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Abstract

We extend the Poincaré group to the complex Minkowski space-
time. Special attention is paid to the corresponding algebra that we
achieve through matrices as well as differential operators. We also
point out the generalizations of the two Casimir operators.
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1 Introduction

Complex numbers are known to be powerful mathematical tools to describe
physical phenomena. Usually, their role is limited to intermediate calcula-
tions and they are not welcome in final results. However, sometimes these
results do depend on these numbers.

At our knowledge, complex energies first appeared as intrinsic components
of the physical paradigm in the relativistic Kemmer-Duffin-Petiau equation
[1], dealing with vector mesons. When they are subject to a sufficiently
strong magnetic field (B > m2

e
) , their energies, whose squares are given by

[2]

E2 = m2 + 2eB(n+
1

2
+ s) ;n = 0, 1, 2, ... ; s = 0,±1 (1)

become purely imaginary ones.
More recently, some cosmological models [3] used an imaginary time.

They all conjecture a join between areas of imaginary time and areas of real
time. Somehow, real time emerges from imaginary time, the latest being
helpful to remove gravitational singularities.
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This idea is clearly not unanimous because an imaginary time is most
of the time seen as non physical, even heretical. Also voices [4] rose to
emphasize the inconsistency of such a transition between imaginary and real
times which still remains vague. Some attempts have been performed to
specify it. For instance, in [5], imaginary time stands before the Planck time
and is related to imaginary energies seen as pure information. Thus, an
imaginary time is compatible with the fact that time does not go by and the
information, which in a sense, replaces matter, is retained until time rotates
and becomes real. To cite the authors of [5], this imaginary time is analogous
to the moment when the music is burned on a CD but not yet listened. It
can wait indefinitely until one decides to put the CD in a drive : time then
becomes real and follows its arrow.

We think that imaginary time and, by extension, complex space-time
coordinates, are one of the most promising tracks for generalizing relativistic
quantum mechanics.

One of the advances of complex numbers in this direction is the concept
of Minkowski complex space-time. A first attempt with emphasis on specific
aspects of twistors has been performed in [6]. In the present paper, we come
back to this idea but with a different metric. In fact the metric considered in
[6] involved a complex space-time interval while we want to limit ourselves to
a real one. We could compare this to the wavefunction role in usual quantum
mechanics. Indeed this function, although complex, appears on a real form,
like the square of its modulus, when physics concepts must be discussed.

More precisely, the key idea involved by our proposal of (3+1)-D com-
plex Minkowski manifold is to extend spatial as well as time coordinates to
complex numbers with a Hermitian metric given by

ds2 = ηµνdxµdxν (2)

with
η = diag(1,−1,−1,−1) ; xµ = {t, x, y, z} ; µ = 0, 1, 2, 3 (3)

Here the notation xµ refers to the complex conjugate of xµ while the diag
notation means that we consider a diagonal matrix.

The purpose of this paper is to investigate this (3+1)-D Minkowski mani-
fold and, in particular, to see what would the Poincaré group/algebra become
when coordinates are complex numbers.

To do so, we first have to consider a (6+2)-D real manifold by considering
real as well as imaginary parts of the involved complex numbers. This is the
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subject of the next Section. Then, we use the corresponding coadjoint action
to put in evidence the transformation laws on momenta which are nothing
else than basis operators for the algebra. Sections 4 and 5 are devoted to the
differential realization of these momenta in the real as well as the complex
cases. The transformations of the group are then available in Section 6. We
point out the Casimir operators in Section 7 and finally conclude in Section
8.

2 The extended Poincaré group/algebra

As well known the Lorentz group O(1, 3) preserves

XTηX (4)

where η has been defined in (3) while

XT = (t, x, y, z) = {xµ, µ = 0, 1, 2, 3}

(XT refers here to the transposition of X).
If we now consider complex coordinates xµ, Eq. (4) is replaced by (X†

C ≡
(XC)

T )
X†

CηXC ; XT
C = (t, x, y, z) = {xµ, µ = 0, 1, 2, 3} (5)

The Lie group U(1, 3, C) is, by definition, the one leaving the quadratic form
(5) invariant.

This quadratic form (5) is equivalent to the orthogonal one

XT
RGXR (6)

with

XT
R = (tR, xR, yR, zR, tI , xI , yI , zI) = {xµ

R, x
µ
I , µ = 0, 1, 2, 3} = {xA, A = 0, 1, 2, ...7}

(7)
and

G = diag(1,−1,−1,−1, 1,−1,−1,−1) (8)

We obviously have
xµ = xµ

R + ixµ
I (9)

The Lie group preserving (6) is O(2, 6).
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Even if the quadratic forms are formally equivalent, the two groups U(1, 3, C)
and O(2, 6) have a different number of parameters (16 for U(1, 3, C) and 29
for O(2, 6)). This finding, that might be surprising at first sight, will be
explained in a next Section.

Due to the embedding of U(1, 3, C) in O(2, 6), we focus on the larger
group.

Consequently, we define the extended Poincaré group on the (6+2)-D real
Minkowski space as the set of the following (9 by 9) matrices

g =

(
L α
0 1

)
(10)

where the 8-vector
αT = (αA, A = 0, 1, 2, ..., 7)

is associated with (real) translations in the (6+2)-D manifold and L is the
(8 by 8) matrix of the O(2, 6) group i.e.

GLTGL = I (11)

The Lie algebra corresponding to (10) is the vector space of the matrices
given by

Z =

(
ω γ
0 0

)
; γT = (γA, A = 0, 1, 2, ..., 7) (12)

Here the coefficients γA are real numbers and ω is the matrix of the so(2, 6)
algebra defined by

GωTG = −ω (13)

In details, we have

ω =
7∑

A,B=0

JABj
AB (14)

where JAB are real numbers and jAB are the (28) basis matrices of so(2, 6)
namely

jAB = ϵ(AB)eAB − ϵ(BA)eBA (15)

(no summation on repeated indices). In Eq (15), the numbers ϵ(AB)(= ±1)
are constrained by

ϵ(AB)ϵ(CD)δBC = GBCϵ(AD) ; ϵ(AB)ϵ(CD)δAD = GADϵ(CB) (16)
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while the notation eAB stands for a 8 by 8 matrix made of ”0” everywhere
except a ”1” at the intersection of the (A+1)th line and the (B+1)th column.

Noticing that
eAB eCD = δBCeAD (17)

we come easily to the so(2, 6) commutation relations

[jAB, jCD] = GBCjAD +GBDjCA +GACjDB +GADjBC ; jAB = −jBA (18)

We will come back to this algebra in Section 4. Let us just conclude this
one by mentioning that the adjoint representation of the extended Poincaré
group is, by definition, given by

Z ′ = gZg−1 (19)

This leads to
ω′ = LωL−1 (20)

as well as to the following relation

γ′ = −LωL−1α + Lω (21)

3 The coadjoint representation : transforma-

tion laws of the momenta

Here we follow Souriau’s approach [7], one of us having already successfully
applied it [8] to Kaluza 5-D space-time. By analogy with what has been done
in the so(1, 3) case, we define a torsor µ of the extended Poincaré group by
the identity

µ(Z) ≡ 1

2
Tr(Mω) + (GP )Tγ (22)

where
µ ≡ {P,M}, P ∈ R8, GMTG = −M (23)

We require the invariance
µ′(Z ′) = µ(Z) (24)

or, in other words

1

2
Tr(Mω) + (GP )Tγ =

1

2
Tr(M ′LωL−1) + P ′TG(−LωL−1α + Lω) (25)
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where we have used Eqs (20)-(21) of the adjoint representation.
The relation (25) implies the following transformation on the momenta

P :
P ′ = LP (26)

Thus, Eq (25) reduces to

1

2
Tr(Mω) =

1

2
Tr(M ′LωL−1)− P TGωL−1α

Remembering that the last term is the product of a transposed 8-vector and
a 8-vector, we can rewrite this relation as

1

2
Tr(M ′LωL−1) =

1

2
Tr(Mω) + Tr(GωL−1αP T )

which, after usual manipulations on the trace, leads to

1

2
Tr(L−1M ′Lω) =

1

2
Tr(Mω) + Tr(L−1αP TGω)

or, in an equivalent way

Tr(L−1M ′Lω) = Tr(Mω) + Tr(L−1αP TGω)− Tr(PαTGLω) (27)

We thus come to the conclusion that

M ′ = LMGLTG+ αP TLTG− LPαTG (28)

Eqs (26) and (28) provide the transformation laws of the momenta.

4 Differential realization of the momenta :

the (6+2)-D real Poincaré algebra

Let us take a look at the result (26). If we write the transformations on the
coordinates through the group as (cf.Eq (10))

X ′ = LX + α (29)

they can be inversed following

X = GLTGX ′ −GLTGα (30)
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This implies that
∇′ = GLG∇ (31)

where ∇ is the 8D-gradient

∇T = { ∂

∂xA
, A = 0, 1, 2, ..., 7} (32)

Comparing with (26), it is obvious to conclude that

P = CG∇ (C = constant)

With the conventions (7) and

∂A ≡ ∂

∂xA

the momenta P are thus

PA = C∂A ;PA = C∂A = CGABPB (33)

We recover the momenta of usual Quantum Mechanics if the constant C is
fixed as C = ih̄ and A limited to the first four values. However, for simplicity,
we fix here C = 1 so that

PA = ∂A ; PA = GABPB (34)

In the same way, the momenta M satisfying (28) can be realized through a
matrix similar to ω (see Eq (14))

M =
7∑

A,B=0

JABj
AB

but with
JAB = xA∂B − xB∂A, A,B = 0, 1, 2, ..., 7 (35)

In other words, we have

M = XP TG− PXTG

And it is straightforward to convince ourselves of (28) to be satisfied by using
(26) and (29).
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It is then easy to find out the commutation relations of the (6+2)-D
Poincaré algebra by using

[xA, ∂B] = −GAB (36)

They read

[JAB, JCD] = GBCJAD +GBDJCA +GACJDB +GADJBC (37)

in agreement with Eq (18) and

[JAB, PC ] = −GACPB +GBCPA (38)

[PA, PB] = 0 (39)

5 The (3+1)-D complex Poincaré algebra

By making use of the change of variables (9), we can define linear combina-
tions of the JAB as well as the PA operators in order to restore the extended
Poincaré algebra in a (3+1)-D complex manifold. These linear combinations
write

Mµν = −Jµν − J (µ+4)(ν+4) (40a)

Mµν
I = −Jµ(ν+4) − Jν(µ+4) (40b)

Nµν = −Jµν + J (µ+4)(ν+4) (40c)

Nµν
I = −Jµ(ν+4) + Jν(µ+4) (40d)

P µ
C =

1

2
(P µ − iP µ+4) ; P µ

C =
1

2
(P µ + iP µ+4) (40e)

They lead to the following realizations in terms of complex coordinates xµ

and their derivatives

∂µ =
∂

∂xµ
= (

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z
) , ∂µ =

∂

∂xµ

= (
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z
) (41)

Mµν = −xµ∂ν + xν∂µ − xµ∂ν + xν∂µ (42a)

Mµν
I = −ixµ∂ν − ixν∂µ + ixµ∂ν + ixν∂µ (42b)

Nµν = −xµ∂ν + xν∂µ − xµ∂ν + xν∂µ (42c)
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Nµν
I = −ixµ∂ν + ixν∂µ + ixµ∂ν − ixν∂µ (42d)

P µ
C = ∂µ, P µ

C = ∂µ (42e)

It was already evident through Eqs(40) but it is even more obvious here
that Mµν ,Nµν ,Nµν

I are antisymmetric on their indices and thus there are six
of them for each category while Mµν

I is symmetric leading to ten different
operators. These 28 operators are real ones : only the four P µ

C are complex
and have to be supplemented by their conjugates.

The corresponding commutation relations are then

[Mµν ,Mαβ] = ηανMβµ + ηβνMµα + ηαµMνβ + ηβµMαν (43a)

[Mµν ,Mαβ
I ] = −ηανMβµ

I − ηβνMµα
I + ηαµMνβ

I + ηβµMαν
I (43b)

[Mµν
I ,Mαβ

I ] = −ηανMβµ + ηβνMµα + ηαµMνβ − ηβµMαν (43c)

[Mµν , Nαβ] = ηανNβµ + ηβνNµα + ηαµN νβ + ηβµNαν (43d)

[Mµν
I , Nαβ] = −ηανNβµ

I − ηβνNµα
I + ηαµN νβ

I + ηβµNαν
I (43e)

[Nµν , Nαβ] = ηανMβµ + ηβνMµα + ηαµMνβ + ηβµMαν (43f)

[Mµν , Nαβ
I ] = ηανNβµ

I + ηβνNµα
I + ηαµNνβ

I + ηβµNαν
I (43g)

[Mµν
I , Nαβ

I ] = ηανNβµ + ηβνNµα − ηαµNνβ − ηβµNαν (43h)

[Nµν , Nαβ
I ] = −ηανMβµ

I + ηβνMµα
I + ηαµMνβ

I − ηβµMαν
I (43i)

[Nµν
I , Nαβ

I ] = ηανMβµ + ηβνMµα + ηαµMνβ + ηβµMαν (43j)

[Mµν , P α
C ] = ηαµP ν

C − ηανP µ
C ; [Mµν , Pα

C ] = ηαµP ν
C − ηανP µ

C (43k)

[Mµν
I , P α

C ] = iηαµP ν
C + iηανP µ

C ; [Mµν
I , Pα

C ] = −iηαµP ν
C − iηανP µ

C (43l)

[Nµν , P α
C ] = ηαµP ν

C − ηανP µ
C ; [Nµν , Pα

C ] = ηαµP ν
C − ηανP µ

C (43m)

[Nµν
I , P α

C ] = −iηαµP ν
C + iηανP µ

C ; [Nµν
I , Pα

C ] = iηαµP ν
C − iηανP µ

C (43n)

[Pα
C , P

β
C ] = [Pα

C , P
β
C ] = [Pα

C , P
β
C ] = 0 (43o)

The usual Poincaré algebra is recovered through Eqs (42a), (43k) and (43o).
It is now realized through complex variables and correspond to the proposal
made by one of us in [8]. We can also recognize the algebra u(1, 3, C) through
the operators (42a)-(42b) and their commutation relations (43a)-(43c). The
operators (42c)-(42d) are the complement of u(1, 3, C) in so(2, 6).
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6 Transformations of the extended Poincaré

group

Now that the algebraic content is clear, let us come to the group approach
subtended by the transformations (29).

We recognize in (29) eight real translations associated with α, or, in an
equivalent way, four complex ones. The contributions of the matrix L can
be understood as follows :

1. Twelve transformations of “boost” type i.e. “rotations” between a
(real or imaginary) time component and three (real or imaginary) space
components : {

t′a = cosh(θ0jab) ta − sinh(θ0jab) x
j
b

x
′j
b = − sinh(θ0jab) ta + cosh(θ0jab) x

j
b

}
(44)

with j = 1, 2, 3; a = R, I; b = R, I

2. Twelve rotations between (real or imaginary) space components :{
x

′k
a = cos(θjkab) x

k
a + sin(θjkab) x

j
b

x
′j
b = − sin(θjkab) x

k
a + cos(θjkab) x

j
b

}
(45)

with j = 1, 2, 3, j ̸= k; a = R, I; b = R, I

3. Four rotations between real and imaginary parts of one of the compo-
nents : {

t′R = cos(θ00) tR − sin(θ00) tI
t′I = sin(θ00) tR + cos(θ00) tI

}
(46a)

{
x

′j
R = cos(θjj) xj

R + sin(θjj) xj
I

x
′j
I = − sin(θjj) xj

R + cos(θjj) xj
I

}
(46b)

Let us rewrite these results within the complex coordinates :

t′ = eiθ
00

t ; x
′j = e−iθjjxj (47)

These equations are remarkable in the sense that they show that the complex-
ification enables the connection between the Lorentz components. Indeed we
know [9] that the Lorentz group has four components : L↑

+, L
↑
− = PL↑

+, L
↓
+ =
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PTL↑
+ and L↓

− = TL↑
+. Each of the three last ones is related to the first one

by acting on it with a discrete symmetry, either the parity operator P or the
time-reversal operator T . Two objects in “mirror symmetry” are necessarily
linked by a rotation in a higher dimensional space and that’s exactly what
happens here : the complexification allows these dimensions to exist in order
to relate a coordinate and its opposite (which corresponds to θµµ = π).

Similar discussions can be made with the complex algebra. We will just
mention here that if the U(1, 3, C) operators perform transformations such
as boosts or rotations on the four complex coordinates xµ, the other 12 ones
(corresponding to exponentiations of Nµν or Nµν

I ) realize, in addition, a
complex conjugation. It is actually the reason why, despite of the fact that
the quadratic forms (5) and (6) are equivalent, the Lie groups U(1, 3, C) and
O(2, 6) are not isomorphic.

7 The Casimir operators

The number of Casimir operators associated with the inhomogeneous group
ISO(2, 6) (which is the one subtended by our approach in the real space) is
equal to 4 [10].
We put here explicitely in evidence two of them i.e. the ones generalizing the
two Casimirs of the Poincaré algebra.
Th first Casimir operator is

C1 = P TGP (48)

It is indeed invariant under the transformation (26). Another way to be
convinced of the form (48) is to rewrite it in details

C1 = PAPA = 4P µ
CPCµ (49)

and verify that it commutes with each of the 36 operators of the extended
Poincaré algebra by using Eqs (38)-(39) or (43k)-(43o) depending on whether
we choose to work with eight real coordinates or four complex ones.

By analogy with the real case, we can thus define the mass of a particle
living in the complex Minkowski space-time by

|E2| − |p⃗2| = m2 ; E = P 0
C , p

j = P j
C (50)

a relation which simplifies when the system is at rest and gives

E = m eiϕ (51)
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This is the complex version of the famous Einstein relation E = m.
The second Casimir operator requests more calculations. We indeed need

to introduce the following 3-rank tensor

WABC = JABPC − JACPB + JBCPA (52)

It is antisymmetric on the two first indices as well as on the two last ones
but is (evidently) symmetric on A and C. It thus gives rise to 56 operators.

Let us take a while to mention that, in the real case, these operators
reduce to the four well known ones

Wµ =
1

2
ϵµνλα JνλPα (53)

namely the four components of the Pauli-Lubanski pseudo-vector. No need
to say that, here, there is no interest to go through the dual to obtain a
similar writing, as this will lead to a pseudo-tensor of rank 5.

So let us focus on the operators (52). It is easy (even if laborious) to
convince ourselves that they are such that

[WABC , JDE] = GADWBCE−GAEWBCD−GBDWACE+GBEWACD+GCDWABE−GCEWABD

(54a)
[WABC , PD] = 0 (54b)

and

[WABC ,WDEF ] = GAD(WBCEP F −WBCFPE) +GAE(WBCFPD −WBCDP F )
+GAF (WBCDPE −WBCEPD) +GBD(WAEFPC −WCEFPA)
+GBE(−WADFPC +WCDFPA) +GBF (WACEPD −WACDPE)
+GCD(−WABFPE +WABEP F ) +GCE(−WABDP F +WABFPD)
+GCF (WDABPE −WEABPD)

(54c)
The two first relations show that

C2 = WABCWABC (55)

does commute with each of the 36 generators of the extended Poincaré algebra
and, consequently, is the second Casimir operator.

Its interpretation goes through the so-called “little groups” technics i.e.
restricting ourselves to particular momenta P . If the rest is considered, only
two P operators do not vanish :

P 0 = 2m cosϕ;P 4 = 2m sinϕ (56)
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This implies the following form for C2

C2 = 4m2(J2
12 + J2

31 + J2
23 + J2

15 + J2
16 + J2

17 + J2
25

+J2
26 + J2

27 + J2
35 + J2

36 + J2
37 + J2

56 + J2
57 + J2

67)
−4m2(cosϕ)2(J2

14 + J2
24 + J2

34 + J2
45 + J2

46 + J2
47)

−4m2(sinϕ)2(J2
01 + J2

02 + J2
03 + J2

05 + J2
06 + J2

07)
−4m2 sinϕ cosϕ({J01, J14}+ {J02, J24}+ {J03, J34}+ {J05, J45}+ {J06, J46}+ {J07, J47})

(57)
We notice that the only JAB that does not appear in (57) is J04 namely the
rotation on time. We also recover the spin interpretation of the real case
except that we have here 20 possibilities for one spin algebra (so(3)) to be
put in evidence. This is evidently due to the increasing of spatial dimensions
which are now 6.

8 Conclusions

We have extended the Poincaré group as well as its algebra to a complex
Minkowski space. Beyond the real operators corresponding to transforma-
tions of the real coordinates, our approach shows that supplementary imag-
inary as well as complex operators appear to form with the previous ones a
36-dimensional real or complex algebra according to choosing 8 real coordi-
nates or 4 complex ones.

What are the unirreps of the extended Poincaré algebra ? What physical
implications could have this complex algebra ? What would be a complex
version of usual quantum mechanics ?

These questions remain open at this stage and will be the subject of fur-
ther considerations.

Data availability

The data that support the findings of this study are available within this
article.
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