromagnetic fields.
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8.1 Zoom out

It is time now to restore the primes canceled for convenience in Section 6.1 after the zoom

in. For instance, according to (35) and (36), the two tensors Ĝ0 and 
0 are represented at the

microscopic scale respectively by

�̂′
0 =

[
�′

0
0

0 0

]
, Ω̂′

0 =

[
0

1

]
(68)

with the new notation for the matrix (13)

�′
0 =

[
1 0

0 −1R3

]
(69)

At first glance, we could think to come back to the macroscopic scale by zooming out with

the inverse transformation law of (32)

+̂ = %̂l+̂
′

where %̂l is given by (33), that leads to the singularity +̂5 = 0 when l → 0.

8.2 Hypotheses on the pullback connection

In order to avert the singularity resulting from the zoom out without to lose the relevant infor-

mation in the fifth dimension, we propose to pullback over the space-time U the Ĝ0-connection

∇̂ on the tangent bundle )Û. They are an infinite number of Ĝ0-connections. The purpose here

is not to study their properties in generic terms and to classify them. We are interested only by

those which satisfy certain physical requirements on the ground of hypotheses considered below,

(H1) to (H4) on the underlying geometric structure of the Universe and (H5) on the motion of a

charged elementary particle in both the gravitation and electromagnetic fields.

(H1) the space-time U is a Riemannian manifold. The metric G is represented in an or-

thonormal basis (e′
1
, · · · , e′

4
) of )XU by the matrix �′

0
of (69) of the Minkowski metric.

(H2) c : Û → U is a principal * (1)-bundle of fibers isomorphic to the unitary group

* (1) =
{
I = 48 C , 0 ≤ C < 2 c

}
. The vector flow C ↦→ X̂ = 48 C · X̂0 is generated by the

vector field X̂ ↦→ 
̂0 (X̂). Let X̂ a point of the fiber of Û over X . We say that a basis

(ê1, ·, ê5) of )
X̂
Û is a fibered basis if the set of e8 = ()c)ê8 for 1 ≤ 8 ≤ 4 is a basis of

)XU and ê5 is tangent to the fiber (()c)ê5 = 0).

Let us consider the fibered basis (ê′U) = (ê′
1
, · · · , ê′

4
, 
̂0) of )

X̂
Û such as (e′

1
, · · · , e′

4
) is

an orthonormal basis as for (H1). The pullback of the metric

Ĝ0 = c∗G

is a field of symmetric 2-covariant tensors (but not a metric!). (ê′U) is a Ĝ0-basis, i.e. a

basis in which Ĝ0 and 
0 are represented by (68).
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(H3) ∇̂ is a Ĝ0-connection. Let c : F (Û) → Û be the frame bundle of Û, i.e. the bundle

whose fiber over X̂ is the set of all basis of )
X̂
Û. A moving frame is a smooth section

X̂ ↦→ (ê′U) of F . It is called a coordinate frame (or natural frame) if locally the basis is

associated to a coordinate system (or local chart) ( -̂ U) and if so it is denoted (∂̂U). The

set F
Ĝ0

of Ĝ0-bases is called Ĝ0-structure. It is a subbundle of F (Û) and a principal

Ĝ0-bundle that is endowed with an Ehresmann connection. A Ĝ0-connection ∇̂ is defined

by the field of g0-valued connection 1-form (ê′U) ↦→ Γ̂′ on F
Ĝ0

such that

∇̂ê′U = Γ̂
′V
U ê′V

According to (39), the value of the connection 1-form is the 5 × 5 matrix

Γ̂′ =

[
Γ′ 0

Γ′5 0

]
(70)

where Γ′ is a 4 × 4 matrix of 1-forms, skew-adjoint with respect to the metric (69), Γ′5 is

a 4-row of 1-forms and the last column of Γ̂′ vanishes. Because �̂′
0

and Ω̂′
0

are constant in

a moving Ĝ0-frame X̂ ↦→ (ê′0), we have

3�̂′
0 = 0, 3Ω̂′

0 = 0

Otherwise, these conditions must be replaced by

∇̂�̂0 = 0, ∇̂Ω̂0 = 0

the connection ∇̂ preserving the pullback Ĝ0 of the space-time metric and the vector Ω̂0

∇̂ Ĝ0 = 0, ∇̂ Ω̂0 = 0

(H4) Let 5 be a section of the principal * (1)-bundle Û, then G = 5 ∗Ĝ0. The pullback bundle

5 ∗ )Û is a bundle over U of which the fiber over X ∈ U is ( 5 ∗ )Û)X = ) 5 (X )Û.

For any section Ŵ of )Û, the pullback section is 5 ∗Ŵ = Ŵ ◦ 5 . The space-time is

endowed with the pullback connection 5 ∗∇̂, determined uniquely by

( 5 ∗∇̂)U ( 5 ∗Ŵ ) = 5 ∗(∇̂() 5 )UŴ )

and torsion free, then for all smooth fields X ↦→ U ,X ↦→ V of tangent vectors to the

space-time U

∇̂() 5 ) U () 5 )V − ∇̂() 5 ) V () 5 )U − () 5 ) [U ,V ] = 0 (71)

The section of the fiber bundle c : Û → U is an embedding of U into Û. The subspace

� 5 (X ) = () 5 ))XU of) 5 (X )Û is isomorphic to)XU then of dimension 4 and the tangent

space to the fiber ÛX at 5 (X) is the kernel of )c. Then ) 5 (X )Û = � 5 (X ) ⊕ ) 5 (X )ÛX .

A basis adapted to the section 5 is a fibered basis (ê1, ·, ê5) such that (ê1, ·, ê4) is a basis

of � 5 (X ) . A way to build such a basis is to choose a non null vector ê5 tangent to the
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fiber ÛX and a basis (e1, ·, e4) of )XU. Then, with the convention that Greek indices

run from 1 to 5 and Latin ones run from 1 to 4, (ê1, ·, ê4, ê5) = (() 5 )e1, ·, () 5 )ê4, ê5) is

a basis adapted to the section 5 and

U = *8e8 ⇔ () 5 )U = *8ê8 (72)

In terms of the dual bases, on has

e8 (U ) = ê8 (() 5 )U ) = *8, ê5 (() 5 )U ) = 0 (73)

Using Christoffel’s symbols, the elements of the connection 1-form in this basis are

Γ̂
V
U = Γ̂

V
dUe

d. In particular, considering pairs of basis vectors e8, e 9 , the free torsion

condition (71) reads

Γ
`

8 9
− Γ

`

98
− X`

:
2:8 9 = 0, (74)

where 2:
8 9

are the structure coefficient of the moving frame.

(H5) At this point, it is worth to remark that (40) and (42) show that the 5-row

Π̂ = [Π∗, @] (75)

represents a linear form �̂ that we call linear 5-momentum. Let B ↦→ X (B) be the

trajectory of a particle in the space-time, parameterized by the arc length B (for the metric

G) and

U =
3X

3B
(76)

is the unit tangent vector such that U ∗U = 1. We claim that the motion of a charged

particle and the evolution of its charge B ↦→ @(B) are such that its linear 5-momentum

is parallel-transported

( 5 ∗∇̂)U ( 5 ∗�̂) = 0 (77)

8.3 Explicit form of the connection and the equation of motion

Our goal now is to determine explicitly the connection satisfying the hypotheses (H3) to (H5).

As we know, the Ĝ0-structure F
Ĝ0

is in general non integrable. Then, instead of the moving

frame (ê′
1
, · · · , ê′

5
) of (H3), section of F

Ĝ0
, we would like to work with a coordinate frame

(∂1, · · · ,∂4) associated to a coordinate system (-1, · · · , -4) of the space-time U and the

corresponding fibered frame (ê1, · · · , ê5) adapted to the section 5 , such as êU = () 5 )∂U and

obtained by the change of basis

êU = %̂
V
Uê

′
V (78)

where %̂
V
U is the element at the intersection of the V-th row and the U-th column of the transfor-

mation matrix partitioned into blocks as follows

%̂ =

[
% 0

−2 �∗ 1

]
(79)
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where % is a 4 × 4 matrix, � is a 4-column. For %̂ being regular, % must be regular. As the

moving frames occurring in (78) are pulled back on the space-time U, % and � are functions

of the coordinates - = (-1, · · · , -4). Owing to (68), the pullback Ĝ = c∗G of the metric is

represented in the new frame by

�̂ = %̂)�̂′
0 %̂ =

[
%)�′

0
% 0

0 0

]

where the 4 × 4 matrix

� = %)�′
0% (80)

is regular. As �′
0

is constant and % is a function of the coordinates - on the time-space U, � is

also a function of - (but does not depends on -5). In the new frame, the connection matrix is

given by

Γ̂ = %̂−1(Γ̂′ %̂ + 3%̂)
which, taking into account (70), leads to

Γ̂ =

[
Γ 0

Γ5 0

]
(81)

where

Γ = %−1(Γ′ % + 3%), Γ5 = Γ′5 % − 2 [3�∗ − �∗%−1(Γ′ % + 3%)] (82)

Owing to (73), the column representing () 5 )U in the basis (ê′
8
) is

*′ = %* = %8*
8

where %8 is the 8-th column of %. Then, taking into account (82) and the linear dependence of

Γ′ with respect to *̂′

Γ(*) = %−1(Γ′(*′) % + 3%) = Γ8*
8

where occurs the 4 × 4 matrix

Γ8 = %
−1 [Γ′ (%8) % + m8%]

where m8 is the partial derivative with respect to - 8. Owing to (80), we have

� Γ8 = %
)�′

0Γ
′ (%8) % + %)�′

0m8%

As Γ′ is skew-adjoint with respect to the metric (69), the first term of the right hand member is

skew-symmetric. Then

� Γ8 + (� Γ8)) = %)�′
0m8% + m8%) �′

0% = m8�

or

m8� − � Γ8 − (Γ8))� = 0

and with index notation

∇8� 9: = m8� 9: − � 9<Γ
<
8: − �<:Γ

<
8 9 = 0 (83)
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Besides, as we are working in a coordinate frame (2:
8 9
= 0), the torsion free condition (74) gives

Γ:8 9 = Γ:98 (84)

Using the fundamental theorem of Riemannian geometry, both previous relations show that ∇ is

Levi-Civita connection

Γ:8 9 =
1

2
�<A

[
m 9�8A + m8� 9A − mA�8 9

]
(85)

Then, owing to (82),

Γ̂(*) =
[
Γ(*) 0

Γ5(*) 0

]
(86)

where

Γ5 (*) = Γ′5 (%*) % − 2∇*�∗ (87)

In the moving frame (ê′
1
, · · · , ê′

5
) of (H3), section of F

Ĝ0
, the linear 5-momentum �̂ is repre-

sented by the 5-row Π̂′ = [Π′∗, @′] where, restoring the primes, (52) reads

Π′ = <0*
′ with *′ =

3-

3B
such that *′∗*′ = 1

In the fibered frame (ê1, · · · , ê5) adapted to the section 5 , the linear 5-momentum is represented

by Π̂ = [Π∗, @] given by the transformation law of linear forms

Π̂ = Π̂′ %̂

with (79), that gives

Π∗ = <0*
′∗% − 2 @′�∗, @ = @′

hence the former relation can be recast as

Π∗ = <0*
∗ − 2 @ �∗ (88)

In the considered bases, the covariant derivative reads

∇̂*Π̂ =
¤̂
Π − Π̂ Γ̂(*)

where ¤̂
Π is the derivative of Π̂ with respect to the arc length B that is the proper time of the

particle because 2 = 1.

According to hypothesis (H5), (77), (86) and (87) lead to

∇*Π∗ − @ (Γ′5 (%*) % − 2∇*�∗) = 0 (89)

¤@ = 0 (90)

As expected, according to the experience, the electric charge @ is an integral of the motion.

Then, using (88), (89) reads

∀<0 ≠ 0, ∀@, ∀* such that *∗* = 1, ∇* (<0*
∗) − @ Γ′5 (%*) % = 0 (91)
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In particular, if @ = 0, we have

∀<0 ≠ 0, ∀* such that *∗* = 1, ¤<0*
∗ + <0 ∇**∗ = 0

Right multiplying by * gives

∀<0 ≠ 0, ∀* such that *∗* = 1, ¤<0 + <0 (∇**∗)* = 0

but as*∗* = 1 and ∇*� = 0, we have

(∇**)∗* = (∇**∗)* = −*∗(∇**) = −(∇**)∗*

then (∇**)∗* vanishes and, consequently

(∇**∗)* = 0 (92)

that entails

¤<0 = 0

As expected, according to the experience, the rest mass <0 is an integral of the motion5.

Besides, (91) is reduced to

∀<0 ≠ 0, ∀@, ∀* such that *∗* = 1, <0 ∇**∗ − @ Γ′5 (%*) % = 0 (93)

Owing to (92), right multiplying by * gives for @ ≠ 0

Γ′5 (%*) %* = 0

The bilinear form

i(*,+) = Γ′5 (%*) %+

is such that i(*,*) = 0 for all * then it is skew-symmetric. There exists a 4 × 4 matrix � such

as

�) = −� i(*,+) = *)�+, Γ′5 (%*) % = *)� (94)

Moreover, (87) becomes

Γ5(*) = *)� − 2∇*�∗

The 9-th component of this 4-row is

Γ5
9 (*) = *:�: 9 − 2∇*� 9

that gives rise, (48) being the canonical basis of R4, to the corresponding Christoffel’s symbols

Γ5
8 9 = Γ5

9 (48) = X:8 �: 9 − 2∇8� 9 = �8 9 − 2∇8� 9 (95)

5However, it is possible to extend the formalism to a particle with time-varying mass by introducing a thrust force

as in de Saxcé and Vallée [2016]
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The torsion free condition (74) gives

Γ5
8 9 − Γ5

98 = �8 9 − � 98 − 2 (∇8� 9 − ∇ 9�8) = 2 [�8 9 − (∇8� 9 − ∇ 9�8)] = 0 (96)

where, because of the torsion free condition (84)

∇8� 9−∇ 9�8 =
(
m8� 9 − Γ:8 9 �:

)
−
(
m 9�8 − Γ:98�:

)
=

(
m8� 9 − m 9�8

)
−(Γ:98−Γ:8 9 ) �: = m8� 9−m 9�8

Then the skew-symmetric 4 × 4 matrix � of elements

�8 9 = m8� 9 − m 9�8 (97)

represents a skew-symmetric 2-covariant tensor (or 2-form) F and, owing to (94), the equation

(93) becomes

<0 ∇**∗ = @*)�

by transposition and left multiplication by �−1, we obtain the equation of motion

<0 ∇** = −@ �̄ * (98)

where the skew-adjoint matrix

�̄ = �−1�

represents a 1-covariant and 1-contravariant tensor F̄ of components � 8
9
. The physical interpre-

tation is that the vector A of which the adjoint A∗ is represented by the row �∗ is the electro-

magnetic 4-potential, F (resp. F̄ ) is the 2-covariant (resp. 1 contravariant and 1-covariant)

electromagnetic field 6 and

f = −@ F̄ ·U

is the Lorentz force, represented by the right hand side of (98). We recover the equation of

motion of a charged particle in the gravitation and electromagnetic fields that fits the observations

today. It deserves to remember that the equation (77) itemizes into a group of two equations, the

former one being the previous equation of motion and the later one (90) being the conservation

of the charge

¤@ = 0

The condition (97) means that the 2-form F is the exterior derivative of the 1-form A∗. The

4-potential A and its adjoint A∗ being represented respectively by

� =

[
q

A

]
, �∗ = [q,−A

) ]

the electromagnetic fields F and F̄ are represented respectively by

� =

[
0 −�)
� − 9 (�)

]
, �̄ =

[
0 −�)
−� 9 (�)

]

6with the conventions used in Souriau [1970, 1997b, §15]
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where

� = −6A03 q − mCA, � = 2DA; A (99)

where mC is the partial derivative to the time. Owing to (25), the Lorentz force f is represented

by

5 = −@ �̄ * = W @

[
� · E
� + E × �

]

Remark 1. The equation (98) is the usual form of the equation of motion as found in the

literature. It has been obtained by a suitable choice of adapted bases but it is not the most general

form according to the covariant equation (77). Of course, it is possible to make other choices but

it is not necessarily interesting.

Remark 2. It can be verified that, as expected, the connection ∇̂ preserves in the adapted

bases the pullback Ĝ0 of the space-time metric and the vector 
̂0

∇̂ �̂0 = 0, ∇̂ Ω̂0 = 3Ω̂0 + Γ̂ Ω̂0 = 0

For Ĝ0, it results from (83) while for 
̂0 it is a consequence of (81) and

Ω̂0 =

[
0

1

]

resulting from (68) and (79).

Remark 3. it remains some freedom in the definition of the electromagnetic potential. For

instance, we could have erased the factor 1/2 before �∗ in the definition (79) but in this case we

should have replaced @ by −@/2 everywhere. Both variants are conventional. We kept the one

we considered the most convenient.

Remark 4. It is worth now to revisit the original Kaluza-Klein theory. In a Ĝ1-basis

(ê′
1
, · · · , ê′

5
), the metric is represented by

�̂′ =

[
�′

0
0

0 −1

]

As in general the Riemannian structures are non integrable, we consider a coordinate frame

(∂1, · · · ,∂5) associated to a coordinate system (-1, · · · , -5) of the 5 dimensional universe Û
obtained by the change of basis

∂U = %̂
V
Uê

′
V

with the transformation matrix (79). The metric is represented in the new frame by

�̂ = %̂) �̂′ %̂ =

[
� − 4 �∗) �∗ 2 �∗)

2 �∗ −1

]

where � given by (80). Using classical tensor notation, it holds

[�̂UV] =
[
�̂8 9 = �8 9 − 4 �8� 9 �̂ 95 = 2 � 9
�̂58 = 2 �8 �̂55 = −1

]
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If the expression stands out the standard presentation of the metric in Kaluza-Klein theory, it

is matter of conventions. The factor 2 before �8 and � 9 , and −4 before �8� 9 result from the

definition of �∗. We explained these things in the previous remark . The negative value of �̂55

is consistent with the choice of the signature (+ − − − −). Restoring the positive value consists

in adopting the signature (− + + + +).
Calculating the connection matrix, we have to take care that both � and �∗ are fields defined

on Û, then functions of the five coordinates -̂1, · · · , -̂5, giving up Kaluza’s ”cylinder condition”.

Let B ↦→ X̂ (B) be the trajectory of a particle in the space-time, parameterized by the arc

length B (for the metric Ĝ) and

Û =
3X̂

3B

is the unit tangent vector such that Û ∗Û = 1. We claim that the motion of a particle is such

that its linear 5-momentum is parallel-transported

∇̂
Û
�̂ = 0 (100)

The linear 5-momentum is represented in the Ĝ1-basis by the 5-row

Π̂′ = [<0*
′∗%, @′]

with @′ = <0*
′5 and in the coordinate basis by

Π̂ = [<0*
∗ − 2 @ �∗, @]

with *∗ = *′∗% and @ = <0*
5. Hence the trajectory of the particle is not a geodesic of the

manifold.

Remark 5. Finally, it is worth to remark that, although the choice (79) of %̂ is not general,

it is sufficient to guarantee the existence and uniqueness of the connection in terms of the fields

� and �∗ thanks to the free torsion condition. On the other hand, this choice depends on the

section 5 . It is what we are going to discuss now.

8.4 Gauge transformation

The coordinate basis (∂8) and ê5 being given, the adapted basis (êU) of U to 5 is uniquely

defined by the section 5 . We would like to know to what extend the equation of motion is

independent on the choice of the section 5 . For this aim, we consider another section 5 ′′ and the

corresponding adapted basis (ê′′U). As ()c)ê8 = ()c)ê′′
8
= ∂8, the vector ê′′

8
− ê8 is tangent to

the fiber of U over X then

ê′′8 − ê8 = 18 ê5, ê′′5 = ê5

the change of basis from (êU) to (ê′′U) is given by the transformation matrix

%̂ 5→ 5 ′′ =

[
1R4 0

1∗ 1

]
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where 1∗ is the 4-row of components 18 . The set of these matrices is an Abelian group Ĝ1 for

the matrix product. To determine whether the Ĝ1-structure is integrable, we have to solve the

PDE system

m-̂ ′′

m-̂
= %̂ 5→ 5 ′′ , %̂ 5→ 5 ′′ ∈ Ĝ1

that gives rise to

m- ′′

m-
= 1R4 ,

m- ′′

m-5
= 0,

m- ′′5

m-
= −1, m- ′′5

m-5
= 1

The two former equations lead to -” = - + -0 where the constant -0 may be discarded without

inconvenience

-” = -

The last equation gives

-”5 = -5 + 2 ℎ(-)
where ℎ is an arbitrary smooth function. Finally, the third equation provides the integrability

condition

1∗ = −2
mℎ

m-

The linear form � represented in the basis (êU) by the 5-arrow

Φ = [�∗, 1]

is represented in the basis (ê′′U) by the 5-arrow Φ′′ = Φ %̂ 5→ 5 ′′ , leading to the gauge transfor-

mation

�′′∗ = �∗ + mℎ

m-
(101)

As the matrix (80) does not depends on the fifth coordinate, � is not modified by the coordinate

change as well as, owing to (97), �̄ and � = �−1�. Hence the choice of the section 5 does not

modify the equation of motion (98).

9 Extended variational relativity

The goal of this section is to extend the general theorems of the relativity based on Einstein-

Hilbert functional (Hilbert [1915]). We use Palatini formalism, considering the connection as

an unknown independent field (Palatini [1919]).

9.1 Stationary action principle

Inspired by the presentation given in Souriau [1964], we start from the following principles

(P1) To every physical phenomenon corresponds a field z, represented in a local chart by a

=(I) -column I, and a field

(I, m8I, �8 9 , �8) ↦→ ! (I) (I, m8I, �8 9 , �8) ∈ R

called presence of the phenomenon in Souriau [1964].
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(P2) For the Lagrangian

! =
∑

I

! (I)

the action

( =

∫

D
! E>; =

∫

D
! D d4- =

∑

I

((I) =
∑

I

∫

D
! (I)D d4- (102)

is stationary for every variation of �, �∗ and the concomitant phenomena, null on the

boundary of an open domain D of the space-time, E>; being the Riemannian volume

4-form.

As the signature of Minkowski metric is (+ − −−), det� < 0, then the component of E>; is

D =
√
− det�

and the covariant divergence of any vector field V for Levi-Civita connection is the scalar field

divV = ∇8+ 8 =
1

D
m8 (D+ 8) (103)

By differentiation of the presence, we have

X! (I) = ? XI + f 9X(m 9I) + � :<(I) X�:< + )̃ :(I)X�: (104)

where ?, f 9 are =(I) -rows, � :<(I) = �<:(I) and )̃ :(I) are the components of a vector field T̃(I) .
Taking into account

XD

D
=

1

2
�8 9X�8 9 = −1

2
�8 9X�

8 9

we have

X(! (I)D) = [? XI + f 9X(m 9I) +
1

2
) :<(I) X�:< + )̃ :(I)X�:] D

where

)
9:

(I) = 2 �
9:

(I) + ! (I)�
9: (105)

are the components of a symmetric 2-contravariant tensor field T(I) . Introducing the =(I) -row

of scalar field

,(I) = ? −
1

D
m 9 (D f 9) = ? − ∇ 9f 9

the vector field V(I) (Xz) represented by the 4-column +(I) (XI) of components

+
9

(I) (XI) = f
9XI

and owing to (103),

X(! (I)D) = [,(I) XI + div (+(I) (XI)) +
1

2
) :<(I) X�:< + )̃ :(I)X�:] D (106)

or, the expression being independent of the choice of the local chart

X(! (I)D) = [,(I) XI + div (V(I) (Xz)) +
1

2
T(I) : XG + XA∗ · T̃(I) ] D (107)

that allows to prove
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Theorem 9.1 The stationary action principle (P2) is equivalent to

(i) ,(I) = 0 for every phenomenon

(ii) T =
∑
I T(I) = 0

(ii) T̃ =
∑
I T̃(I) = 0

Proof. Indeed, combining (102) and (107), the variation of the action reads

X( =

∫

D
X(! D) d4- =

∑

I

X((I)

with

X((I) =

∫

D
X(! (I)D) d4- =

∫

D
[,(I) XI+div (V(I) (Xz))+

1

2
T(I) : XG+XA∗ ·T̃(I)] E>; (108)

where, denoting LV(I) (Xz) the Lie derivative along the vector field V(I) (Xz), one has

∫

D
div (V(I) (Xz)) E>; =

∫

D
LV(I) (Xz) E>;

Denoting 3 the exterior derivative of a differential form ]V and the interior product with the

vector V , owing to Cartan’s formula and Stokes’ theorem

∫

D
div (V(I) (Xz)) E>; =

∫

D
3 []V(I) (Xz)E>;] =

∫

mD
]V(I) (Xz)E>;

Considering smooth functions Xz on compact supports contained in D, then null on its boundary,

this integral vanishes and it remains

X((I) =

∫

D
[,(I) XI +

1

2
T(I) : XG + XA∗ · T̃(I)] E>;

and the stationarity of the action entails

X( =

∫

D
[
∑

I

,(I) XI +
1

2
T : XG + XA∗ · T̃ ] E>; = 0

Considering the only non vanishing variation of a particular phenomenon I and applying the

fundamental lemma of the calculus of variations, we prove (i). Likewise, considering the non

vanishing compactly supported smooth variations of G (resp. A∗), we prove (ii) (resp. (iii)). �

Remark. It is worth to remark that the number of field equations (i) and (ii), fourteen, is

the same as the number of unknowns (independent components of � and �∗), that avoids being

caught in the dilemma of classical Kaluza-Klein theory: add the dilaton but one condition has no

physical interpretation, or set the dilaton to one to recover Maxwell equations but this condition

is violated.
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The principle of stationary action can be used in different ways. For instance, it is worth to

notice that the equation (i)

? − ∇ 9f 9 = 0 (109)

can be obtained considering only the stationarity of the corresponding part ((I) of the action. It

is this way that we are going to follow from now on.

Corollary 1 div T̃(I) = 0 for every phenomenon

Proof. According to the gauge transformation (101), we perform the substitution �8 → �8 + m8ℎ
in the Lagrangian ! (I) of the action ((I) . Applying the equation (109) to the phenomenon ℎ

(then ? = 0 and f9 = )̃
9

(I)) gives

∇ 9)̃ 9(I) = 0 (110)

that achieves the proof. �

9.2 Laws of conservation

Theorem 9.2 The equations ,(I) = 0 and div T̃(I) = 0 entail the law of conservation

div T̄(I) + T̃(I) · F = 0 (111)

of the 1-contravariant and 1-covariant tensor T̄(I) of components ()(I))89 = ()(I))8:�: 9 .

Proof. A smooth vector field XX of compact support contained in D is represented in a local

chart by a 4-column X- and leads to the variations LX- I,LX- � and LX- �
∗. Owing to (106),

the corresponding variation of the Lagrangian is given by

X(! (I)D) = [,(I) LX- I + div (+(I) (XI)) +
1

2
) :<(I) (LX- �):< + )̃ 9(I) (LX- �

∗) 9] D

where, owing to (85)

(LX- �):< = X-AmA�:< + �:Am<X-A + �A<m:X-A = ∇:X-< + ∇<X-:

Then, taking into account the symmetry of the tensor T(I)

1

2
) :<(I) (LX- �):< = ) :<(I) ∇:X-< = ∇: () :<(I) X-<) − (∇:) :<(I) ) X-<

1

2
) :<(I) (LX- �):< = ∇: (()(I)):< X-<) − (∇: ()(I)):<) X-<

or, the expression being independent of the choice of the local chart

1

2
T(I) : LXXG = div (T̄(I) · XX) − (div T̄(I) ) · XX (112)

Besides, one has

(LX- �
∗) 9 = X-AmA � 9 + �Am 9X-A
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then, integrating by part

D )̃
9

(I) (LX- �
∗) 9 = m 9 (D )̃ 9(I)�AX-

A ) − [m 9 (D )̃ 9(I)�A ) − D )̃
9

(I)mA � 9] X-
A

Taking into account (97)

D )̃
9

(I) (LX- �
∗) 9 = m 9 (D )̃ 9(I) �AX-

A ) − [m 9 (D )̃ 9(I) )�A + D )̃
9

(I)� 9A )] X-
A

and, owing to (103) and (110), we obtain

D )̃
9

(I) (LX- �
∗) 9 = [∇ 9 ()̃ 9(I)�AX-

A ) − )̃ 9(I)� 9A X-
A ] D

or, the expression being independent of the choice of the local chart

(LXXA∗) · T̃(I) = div ((A∗ · XX) T̃(I) ) − T̃(I) · F · XX (113)

Introducing into (108), with the variations given by Lie derivatives, the expression (112) and

(113), and owing to Theorem 9.1 (i), we have

∫

D
div [V(I) (LXXz) + T̄(I) · XX + (A∗ · XX) T̃(I) ] E>; −

∫

D
[div T̄(I) ) + T̃(I) ·F ] · XX E>; = 0

Considering smooth variations of compact support contained in D and reasoning as in the proof

of Theorem 9.1, the first integral vanishes and, applying the fundamental lemma of the calculus

of variations, we obtain (111). �

Our aim now is to apply these general principle by constructing Lagrangians for three

phenomena, the matter, the gravitation and the electromagnetism.

9.3 Laws of conservation of the matter

Matter manifold

In Souriau [1964, §36], the motion of a continuum is described by a line bundle c� : U → M
where M is a Riemannian manifold of dimension 3 representing the matter and called the

matter manifold. Its metric is denoted G<. Each fiber is the trajectory of a material particle

a = c�(X). In a local chart of M, it is represented by its Lagrange coordinates 0 ∈ R3. As 0

is an invariant of the motion, the material derivative vanishes:

3a

3B
= ()c�) ·U = 0

where U is tangent to the trajectory and defined by (76). In local charts of U and M,

30

3B
=
m0

m-

3-

3B
= "* = 0

where, because the fiber is a line, " is a 3 × 4 matrix of full rank and * is given by (25).
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To extend this formalism to the 5D universe Û, we consider a line bundle ĉ� : Û → M̂
where M̂ is a manifold of dimension 4 representing the matter in this universe. By analogy with

the hypothesis (H2) of Section 8.2, we suppose that c" : M̂ → M is a principal * (1)-bundle.

Bearing in mind that we have to perform a pullback, we assume that c� ◦ c = c" ◦ ĉ�, then the

following diagram is commutative

Û ĉ�−−−−−→ M̂

c
y yc"

U −−−−−→
c�

M

In fibered charts, we have

0 = c�(c( -̂)) = c�(c(
[
-

-5

]
)) = c�(-)

and in the other hand

0 = c" (0̂) = c" (
[
0

04

]
) = c" (ĉ�( -̂)) = c" (

[
i( -̂)
i4( -̂)

]
) = i( -̂)

that entails

i(
[
-

-5

]
) = c�(-) (114)

The vector *̂ tangent to the trajectory of a particle â is such that

() ĉ�) · Û = 0

In fibered charts, owing to (114), this relation is represented by

"̂ *̂ =

[
" 0

Φ `

] [
*

*5

]
=

[
0

0

]

where Φ is a 4-row and ` is a non null scalar (for "̂ being of full rank). If ` = 0, A non null

solution is* = 0, *̂5 ≠ 0, then *̂ is not timelike. In the sequel, we exclude this case.

Conformation tensor

All we have just done is also valid in fibered bases, not necessarily associated to local

coordinates. As in hypothesis (H2) of Section 8.2, let us consider a fibered basis (ê′U) =

(ê′
1
, · · · , ê′

4
, 
̂0) of )

X̂
Û such that (e′

1
, · · · , e′

4
) is an orthonormal basis and in which the

tangent map ) ĉ� is represented by the matrix

"̂ ′ =

[
" ′ 0

Φ′ `′

]
(115)

where " ′ is full rank and `′ ≠ 0. Let us verify now that 7 is the number of independent invariants

of "̂ ′ for the action of Ĝ0

"̂ ′ ↦→ "̂ ′ %̂
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We determine the isotropy group of "̂ ′ by solving the system of equations "̂ ′ = "̂ ′ %̂ with

respect to %̂ given by (37), itemized as

" ′ = " ′ %, Φ′ = Φ′ % + `′ 1∗, `′ = `′

where % is a Lorentz transformation and the last equation is trivially fulfilled. Like in Section

6.3, we differentiate these equations with respect to %̂ at the identity and we take into account

that % is skew-adjoint, that leads to determine the non vanishing solutions (X%, X1) of the linear

system

" ′ X% = 0, Φ′ X% + `′ X1∗ = 0 (116)

where X%∗ = − X%. According to Theorem 2.1 ♦, if X% ≠ 0 there exist two linear independent

vectors +1, +2 ∈ R4 such that X% = J (+1, +2). if " ′∗
1
, " ′∗

2
, " ′∗

3
are the rows of " ′, then the first

equation is satisfied if " ′∗
:
J (+1, +2) = −(J (+1, +2)":)∗ = 0 for 1 ≤ : ≤ 3, that implies there

exists a linear combination between the rows of " ′ and A0=: (" ′) < 3, in contradiction with the

hypothesis of full rank, then X% = 0. As ` ≠ 0, the second equation (116) shows that X1 = 0.

The isotropy group of " ′ is reduce to the identity. The dimension of the orbit is

dim (orb("̂ ′)) = dim Ĝ0 − dim(iso("̂ ′)) = 10 − 0 = 10

The dimension of the set +" of matrices (115) is 3×4+4+1 = 17 (the number of non vanishing

components). The number of independent invariants of the orbit is

=� = dim+" − dim(orb("̂ ′)) = 17 − 10 = 7

A set of independent invariants are ` and the 6 independent elements of the 3 × 3 matrix

�′ = " ′ " ′∗ = " ′(�′
0)

−1" ′)�<

in which �′
0

is Minkowski’s metric (69) and�< is Gram’s matrix of G<. As in Souriau [1964],

we suppose that the behavior of the matter is isotropic

�< = R3, "∗ = �−1") , � = " "∗ = " �−1")

The matrix � represents in a local frame of M a skew-symmetric tensor

H = )c�()c�)∗

called conformation in Souriau [1964].

As in Section 8.3, we would like now to work with a coordinate frame (∂1, · · · ,∂4) and the

corresponding fibered frame adapted to the section 5 , obtained by the change of basis (78) with

the transformation matrix %̂ given by (79) and in which ) ĉ� is represented by the matrix

"̂ = "̂ ′%̂ =

[
" 0

Φ − 2 ` �∗ `

]

where " = " ′%, Φ = Φ′% and ` = `′. If ` ≠ 0, the matrix "̂ being known, the vector

*̂ tangent to the trajectory is obtained by solving the equation "* = 0, next by calculating
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*̂5 = (Φ − 2 ` �∗)*/`. Later on, as we are only interested by the trajectory in the space-time

when we reduce the problem by pullback as in Section 8.3, we can consider only the conformation

as invariant, assuming without loss of generality that ` = m50
4 = 0, Φ = 2 ` �∗, then the value

of *̂5 is arbitrary.

Flux of a physical quantity

Now we follow the construction proposed in Souriau [1964, (36.7)]. Let a ↦→ A0(a) be

a non-vanishing scalar field on M representing the density of an extensive physical quantity

(for instance, the mass or the electric charge), E>; be the Riemannian volume 4-form on the

space-time U, E>;< be the Riemannian volume 3-form on the matter manifold M, and E>;A0 be

the volume 3-form A0 E>;<. We define on the space-time the vector field JA such that

]JA
E>; = c∗�(E>;A0) (117)

In local chart, for any 31-, 32-, 33- ∈ R4

E>; (�A , 31-, 32-, 33-) = E>;A0 (" 31-, " 32-, " 33-) (118)

In Souriau [1965, Chapter 5, §14, Theorem (16)], it is proved that this vector exists and is

unique. As A0 ≠ 0, (118) shows that JA vanishes only if the rank of " is less than 3. Otherwise,

in choosing "31- = �A , we see that

m0

m-
�A = " �A = 0 (119)

then JA (X) is tangent to the trajectory passing by X . In Souriau [1964, (36.13)], it is proved

that

Theorem 9.3 If �A is not lightlike

(i) we have

(�A )∗�A = −(A0)2 det�

then the conformation matrix � = " "∗ is regular

(ii) the orthogonal projection matrix onto �A is

�A (�A )∗
(�A )∗�A

= 1R4 − "∗�−1"

Assuming that �A is timelike, we deduce from (i) that

ℎ = − det� > 0

Introducing

A = A0

√
ℎ
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the unique vector JA satisfying (117) is the tangent vector to the trajectory of which the length is

given by (�A )∗�A = A2, then we can put �A = A * with*∗* = 1, representing the 4-flux of A

JA = AU = A
3X

3B

where A is a short form of A0(c�(X))
√

det ()c�()c�)∗). Reasoning as in the proof of Theorem

9.1 and owing to (117), we have

div (JA ) E>; = LJA
E>; = 3 []JA

E>;] = c∗�(3 (E>;A0)) = 0

because 3 (E>;A0) is a 4-form field onM of dimension 3, then we obtain the conservation identity

of the 4-flux of A

divJA = 0 (120)

Lagrangian of the matter

On this ground, our aim is to construct a Lagrangian !" for the matter that is invariant for

every diffeomorphism i of the space-time U

!" (a, )c�,G,A∗) = !" (a, )c� ◦ )i, i∗(G), i∗(A∗))

where i∗ stands for the pullback by i and A∗ is the adjoint of A. In local charts, for every

transformation matrix %

!" (0, ",�, �∗) = !" (0′, " ′, �′, �′∗), 0 = 0′, " ′ = " %, �′ = %)� %, �′∗ = �∗%

Particles without spin are characterized by two physical quantities, their mass (or energy if 2 = 1)

and their electric charge. Hence, the Lagrangian must at least depend on the densities of mass

and charge. According to the principle of stationary action (P2), we adopt the decomposition

!" (0, ",�, �∗) = ^ [!< (0, ",�) + !4 (0, ", �∗)]

where ^ is a non vanishing coupling constant, !< is active for all particles, charged or not,

sensitive to the gravitation forces, while !4 is active only for charged particles, sensitive also

to the electromagnetic forces. For !< being invariant, it must depend on 0, ",� through the

invariants 0 and �. At this stage, we restrict our presentation to fluids then the dependence on

� can be limited to a dependence on ℎ = − det� only. The expression

!< (0, ",�) = d<0 (0) [
√
ℎ + k (ℎ)]

contains the mass density

d< = d<0 (0)
√
ℎ

that can be completed by an internal energy to modelize pressure effects through the function

k. For !4 being invariant, it must depend on the invariants constructed from 0, ",�, �∗. We
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already know the invariants 0 and ℎ to which we have to add a joint invariant of " and �∗. The

electric current density Jd4 is the 4-flux of the electric charge density

d4 = d40(0)
√
ℎ (121)

defined by, according to (118)

E>; (�d4 , 31-, 32-, 33-) = E>;d40
(" 31-, " 32-, " 33-) (122)

On the other hand,

d40 det

[
"

�∗

]
E>; (�d4 , 31-, 32-, 33-)

= −d40 E>;
( [

�∗�d4
" �d4

]
,

[
�∗31-,

" 31-,

]
,

[
�∗32-,

" 32-,

]
,

[
�∗33-,

" 33-,

]
,

)

Taking into account the property (119), we have " �d4 = 0 then

d40 det

[
"

�∗

]
E>; (�d4 , 31-, 32-, 33-) = (�∗�d4 ) E>;d40

(" 31-, " 32-, " 33-)

Owing to (122), we construct a function

!4 (0, ", �∗) = d40(0) det

[
"

�∗

]
= −�∗�d4 = −d4 �∗*

which is invariant because �′∗*′ = (�∗%) (%−1*) = �∗* and the electric charge density is

invariant.

In a nutshell, the Lagrangian of the matter reads

!" (0, ",�, �∗) = ^ [(d<0 − d40 �∗*)
√
ℎ + d<0 k (ℎ)]

which can be enriched to modelize more complex behaviors such as, for instance, those of

hyperelastic solids for which the lagrangian depends on the invariant conformation � in a

general way, not only through ℎ.

Principle of stationary action and law of conservation

Owing to (104), the components of the vector T̃" read

()̃")8 = −^ (�d4 )8 = −^ d4*8 (123)

Applying the principle of stationary action, Corollary 1 gives

divJd4 = 0 (124)

which is satisfied because of the conservation of the 4-flux of electric charge density d4, according

to (120).
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To obtain the law of conservation, we have to determine the expression of � 9: by differen-

tiation the Lagrangian with respect to the metric, i.e. through ℎ, then denoting mℎ the partial

derivative with respect to ℎ

X!" = mℎ!"Xℎ = −mℎ!"X(det�) = ℎ mℎ!")A (�−1X�)

X!" = ℎ mℎ!")A (�−1"X(�−1)")) = −ℎ mℎ!")A (")�−1"�−1(X�)�−1)

Using Theorem 9.3) (ii) with �d< = d<*, it holds

X!" = −ℎ mℎ!")A (�−1(1R4 −**∗)�−1X�) = ℎ mℎ!")A ((**) − �−1)X�)

or in tensor notation

� 9: = ℎ mℎ!" (� 9: −* 9*:)

from which we deduce the components (105) of the tensor field T"

()")8 9 = 2 �
8 9

"
+ !"�8 9 = ^ [(d + ?)*8* 9 − ? �8 9 ] (125)

in which occur the density of energy

d = !"/^ = (d<0 − d40 �∗*)
√
ℎ + d<0 k (ℎ) = d< + d<0 k (ℎ) − �∗�d4

where the second and third terms represent respectively the internal energy and the coupling with

the electromagnetism, and the pressure

? = (2mℎ!" − !" )/^ = d<0 (2 ℎ mℎk − k)

The law of conservation (111) for the matter

∇8 ()")89 + ()̃"):�: 9 = 0

itemizes, owing to (123) and (125), into

∇8 [(d + ?)*8* 9 − ? X89 ] − d4*:�: 9 = 0 (126)

Interpretation of the law of conservation in terms of the Ĝ0-connection

Let a 1-contravariant and 1-covariant free divergence tensor field T̂ on the space-time U,

section of the pullback bundle 5 ∗()Û ⊗ ) ∗Û)

∇̂8T̂ 8
V = m8T̂ 8

V + Γ̂88` T̂
`

V
− T̂ 8

` Γ̂
`

8V
= 0

with the convention that Greek indices run from 1 to 5 and Latin ones run from 1 to 4. For the

Ĝ0-connection (81), Γ̂
`

85
= 0 then the previous equation itemizes into

∇̂8T̂ 8
9 = m8T̂ 8

9 + Γ88<T̂<
9 − T̂ 8

<Γ
<
8 9 − T̂ 8

5 Γ5
8 9 = ∇8 T̂ 8

9 − T̂ 8
5 Γ5

8 9 = 0
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∇̂8 T̂ 8
5 = m8T̂ 8

5 + Γ88<T̂<
5 = ∇8 T̂ 8

5 = 0 (127)

where ∇ is Levi-Civita connection. It is worth to point out that the components T 5
V

are absent

of these expressions. Mimicking the linear 5-momentum of an elementary particule defined by

(75) and (88), we claim that the components of the linear 5-momentum of a continuum are

Π̂ 9 = d* 9 − 2 d4� 9 , Π̂5 = d4

Adding a projection term to take into account the effects of the pressure ?, we claim that

T̂ 8
9 = *8Π̂ 9 + ? (*8* 9 − X89 ) = *8 (d* 9 − 2 d4� 9) + ? (*8* 9 − X89), T̂ 8

5 = *8Π̂5 = d4*
8

Owing to (95), the equation

div T̂ = 0

is represented in local charts by (127)

∇8 [(d + ?)*8* 9 − ? X89] − d4*8�8 9 = 0, ∇8 (d4*8) = 0

then, by comparison to (124) and (126), is equivalent to the equations provided by the principle

of stationary action and the law of conservation

div T̃" = 0, div T̄" + T̃" · F = 0

9.4 Field equations of the gravitation and electromagnetism

In general relativity, the gravitation is represented by the geometry of the space-time through the

connection Γ generated by 10 potentials, the independent components of the metric �. In our

unified theory of gravitation and electromagnetism, the geometry of the space-time stems from

the Ĝ0-connection Γ̂ preserving the pullback Ĝ0 of the space-time metric and the vector 
̂0. It

is generated by 14 potentials, the independent components of � and �∗.

Curvature tensor

Our starting point is to calculate the curvature tensor R̂ on the space-time U endowed with

the pullback connection. This tensor is defined, for any smooth section Ŵ of )Û and for all

smooth fields X ↦→ U ,X ↦→ V of tangent vectors to the space-time, by the relation

∇̂() 5 ) U (∇̂() 5 ) V Ŵ ) − ∇̂() 5 ) V (∇̂() 5 ) U Ŵ ) − ∇̂() 5 ) [U ,V ] Ŵ = R̂(U ,V ) Ŵ (128)

Then it is a 1-contravariant and 3-covariant tensor, skew-symmetric with respect to the arguments

U and V . With the convention that Greek indices run from 1 to 5 and Latin ones run from 1 to

4, it is represented by the components

'̂U8 9V = Γ̂U8` Γ̂
`

9V
− Γ̂U9` Γ̂

`

8V
+ m8 Γ̂U9V − m 9 Γ̂U8V

skew-symmetric with respect to the indices 8 and 9 . Owing to the form (86) of the connection

matrix, Christoffel’s symbols with a covariant index equal to 5 vanish then the only non null

curvature components are

'
?

8 9:
= '̂

?

8 9:
= Γ

?

8`
Γ
`

9:
− Γ

?

9`
Γ
`

8:
+ m8Γ?9: − m 9Γ

?

8:
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'̃8 9: = '̂
5
8 9: = Γ5

8`Γ
`

9:
− Γ5

9`Γ
`

8:
+ m8Γ5

9: − m 9Γ
5
8:

The components '
?

8 9:
are the ones of the classical curvature tensor of space-time endowed with

the metric G (hypothesis H1). Developing (95), one has

Γ5
8 9 = −m8� 9 − m 9�8 + 2 Γ:8 9 �:

The additional curvature tensor components read

'̃8 9: = ∇:� 98 + 2�@'
@

8 9:
(129)

Lagrangian of the geometry

According to Souriau [1964, Chapter 5, §14, (35.8) to (35.10)], the Lagrangian of the

geometry depends on the connection and its partial derivatives through the curvature tensor

!� (Γ̂, m8 Γ̂,G,A∗) = !� (Γ̂, R̂,G,A∗)

We assume the decomposition

!� (Γ̂, R̂,G,A∗) = !6 (Γ,R,G) + !4< (Γ5, R̃,G,A∗)

where !6 describes the behavior of the gravitation alone and !4< is an extra term to take

into account the one of the electromagnetism. The Lagrangian must be invariant for every

diffeomorphism of the space-time. Introducing the Ricci tensor of components obtained by

contraction

' 9: = '
?

? 9:

the most simple invariant built from '
?

8 9:
and �8 9 is the scalar curvature

' = � 9:' 9:

The Hilbert-Einstein Lagrangian including the cosmological constant Λ is

!6 (Γ,R,R) = −Λ + 1

2
�8 9'8 9

Besides, from '̃8 9: , �
8 9 and �8, we can construct the invariant

'̃ = �A�
A8� 9: '̃8 9: = �A '̃

A :
: (130)

Then we consider the Lagrangian of the electromagnetism

!4< (Γ5, R̃,G,A∗) = −:̃ �A�A8� 9: '̃8 9:

where :̃ is a new coupling constant.

In a nutshell, the Lagrangian of the geometry reads

!� (Γ̂, R̂,G,A∗) = −Λ + 1

2
�8 9'8 9 − :̃ �A�A8� 9: '̃8 9:
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from which we deduce the components (105) of the tensor field T�

()�)8 9 = 2 (��)8 9 + !��8 9 = −['8 9 − 1

2
' �8 9 + Λ�8 9] + :̃ [�(8 '̃ 9) :

:
+ �A '̃A (8 9) −

1

2
'̃ �8 9]

(131)

Besides, the components of the vector T̃� are

()̃�)8 = −:̃
(
∇ 9� 98 + 2�@'

@8 9

9

)
(132)

Field equations

Applying the stationary action principle (Theorem 9.1, (ii) and (iii)), we have

T = T� + T" = 0, T̃ = T̃� + T̃" = 0

which, owing to (123), (125), (131) and (132), leads to

'8 9 − 1

2
'�8 9 +Λ�8 9 − :̃ [�(8 '̃ 9) :

:
+ �A '̃A (8 9) −

1

2
'̃ �8 9 ] = ^ [(d + ?)*8* 9 − ? �8 9] (133)

−:̃ [∇ 9� 98 + 2�@'
@8 9

9
] = ^ d4*8 (134)

In the absence of the electromagnetic potential, the first equation is reduced to

'8 9 − 1

2
'�8 9 + Λ�8 9 = ^ [(d + ?)*8* 9 − ? �8 9]

We recover Einstein’s equations for the gravitation. Einstein’s constant (with 2 = 1 and the

gravitational constant �# with the index # in Newton’s honour)

^ = 8 c �#

has been chosen such that the non-relativistic limit yields the usual form of Newton’s law of

universal gravitation.

Our aim now is to discuss the classical limits of these field equations, starting with (134).

First, we consider the first term. In the Galilean approximation (Duval et al. [1985, 1991],

Souriau [1997a], de Saxcé and Vallée [2016]), the connection is associated to Galilei group and

Christoffel’s symbols Γ<
8 9

vanish except7

Γ0CC = −60, Γ0C1 = Γ01C = Ω01 , (135)

where occur the gravity 60 and Coriolis’ effects given by Ω0
1
, a simplified notation for the

elements of the 3 × 3 skew-symmetric matrix 9 (Ω) such that 9 (Ω) E = Ω × E for all 3-columns

Ω and E. For a 2-contravariant tensor of components � 98, the covariant divergence reads

∇ 9� 98 = m 9� 98 + Γ
9

9<
�<8 + � 9<Γ89<

7with the convention that the index C corresponds to time and 0, 1, 2, 3 to the spatial coordinates.
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that, owing to (135), itemizes respectively for 9 = C and 9 = 0 as

∇ 9� 9C = m 9� 9C , ∇ 9� 90 = m 9�
90 − 60� CC + (�1C + � C1)Ω01

For the electromagnetic field, � 8 9 = −� 98, this leads, at the Galilean approximation, to the exact

simplification

∇ 9� 98 = m 9� 98 (136)

Next, we would like to assess the order of magnitude of the second term with respect to the

first one in (134), i.e. the coupling term between gravitation and electromagnetism containing

�@'
@8 9

9
= �@�

8<� 9@'
@

<: 9

As we are interested by an estimate, we consider only the gravity. At the Newtonian approxima-

tion, the only non vanishing Christoffel’s symbol is Γ0CC = −60 and

�−1
� � � 3806(1,−1,−1,−1)

then

�@'
@8 9

9
� −�0�81m160

which, introducing the gravity potential i, itemizes as

�@'
@C 9

9
� 0, �@'

@1 9

9
� �0X

12X03m2m3i (137)

For 8 = C in (134), the equation is reduced, at the Newtonian approximation, to

−:̃ m 9� 9C = ^ d4*8

or

:̃ div � = ^ d4

Provided

:̃ = ^ n0 = 8 c �# n0 (138)

where n0 is the permittivity occurring in Coulomb’s law of electrostatic, it is just Maxwell-Gauss

equation

div � =
d4

n0

Let !̄, �̄, ī the characteristic length, electromagnetic potential and gravity potential. Owing to

(136) the first term of (134) is of the order of !̄−2 �̄ while, owing to (137), the second term is

of the order of !̄−2 �̄ ī, then can be neglected because, at the Newtonian approximation, ī ≪ 1

(with units such that 2 = 1) and (134) is reduced to the second group of Maxwell equations

(Maxwell-Gauss and Maxwell-Ampère laws)

div � =
d4

n0
, curl � = mC� + `0d4E

8
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where `0 = (n0)−1 is the permeability (bearing in mind that 2 = 1), while, because the 2-form

F is closed, its exterior derivative is zero and we recover the first group (Maxwell-Faraday and

Maxwell-Thomson laws)

curl � + mC� = 0, div � = 0

Remark 1. The previous approximation is rough. In many situation, it can be improved,

depending on the reference length, notably when the gravity can be considered on the Earth as

constant.

Remark 2. Besides, incorporating Coriolis’ effects in the analysis of orders of magnitude

leads to more complex expressions but the conclusion concerning the order of the second term

of (134) remains.

Next, we look back to the classical limit of the former field equation (133), taking into

account (138)

'8 9−1

2
'�8 9+Λ�8 9−8 c �#n0 [�(8 '̃ 9) :

:
+�A '̃A (8 9)−

1

2
'̃ �8 9 ] = 8 c �# [(d+?)*8* 9−? �8 9]

To be consistent, the second term in (129) is neglected and, at the Newtonian approximation, the

invariant (130) is reduced to

'̃ = �8m 9�
98

Being interested by the order of magnitude, we withhold only the term with �C = q in '̃, then

�# n0 '̃ ≈ �#q n0 div � ≈ �# d4q

Comparing to the order of magnitude �# d of the right hand member of (133), we conclude

that the coupling term can be neglected. Indeed, d4q is the stored electric energy density, very

negligible with respect to the energy density d (that is d 22 in SI units).

Remark. Arguably, this particularly very small coupling term in (133) can be related to

Dirac’s Large Number Hypothesis (LNH) that the ratio of the electrical to the gravitational forces

between a proton and an electron of electric charge 4

�4

�6
=

42

4 c n0�#<4<?

constitutes a very large dimensionless number, some 40 orders of magnitude today, indeed the

coupling constant is

:̃ =
2 42

<4<?

�6

�4

where the inverse ratio �6/�4 is about 10−40. Observing the coincidence of the ratio of this force

scales and that of the size scales in the Universe, Paul Dirac [1937] made the conjecture that

physical constants are actually not constant and the gravitational constant is inversely proportional

to the age of the Universe. The author would also to draw the attention on the coincidence with
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the square of another dimensionless number, the ratio of the double of the geometric mean of

Compton wavelengths of proton and neutron to the size ; of the space along the fifth dimension

�4

�6
=

(
2
√
_�_�,?

; 

)2

where, according to Souriau [1964, Chapter 7, §42, p. 412]

; = 8 c3/2 ℎ
√
�#n0

4 2
= 0.238 × 10−30 cm

More in-depth discussion should be given in relation with the cosmological scenario for the

evolution of elementary particle structure of Section 7.

In contrast, if the classical approximations above are not relevant, the gravitation and elec-

tromagnetism fields are coupled through the equations

'8 9−1

2
'�8 9+Λ�8 9−8 c �#n0 [�(8 '̃ 9) :

:
+�A '̃A (8 9)−

1

2
'̃ �8 9 ] = 8 c �# [(d+?)*8* 9−? �8 9]

n0 [∇ 9� 98 + 2�@'
@8 9

9
] + d4*8 = 0

In particular, in presence of a strong gravitation field, Maxwell equations have to be modified,

by considering the covariant derivative instead of the partial derivative.

10 Conclusion

Firstly, we proposed a symmetry group Ĝ0 for which the electric charge of a particle is an invariant

of its coadjoint orbit, then of which the value does not depend on the observer. Secondly, we

constructed a Ĝ0-connection allowing to recover the expected equation of motion today of a

particle, including Lorentz force and proving the charge is an integral of the motion. Finally, we

deduced from a 5D extension of the variational relativity the field equations where, at the classical

limit, the coupling term is negligible and we recover Einstein equations for the gravitation and

Maxwell equations, without need to introduce a dilaton or to violate an equation as in the classical

Kaluza-Klein theory.

Author’s opinion is that these results are strong arguments to claim that the Lie group Ĝ0 is

the symmetry group of the electrodynamics compatible with the observations today.

In contrast, we affirm that the symmetry group Ĝ1 of the Kaluza-Klein theory leads to a

classification of the elementary particles in the framework of an unified theory merging the

gravitational and electromagnetic forces relevant to describe the early Universe.

The soon idea of a fifth dimension, if used in a suitable geometric formalism taking into

account its very small size, seems now more than ever to offer a promising future for new

developments among them we can emphasize:
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1. For the characterization of charged elementary particles, we largely relied on Souriau

[1970, 1997b] without releasing the full potential of the theoretical framework, in particular

the construction of the symplectic form and the geometric quantization. These issues have

not been considered yet in this work but would deserve to be investigated.

2. The next step would be to extend Kaluza-Klein theory to a non-abelian gauge group as

in Kerner [1968] with the mathematical tools developed in this paper, in particular the

coadjoint orbit method.

3. Going back in time, it would worth to revisit works on the early universe cosmology that

we think they did not receive the welcome they deserved because based on Kaluza-Klein

theory whose weaknesses were known. They could provide a better understanding for

Dirac’s large number hypothesis as suggested by Chodos and Detweiler [1980] and to

offer a resolution to the horizon problem as claimed by Sahdev [1984].
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Souriau, J.-M., Calcul linéaire, Presses universitaires de France, collection Euclide, Paris, tome
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