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The time reversal operator can be unitary or anti-unitary. In the first case, there are necessarily states 
of negative energy, whereas they do not appear in the second case. For a long time it was believed that 
these negative energies were irrelevant, until the discovery of the acceleration of the expansion of the 
universe gave them a meaning. We examine the possibility for the time inversion to be associated with 
a unitary operator in the quantum level by looking at the usual arguments in favor of the anti-unitarity 
of this operator and by proposing counter-arguments in order to validate the possibility for this operator 
to be unitary.
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1. Introduction

In his famous book The Quantum Theory of Fields, Steven Wein-
berg quoted that if the time reversal operator T is supposed to 
be linear and unitary, then “for any state ψ of energy E, there is an-
other state T −1 ψ of energy −E” [1]. At the time Weinberg wrote 
this sentence, there was no reason to believe that negative en-
ergy states made sense. Indeed, there was no phenomenon, be it 
experiments or cosmological observations, which allowed to think 
that these states could play a significant role or even exist. It was 
therefore decided by the physics community that T would be an 
anti-unitary operator, so as not to make these negative energy 
states appear.
However, three years after the publication of Weinberg’s book, 
two teams of astronomers, respectively led by Saul Perlmutter and 
Brian P. Schmidt, have reached the unexpected result that the ex-
pansion of the Universe seems to be accelerating [2]. The Nobel 
Prize was awarded to them and to Adam G. Riess, in 2011, for this 
discovery which implies the existence of an unknown form of mat-
ter -called dark energy- whose pressure would be negative, with a 
repulsive and not attractive behavior towards gravitation.
If the nature of this dark energy is, at present, one of the biggest 
issues submitted to the sagacity of researchers, there is more and 
more evidence to say that particles of negative masses ([3–7]) 
(equivalent to negative energies in the relativistic context) are one 
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of the best candidates to specify this nature ([8,9]). In fact, dark 
energy would be the sum of negative energy states associated to 
negative mass particles.
As these particles interact only by antigravity with positive mass 
matter and not through electromagnetic phenomena, it is not pos-
sible to demonstrate them from an experimental point of view. The 
detection is done indirectly, by analyzing the alteration of the light 
emitted by the particles of positive mass. We refer the interested 
reader to [10] where he can find the observational confirmations 
of this hypothesis for dark matter as well as dark energy, at the 
cosmological scale.
Returning to Weinberg’s statement, it is therefore relevant, twenty-
seven years after it was written, to come back to the belief that 
states of negative energy cannot exist and to its theoretical coun-
terpart i.e. the unitarity of T . If cosmological observations tend 
to prove that negative energy states have a physical meaning, we 
should now examine the relevance of a unitary time reversal oper-
ator at the quantum mechanical level. This is precisely the purpose 
of this article.
To do this, we briefly review the definitions related to unitary and 
anti-unitary operators in Section 2. We take a look at what hap-
pens with the time inversion in classical mechanics in Section 3. 
We then go to quantum mechanics in Section 4 and point out 
three arguments, frequently found in the standard literature, for 
why T should be anti-unitary. To these three arguments, we op-
pose counter-arguments arguing for the unitarity of T . We also 
show that considering T as a unitary operator has the same effect 
as applying the complex rotation method. This will be achieved in 
Section 5 as well as the introduction of a new inner product. We 
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finally conclude by listing in a table the characteristics of the two 
options: T unitary or anti-unitary.

2. Definitions

Since Wigner’s symmetry representation theorem [11], we 
know that a symmetry operator i.e. an operator preserving transi-
tion probabilities, is necessarily unitary or anti-unitary.
As a reminder, a unitary operator T is such that

T †T = T T † = I (1)

(T † being the adjoint of T ).
Linearity is defined through

T (c1|ψ1〉 + c2|ψ2〉) = c1 T |ψ1〉 + c2 T |ψ2〉 ,

c1, c2 ∈C, ∀|ψ1〉, |ψ2〉. (2)

Such an operator preserves the scalar product (and thus the prob-
abilities)

〈ψ1|ψ2〉 = 〈T ψ1|T ψ2〉 (3)

An anti-unitary operator returns the complex conjugate of this 
scalar product (but therefore also preserves the probabilities)

〈ψ1|ψ2〉∗ = 〈T ψ1|T ψ2〉 (4)

It is thus anti-linear

T (c1|ψ1〉 + c2|ψ2〉) = c1∗ T |ψ1〉 + c2∗ T |ψ2〉, ∀|ψ1〉, |ψ2〉
(5)

This theorem has since been generalized under the name of 
Uhlhorn’s theorem [12]. The latter is based on a less restrictive 
assumption: it is sufficient to request that

〈ψ1|ψ2〉 = 0 ⇐⇒ 〈T ψ1|T ψ2〉 = 0 (6)

to ensure that T is either unitary or anti-unitary.
In any case, the conclusion is the same: a symmetry operator is 

necessarily unitary or anti-unitary.
When the symmetry concerns continuous transformations 

(translations, rotations, ...), the choice is obvious: the operator is 
necessarily unitary. The reason is simple. For these transforma-
tions, we have:

U (a)U (b) = U (c)

For instance, let us consider the transformation

U (a) : |ψ(x)〉 → |ψ(x − a)〉
representing the translation, according to the parameter a, in the 
wave functions space. If we expand |ψ(x − a)〉 with a Taylor series 
expansion, we get

|ψ(x)〉−a
d

dx
|ψ(x)〉+ ...+ (−1)nan dn

dxn
|ψ(x)〉+ ... = e−a d

dx |ψ(x)〉
Thus, in this case, we identify

U (a) ≡ e−a d
dx

It is then obvious that U (a)U (b) = U (c) is true with c = a + b.
Now, due to this result, a composition of two unitary operators 

as well as a composition of two anti-unitary operators is automat-
ically unitary. This fixes univocally the unitarity of U .

The same is not true for discrete symmetries, of which time 
reversal is a part. In this case, the nature of the symmetry operator 
is left to the choice of the physicists and, as far as time reversal is 
concerned, this choice is (almost) unanimously fixed as being the 
anti-unitarity.
From now on, we investigate the other possibility: T is unitary.
2

3. A little detour through classical mechanics

The time inversion in classical mechanics is defined by

t → −t (7)

and its impact on the variables of the phase space is

�r → �r , �v = d�r
dt

→ −�v (8)

It is customary to consider indifferently the velocity �v or the mo-
mentum �p to characterize the phase space. Yet, in the case at hand 
i.e. the consideration of time reversal, the difference is going to 
be crucial. Indeed, there are as many expressions of momentum 
in classical mechanics as there are Lagrangians or Hamiltonians, 
whereas there is only one for velocity.

For example the Lagrangian of classical electrodynamics is given 
by

L = T − V = 1

2
m�v.�v − qφ + q�v.�A (9)

(q is the electric charge, φ the scalar potential, and �A the vector 
potential). Momenta are defined by

�p = ∂L

∂ �v (10)

which gives rise here to

�p = m�v + q �A (11)

The only way to ensure that the momentum changes sign under 
time reversal is thus to force the potential vector to change sign, 
too. However, if we consider f.i. the (frequently used) case of a 
constant magnetic field

�B = B�ez , B = constant (12)

and the associated vector potential

�A = − B

2
�ex + B

2
�e y (13)

we see clearly that this constraint of change of sign does not make 
sense.

Consequently, and in agreement with Albert [13], we conclude 
that the momentum does not necessarily change sign under time 
inversion: in some cases (the free case, for instance), it does and 
in other cases (as recalled above), it doesn’t.

4. The quantum time reversal operator: unitary or anti-unitary?

The quantum definition of a time-reversal operation is

ψ(�r, t) → Tτψ(�r, t) (14)

In this definition, T is a matrix while τ acts on ψ(�r, t) to give rise 
to

ψ(�r,−t)

if the time-reversal operator T ≡ Tτ is unitary and

ψ∗(�r,−t)

if it is anti-unitary.
As mentioned in the Introduction, it is commonly agreed that T
is anti-unitary. However some discordant voices are raised to op-
pose this choice. For example, Albert [13] and Callender [14] claim 
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that time reversal has to be defined just as the classical time re-
flection (7). Obviously, this is equivalent to considering T as the 
(unitary) identity operator (T is then the identity matrix while τ
corresponds to the unitary choice). Other unitary proposals for T
can be found in [15] and [16] when the Dirac equation/field is 
under study.

Despite these few proposals, the majority of physicists are con-
vinced that only the anti-unitarity of T is a valid option. Let us 
examine their arguments and see what these arguments become 
in the light of the unitarity of time reversal.

4.1. Argument 1: the quantum momentum must change sign, like its 
classical version

If we accept this point and if we remember that the momentum 
has been quantized through

�p = −ih̄ �∇ (15)

and as neither the Dirac constant h̄(= h
2π ) nor the gradient can be 

transformed by T , we are left with one option only: change the 
sign of i, and this is precisely the role of an anti-unitary operator. 
Moreover, this ensures the invariance of the fundamental relation 
of quantum mechanics (in the following equation, we write with 
bold letters the quantities which change sign under the action of 
T )

[x j,pk] = i h̄ δ jk (16)

Let’s come to the counter-argument. As we have seen in the first 
Section, the classical momentum does not necessarily change sign. 
So why should the quantum momentum do so? It is also self-
consistent to ask for the status-quo for the momentum and the 
invariance for the relation (16) since, as well the left as the right 
member, do not undergo any change of sign with a unitary tem-
poral inversion.
Close to this point, we find Callender’s [14] saying that the Ehren-
fest theorem implies

d < �r >

dt
= 1

m
< �p > (17)

and, consequently, the mean value of �p has to change sign. Be-
sides the fact that Callender himself would say a few years later 
[17] that he was not totally convinced by this argument, we could 
mention that, once again, this point is not valid anymore for other 
choices of Hamiltonians. For instance, the Pauli Hamiltonian leads 
to
d < �r >

dt
= 1

m
< (�p − q �A) > (18)

which has no reason to be invariant under T .
Ehrenfest’s theorem is therefore not invariant under time inver-

sion, whether T is unitary or anti-unitary (and it is clear that to 
ask for the invariance of all relations is a challenge, and a useless 
one at that). Nevertheless, we will find back the results associated 
with anti-unitary T i.e. the invariance of the Ehrenfest theorem in 
some cases, by passing to unitarity provided we generalize the in-
ner product. This will be done in section 5.

On the contrary, the fundamental relation (16) of quantum me-
chanics is invariant, whether T is anti-unitary or unitary

4.2. Argument 2: a unitary time reversal operator leads to negative 
energies

As mentioned in the Introduction, this is the main argument for 
rejecting a unitary time reversal operator. This was already stated 
in [1].
3

In 2016, Robert formally showed [18] that, given the following 
three assumptions on the Hamiltonian H⎧⎨
⎩

〈ψ |H |ψ〉 ≥ 0, ∀ψ

H �= 0

T e
i
h̄

Ht T −1 = e− i
h̄

Ht

then T is necessarily anti-unitary.
The second assumption is trivial and the third one comes from

T e
i
h̄

Ht T −1 = eT i
h̄

Ht T −1
(19)

implying

T iH T −1 = −iH (20)

If T is unitary, then it means that it has to anticommute with H

H T = −T H (21)

Now, T as a symmetry, must preserve the scalar product. It follows 
that

〈ψ |H ψ〉 = 〈T ψ |T H ψ〉 = −〈T ψ |H T ψ〉 (22)

And there we are faced with a state T |ψ〉2 which is of negative 
energy since 〈ψ |Hψ〉 ≥ 0, by assumption. Roberts therefore elim-
inates the fact that T is unitary since this contradicts his first 
assumption.

Let’s come to the counter-argument. Nothing says that all en-
ergies must be positive. As mentioned in the Introduction, there is 
even more and more evidence that negative energy states have to 
play a prominent role in cosmology. If this observation holds true 
in the years to come, the unitarity of the time reversal will have 
to be considered.

4.3. Argument 3: the invariance of the Schrödinger equation

If we follow the tradition of having T anti-unitary, the Schro-
dinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + V ψ (23)

is indeed invariant while the unitary version seems to lead to a 
variable one.
To better understand, we must go back to the origins and thus to 
the set of six papers published by Schrödinger in 1926 [19]. The 
starting point of Schrödinger was to find an equation, similar to 
that of the waves, whose solutions would be of the plane wave 
type

ψ1 = A1 e− i
h̄
(Et−�p.�x)

, ψ2 = A2 e− i
h̄
(Et+�p.�x)

, A1, A2 ∈C (24)

After a first proposal, he highlighted what he put forward as the 
(real) equation of non-relativistic quantum mechanics

(� − 2m

h̄2
V )2ψ(�r, t) + 4m2

h̄2

∂2ψ(�r, t)

∂t2
= 0 (25)

or, by the usual factorization of the wavefunction,

((� − 2m

h̄2
V )2 − 4m2

h̄2
E2)φ(�r) = 0 (26)

This (fourth-order) equation is obviously invariant under time re-
flection but also admits solutions with negative energies. It is 

2 Note that Weinberg [1] mentioned the state T −1|ψ〉 instead of T |ψ〉; this is 
obviously equivalent since T 2 = I .
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particularly easy to convince oneself of this by considering the ex-
ample of the one-dimensional harmonic oscillator for which

V = 1

2
mω2x2 (27)

and

((� − m2ω2

h̄2
x2)2 − 4m2

h̄2
E2)φ(�r) = 0 (28)

Indeed the usual solutions arise

φ(x) = 4

√
mω

π h̄22n(n!)2
e− mωx2

2h̄ Hn(

√
mω

h̄
x) (29)

but with positive as well as negative energies

E = ±h̄ω(n + 1

2
) , n = 0,1,2, ... (30)

Given the technical difficulties that a fourth-order equation could 
cause, Schrödinger then proposed a final version that would sim-
plify the calculations

(� − 2m

h̄2
V ± 2im

h̄

∂

∂t
)ψ(�r, t) = 0 (31)

(see Eq (32) of [20]).
The sign ambiguity in front of the time derivative clearly leaves 

room for both negative and positive energies and thus for the 
unitarity of T (see argument 2). This means that the complete
Schrödinger equation, with the two possible signs in front of the 
time derivative, is invariant under unitary time inversion. This 
equation can take a matrix form

ih̄σ3
∂ψ(�r, t)

∂t
= − h̄2

2m
�ψ(�r, t) + V ψ(�r, t) (32)

(σ3 is the usual –diagonal- Pauli matrix) or, equivalently

ih̄
∂ψ(�r, t)

∂t
= (− h̄2

2m
� + V )σ3ψ(�r, t) (33)

As a unitary time reversal operator has to anticommute with H
(see Eq. (21)), it can be realized for instance through

T = σ2 (34)

up to a multiplicative constant of norm equal to 1. The action of 
this operator is to reverse the components of the ψ , i.e., to reverse 
the signs of the energies.
Let us also mention that the equation (33) has some common 
points with the supersymmetric version of quantum mechanics 
[21] such as two components for the Hamiltonian, one of them 
leading to negative energies, or the presence of an anticommu-
tation relation (Eq. (21)). However, there are not (fermionic) su-
percharges here. Instead, we notice, taking the one-dimensional 
harmonic oscillator, that

H = (− h̄2

2m

d2

dx2
+ 1

2
mωx2)σ3 = h̄ω

2
{A, A†} (35)

with

A =
(

a 0
0 αa†

)
, A† =

(
a† 0
0 βa

)
, αβ = −1 (36)

being defined in terms of the usual annihilation and creation op-
erators

a =
√

h̄
(

d + mω

¯ x) , a† =
√

h̄
(− d + mω

¯ x) (37)

2mω dx h 2mω dx h

4

The relation of the Heisenberg algebra

[A, A†] = I (38)

obviously holds true.
We immediately see that the operators (36) are not adjoint to each 
other, with respect to the usual scalar product.
To see more clearly what is behind this, let us go to the following 
Section.

5. A unified approach from both perspectives

So far, we have developed arguments related to the unitarity of 
the time reversal operator to highlight negative energies.
We claim now that we can see similar results i.e. the emergence 
of negative energy states, by rotating spatial coordinates.

To enlighten this statement, we use the method of complex co-
ordinate rotation first introduced with a real exponential (related 
to the dilatation group [22,23]) and then extended to a complex 
exponential (for a review, see [24]) acting on the spatial coordi-
nates:

x → x(θ) = eiθ x (39)

This change of variables has been introduced in a different context 
than the one considered here i.e. the study of quasi-bound reso-
nance states having a complex spectrum.
Nevertheless, we use this new coordinate system here to define 
generalized annihilation and creation operators through

a(θ) ≡
√

h̄

2mω
(e−iθ d

dx
+ eiθ mω

h̄
x) =

√
h̄

2mω
(

i

h̄
p(θ) + mω

h̄
x(θ))

(40)

a†(θ) =
√

h̄

2mω
(−e−iθ d

dx
+ eiθ mω

h̄
x)

=
√

h̄

2mω
(− i

h̄
p(θ) + mω

h̄
x(θ)) (41)

It is straightforward to convince ourselves that

[a(θ),a†(θ)] = 1 (42)

as well as

h̄ω

2
{a(θ),a†(θ)} = H(θ) = −e−2iθ h̄2

2m

d2

dx2
+ 1

2
e2iθmω2x2 (43)

It is then clear that the positive-energy Hamiltonian corresponds 
to θ = 0 (or x(θ) = x) while the negative-energy one is related to 
θ = π

2 (or x(θ) = ix).
Solving

H(θ)φ = Eφ (44)

we are led to

E = −h̄ωε(n + 1

2
), n = 0,1,2, .. (45)

and the usual eigenstates (29). Here ε is defined according to

ε = −1 if θ = 0 , ε = 1 if θ = π

2
(46)

We thus recover the results (29)–(30) of the real (fourth-order) 
equation.
As the complex rotation method has no impact on the eigenvectors 
for the oscillator potential, we can introduce a new inner product 
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Table 1
The different features of anti-unitary T as well as unitary 
T .

Anti-unitary T Unitary T

i → −i i → i
�p → −�p �p → �p
E ≥ 0 E ≥ 0 (θ = 0) ↔ E ≤ 0 (θ = π

2 )

whose only change is related to the transformation of the spatial 
coordinate

〈ψ |φ〉θ ≡ e−iθ
∫

ψ(x)∗φ(x) dx (47)

When positive energies are concerned (θ = 0), we recover the 
usual Hermitian inner product while it becomes skew-Hermitian 
for negative energies (θ = π

2 ). Skew-Hermiticity is actually what 
characterizes the negative-energies annihilation and creation oper-
ators since

a(
π

2
) =

√
1

2mωh̄
(p + imωx) , a†(

π

2
) =

√
1

2mωh̄
(−p + imωx)

(48)

and

p(
π

2
) = − d

dx
, x(

π

2
) = ix (49)

Note that the presence of the phase factor in this new inner prod-
uct does not change the probabilistic interpretation of quantum 
mechanics since transition probabilities are given par the product 
of the inner product by its complex conjugate.
We can also come back to the Ehrenfest theorem by mentioning 
that the mean values of the position and momentum operators 
now lead to

〈x(θ)〉θ = e−iθ eiθ
∫

ψ∗xψ dx = 〈x〉 (50)

〈p(θ)〉θ = e−iθ e−iθ
∫

ψ∗pψ dx = −〈p〉 if θ = π

2
(51)

As a consequence, this new inner product allows us to find, in the 
unitary context, the sign change of the mean value of p, typical of 
the anti-unitary context.

Notice also that the idea of a new scalar product is not new. 
It has already been evoked in [25] (where we can find a mixed 
scalar product, the usual scalar product for the angular part of the 
Schrödinger equation and the scalar product without complex con-
jugation for the radial part) and [26] (in which a scalar product 
based on a time inversion only is introduced).

6. Conclusion

We have highlighted some arguments that allow us to affirm 
that the choice of anti-unitarity for time inversion is not as obvi-
ous as it seemed at first sight...
Let us resume the different characteristics in a summary table (Ta-
ble 1).
In both cases, the fundamental relations and equations of non-
relativistic quantum mechanics remain invariant. Of course, this is 

a first step and it is necessary to confirm it at the level of relativis-
tic quantum mechanics and quantum field theory.
At least, both versions, unitary and anti-unitary, are coherent, from 
a theoretical point of view if we limit ourselves to non-relativistic 
quantum mechanical considerations.
To the reader worried about experimental confirmations, we can 
only refer to the fact that negative energies, and thus the uni-
tary temporal reversal operator, have already proven themselves at 
the cosmological scale [10]. It should also be noted that the field 
of investigation of negative energies and masses is recent. Further 
confirmation is clearly needed in the future. Experiments such as 
those conducted in [27] will be crucial in this sense. Our goal, 
in this article, was simply to bring a first stone to the theoreti-
cal building of this new aspect of physics by limiting ourselves to 
the foundations i.e. non-relativistic quantum mechanics.
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